ECP

ECP Milestone Report
DARMA-MPI Interoperability
WBS 2.3.1.04, Milestone 15

Jeremiah Wilke, Sandia National Labs

August 19, 2018

SAND2018- 9853R

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)

TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP Milestone Report
DARMA-MPI Interoperability
WBS 2.3.1.04, Milestone 15

Office of Advanced Scientific Computing Research
Office of Science
US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration
US Department of Energy

August 19, 2018

Exascale Computing Project (ECP) iii

15

ECP Milestone Report
DARMA-MPI Interoperability
WBS 2.3.1.04, Milestone 15

Approvals

Submitted by:

Jeremiah Wilke, Sandia National Labs
15

Approval:

Douglas B. Kothe, Oak Ridge National Laboratory
Director, Applications Development
Exascale Computing Project

Exascale Computing Project (ECP) iv

Date

Date

15

Revision Log

Version | Creation Date

Description

‘ Approval Date

1.0 | August 19, 2018 | Original

Exascale Computing Project (ECP)

15

EXECUTIVE SUMMARY

DARMA (Distributed Asynchronous Resilient Models for Applications) is a runtime library developed as
part of the the Sandia ATDM (Advanced Technology Development and Mitigation) program. DARMA
supports applications within 2.2.5.03 ADNN03-ASC ATDM SNL Application, which includes a number of
applications featuring dynamic physics which requires load balancing and asynchronous communication for
high performance. We have implemented a modern C++ programming model that can enable dynamic,
asynchronous communication on top of existing data structures from a serial or MPI code. DARMA
development has occurred in parallel with a verification milestone for ATDM in FY18. For FY19, DARMA
will impact ATDM by enabling the performance benefits of a dynamic runtime through only incremental
changes to existing verified MPI codes. The results presented here demonstrate the DARMA development
process for an MPI mini-app, showing a 3-4x improvement in performance for a challenging problem
relative to the parent MPI code and coming within 25 percent of the theoretically optimal performance
achievable from a perfect, fine-grained load balancer for most cases. The code is released open-source at
https://github.com/DARMA-tasking/darma-futures

Exascale Computing Project (ECP) vi 15

TABLE OF CONTENTS

Executive Summaryj vi
List of Figures viii
[List of Tables ix
1 TIntroductionl 1
1.1 Communication Overlap e e e 1
1.2 Dynamic Load-balancing Without Repartitioning via Overdecomposition/. 1
1.3 MPI Interoperability Problem Statement 1

2 ++ stractions 1
2.1 Asynchronous References e e 1
2.2 Deferred Execution and Move Semantics 0. 2
23 Collectiond 5 « « @ ww s o @ s & 5 5 8 8 £ 5 5 5 5 68 8 5 & 8 8586 85 @ E@E @8 s 8§55 8 853 2
2.4 Accessors and Serializationl 2

3 article-in-Ce ini-App 2
2

3

3

3

5

5 Conclusion And Future Work 7

Exascale Computing Project (ECP) vii 15

LIST OF FIGURES

1 Overview of the iterations in the PIC algorithm showing the relationship between the particle

\ move kernel and the field solve. Particles accelerate in the field, depositing charges and currents

\ as they move. The residual charge and current deposited is used to update the fields for the

[mextiferation.. L e e e e e e e e e e e e 3
2 Overview of DARMA-MPT interoperability in the PIC application. The solver kernel assumes |

\ a fixed data distribution created by MPI. DARMA dynamically migrates data to achieve load |
\ balance in the move kernel. When interoperating between the two phases, only a small subset |
4

3 Pertormance of DARMA relative to MPI for the PI(J mini-app for balanced strong-scaling |

\ problem with changing overdecomposition. All results collected on the Haswell partition of the |
\ Mutrino platform. The parent MPI application executes with an overdecomposition of 1. 5
4 Performance of DARMA load balancing for unbalanced strong-scaling problem with changing |

\ overdecomposition. All results collected on the Haswell partition of the Mutrino platform/| . . 6
b Performance of DARMA load balancing for unbalanced strong-scaling problem with overde- |

\ composition 32 relative to MPI with static distribution. Scaling of the individual phases (move \
\ kernel, solver, DARMA-MPT handoff) are shown separately] 6
6 Performance of DARMA load balancing for unbalanced strong-scaling problem with overde- |

\ composition 32 relative to a theoretically optimal Ioad balanced distribution,| 7
Exascale Computing Project (ECP) viii 15

LIST OF TABLES

Exascale Computing Project (ECP)

15

1. INTRODUCTION

DARMA (Distributed Asynchronous Resilient Models for Applications) aims to simplify the development of
applications exploiting asynchronous, deferred execution using modern C++. Deferred execution enables
task parallelism, communication overlap, and load balancing by declaring and enqueuing work rather than
explicitly stating where and when computational work should take place. This represents a shift from
imperative to declarative models. We identify two major performance and productivity drivers:

1.1 Communication Overlap
Consider an archetypal code example showing computation/communication overlap:

MPI_Isend (...);
MPI_Irecv(....);
do_some_work ();
MPI_Waitall(...);

How much work (and which work) should go in the function do_some_work? Does MPI_Isend even guarantee
forward progress before the MPI_Waitall? Rather than explicitly defining what work to overlap, an alternative
approach (shown below) would simply enqueue tasks and communication and let a dynamic runtime overlap
as much as possible.

1.2 Dynamic Load-balancing Without Repartitioning via Overdecomposition

Much of the work in developing an application is decomposing the problem across MPI ranks. Applications
can then only load balance in a ”synchronous” manner that involves re-partitioning the problem. For some
applications, this can create performance problems as “partial chunks” cannot be quickly rebalanced across
processes. For applications exhibiting persistence (load balance changing slowly), the re-partitioning problem
may present more of a productivity than performance challenge. Overdecomposition creates a single problem
decomposition at a finer granularity than an entire MPI rank. Work chunks can then be freely exchanged
between processes to distribute load without requiring a synchronous re-partition.

1.3 MPI Interoperability Problem Statement

DARMA creates challenges for interoperating with MPI. DARMA provides a “virtual” context. Although
the code is oblivious to load balancing, work patches can freely migrate around the system to enable load
balance. If interoperating with an existing MPI code, a DARMA kernel must “borrow* and “return” the
data from/to its original location in the parent MPI application. This requires cleanly defining 1) ownership
semantics for data moving between DARMA and MPI modes and 2) runtime infrastructure to track data
migration during DARMA load balancing. The latest version of DARMA is implemented using MPI as the
underlying communication layer, avoiding resource sharing and runtime compatibility difficulties in previous
versions. While the runtime infrastructure is now fully compatible with inter-operating, we must still define
the handoff semantics in the programming model.

2. DARMA C++4 ABSTRACTIONS

2.1 Asynchronous References

The most significant transformation from a “simple“ C++ code to DARMA C++ is the use of async_ref
template wrappers.

async_ref_mm<int> myInt;

A full discussion of DARMA semantics is beyond the scope of this report. However, the async_ref enforces
migratability (serialization) of the underlying type and acts as a future enabling deferred execution through
asynchronous tasks.

Exascale Computing Project (ECP) 1 15

2.2 Deferred Execution and Move Semantics

Rather than directly calling functions, DARMA enqueues work. A parent MPI application first creates a
DARMA context using a given communicator.

auto dc = allocate_context (MPI_COMM_WORLD);

For that context, data and tasks are created:

auto myInt = dc->make_async_ref<int>(0);
auto deferredInt = dc->create_work<MyFunction>(std::move(myInt));

auto finalResult dc->create_work<Final>(std::move (deferredInt));

The create_work function will invoke the functor MyFunction when the inputs become available. The call to
create_work returns an async_ref (i.e. future) that acts as a handle for the future state of myInt. Because
work is deferred, not executed immediately, the input myInt must be expired. C++ move semantics are
required to transfer of ownership from the application to the DARMA runtime.

2.3 Collections

Collections are the main vehicle for distributed memory. They create multiple instances of the same object
across the system.

int pieces = ...;
auto coll = dc->make_collection<int>(npieces);

In contrast to an MPI communicator whose size is tied to the number of launched processes, the size of the
collection is arbitrary. Overdecomposition is enabled by creating more work patches than MPI ranks.

2.4 Accessors and Serialization

Certain operations (send, recv, load balancing, return to MPI) all have need to access different members of
a data structure. A send operation, e.g., only needs to access and send ghost data. MPI interoperability
may only need to transfer a subset of the data, for example charge densities for a solver (see below). Load
balancing must transfer all of the data for a work patch. DARMA includes a serialization library. An accessor
must implement the required serialization.

struct Accessor {
template <class Archive> static void compute_size(Swarm& s, Archive& ar){}

template <class Archive> static void pack(Swarm& s, Archive& ar){}

template <class Archive> static void unpack(Swarm& s, Archive& ar){}

};

The data required is placed into a generic archive object, which enables type-safe data movement optimizations,
particularly for intra-process versus inter-process data movement.

3. PARTICLE-IN-CELL MINI-APP

3.1 Overview

The main application driver is the particle-in-cell (PIC) application for Sandia ATDM (Advanced Technology
Development and Mitigation), which is called EMPIRE (2.2.5.03 ADNN03-ASC ATDM SNL Application).
PIC poses serious load balancing challenges since it combines particle data with mesh data. An optimal,
balanced distribution of particles is not the same as an optimal, balanced distribution of the mesh. DARMA
aims to provide a productive programming model that easily and transparently enables load balancing. A

Exascale Computing Project (ECP) 2 15

Equations of Motion:
Move, accelerate particles in E,B
field and deposit charge p, current J

Residual Residual

EB At P

Maxwell Equations
Linear field solve (HPCCG)
Maxwell E,B from p, J

Figure 1: Overview of the iterations in the PIC algorithm showing the relation-
ship between the particle move kernel and the field solve. Particles accelerate in
the field, depositing charges and currents as they move. The residual charge and
current deposited is used to update the fields for the next iteration.

parent MPI mini-app (9K lines) was developed first, with no load-balancing and a basic bulk-synchronous
communication pattern. 500 lines of “wrapper” DARMA code was implemented in a single source file to add
load balancing and asynchronous communication. This initial exercise demonstrates a workflow to be repeated
with EMPIRE following its verification milestone in FY18. Both the DARMA runtime and the PIC mini-app
can be obtained via the DARMA github repository: https://github.com/DARMA-tasking/darma-futures

Figure [I] shows the steps involved in the PIC application. The particles move through space, interacting
and accelerating through electric and magnetic fields associated with cells in the mesh. Residual charge
densities and currents are updated based on the particle movement. After each timestep, electric and magnetic
fields are updated through a solver. The solver phase is easy to decompose into a balanced work distribution
in standard MPI code. The particle move phase is highly irregular with dynamic particle trajectories and
changing particle densities and is implemented as a DARMA kernel.

3.2 Data Distribution between DARMA /MPI

Certain data structures are required only for the MPI solver, only for the DARMA particle move, or are
needed in both the DARMA and MPI phases. These data structures are summarized in Figure 2. Data
movement, between MPI and DARMA is not “symmetric.” The residual densities generated by the move
kernel must be passed to the MPI solver, but are not sent back when the DARMA kernel resumes. Similarly,
the residual fields must be sent from the MPI solver to the DARMA move kernel, but are not sent back. The
particles, which consume most of the memory and computational time (see below) are not directly required
by the solver.

4. RESULTS

We wish to understand 1) the performance overheads of DARMA for a balanced problem without load
balancing as a baseline case and 2) the performance benefits enabled by DARMA for an unbalanced problem.
The critical parameter in both of these is the overdecomposition factor, which gives flexibility to the load
balancer. Increasing overdecomposition gives more freedom to the DARMA runtime for communication
overlap and better load balancing. However, increasing the number of work units to schedule increases
runtime overhead. All results were collected on the Haswell partition of the Mutrino platform at Los Alamos
National Lab.

4.1 DARMA Overheads for Balanced Problem

The balanced problem simulates a uniform particle density. Particles migrate through space, but an overall
uniform density is maintained. Without load balancing and with no overdecomposition, the DARMA applica-

Exascale Computing Project (ECP) 3 15

DARMA

Move Kernel
Inputs:
Particles P

Fields E, B

Outputs:
Residual density Pres

Residual current Jres
Particles P

E,B

Update Fields
Inputs:

Residual fields Eres . Bres

Previous fields E, B

Outputs:
New fields E, B

MPI

MPI_Send

res’ Pres

Field Solve
Inputs:
Residual density Pras

Residual currents Jres

Outputs:
Residual fields E B

res’ -res

J

.
MPI_Send

Figure 2: Overview of DARMA-MPI interoperability in the PIC application.
The solver kernel assumes a fixed data distribution created by MPI. DARMA
dynamically migrates data to achieve load balance in the move kernel. When
interoperating between the two phases, only a small subset of data must be
transferred from the DARMA location to the MPI location.

Exascale Computing Project (ECP)

15

Balanced PIC Benchmark

i No. Nodes
| At
2000 A L‘_* -4- 64
“~-.,~~_ -¢- 64
7 N L T —— e -¢- 64
s TTTTTTE s -
GEJ 1500 -
= MPI
|_
S L
O 1000 A g
4(_6 e ————— @ e o e e S °
5 MPI
= L
500 e e e S -
et —————— O e —
0 T T T T T T T
0 10 20 30 40 50 60

Overdecomposition

Figure 3: Performance of DARMA relative to MPI for the PIC mini-app for
balanced strong-scaling problem with changing overdecomposition. All results
collected on the Haswell partition of the Mutrino platform. The parent MPI
application executes with an overdecomposition of 1.

tion is equivalent to an MPI-only application. Figure 3 shows the per-iteration time as overdecomposition
increases from 1 to 64 for 8 to 64 nodes.

4.2 Load Balancing on Unbalanced Problem

The unbalanced problem simulates a large emission of charged particles from a 2D plate. A dense particle
density exists in a small part of space while a low particle density exists in most cells. Figure 4] shows
the effect of overdecomposition on improving the load balance for the move kernel. Note that too little
overdecomposition does not grant sufficient flexibility but too much overdecomposition incurs performance
overhead. The optimal overdecomposition shifts at larger node counts, with 8-32 generally being a good
choice.

Figure [shows the time to execute the complete iteration, the solver portion, and the move kernel with
and without load balancing assuming an overdecomposition factor of 32. In general, the MPI handoff is only a
small portion of the overall time. Overall, at the largest scales, DARMA load-balancing improves performance
by 3-4x relative to the MPI code. A theoretically optimal performance improvement can be estimated by
DARMA by comparing the maximum task size to the average task size in the system. Additionally, the load
balancer can estimate the “expected” improvement based on the computed distribution. These results are
shown in Figure . The DARMA load balancer is generally able to compute a work distribution within 5-10%
of a theoretically optimal distribution. The observed speedups, though, are quite different from the expected
based on the load balance computation. Deviations from the expected distribution demonstrate either 1)
runtime overheads that are not possible to load balance or 2) inaccuracies in the metrics used in the load
balancer or changes in the optimal distribution over time. While no comparisons are made here to an MPI
load-balancing strategy, DARMA at last achieves performance within 25% of optimal for most node counts.
Performance analysis at the largest node counts is needed to identify discrepancies between the load balancer
prediction and the observed speedups.

Exascale Computing Project (ECP) 5 15

MPI Unbalanced PIC Benchmark

1000 e
\\\
~
.
800 e e i i i -
No. Nodes
-¢$- 8
600 MPI wte 18
i - 3
\\
Wi, -$-64 o
e esm—— L
400
MPI
b I — +
200 4
ey L b bl e S e A e P e =
10 20 30 40 50 60

Figure 4: Performance of DARMA load balancing for unbalanced strong-scaling
problem with changing overdecomposition. All results collected on the Haswell

partition of the Mutrino platform.

Iteration Time (ms)

Figure 5: Performance of DARMA load balancing for unbalanced strong-scaling
problem with overdecomposition 32 relative to MPI with static distribution.
Scaling of the individual phases (move kernel, solver, DARMA-MPI handoff) are

Unbalanced PIC Benchmark

103 4

102 4

Move

Solver

DARMA-MPI Handoff
Total

Move (No Balancing)

AR S K

T T T T

8 16 32 64
No. Nodes

shown separately.

Exascale Computing Project (ECP) 6

15

Unbalanced PIC Benchmark

5 l\
— \
4 -
m
£
QU 341
=
|_
s
S 27
©
|
(V]
=
1 -
—$— Actual Speedup
—¥— Ideal Speedup
—— Expected Speedup
0 T T T T
8 16 32 64
No. Nodes

Figure 6: Performance of DARMA load balancing for unbalanced strong-scaling
problem with overdecomposition 32 relative to a theoretically optimal load
balanced distribution.

5. CONCLUSION AND FUTURE WORK

The results presented here show new runtime infrastructure and programming models support for interoper-
ating a DARMA kernel with an MPI application. Modern C++ ownership models and future-like template
wrappers provide the needed programming model semantics. Additional runtime infrastructure providing load
balancer and data migration between the DARMA and MPI phases was implemented. Although not part of
the milestone, missing is an MPI-based synchronous load balancer (e.g. Zoltan) as a baseline for load-balancing
performance. Future work will adapt the MPI-only version of the PIC mini-app for bulk-synchronous load
balancing.

ACKNOWLEDGEMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC,
a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—including
software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s exascale computing imperative.

Exascale Computing Project (ECP) 7 15

