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Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model
of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher
energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning
techniquesis revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present
and future experiments. Here we summarize the challenges and opportunities that come with the use of machinelearning

at the frontiers of particle physics.

The standard model of particle physics is supported by an

abun- dance of experimental evidence, yet we know that it cannot be a
complete theory of nature because, for example, it cannot incor- porate
gravity or explain dark matter. Furthermore, many properties of
known particles, including neutrinos and the Higgs boson, have not yet
been determined experimentally, and the way in which the emergent
properties of complex systems of fundamental particles arise fromthe
underlying standard-model theory remains unknown.

Many known particles were discovered using detectors that made sub-
atomic particles visible to the human eye. For example, bubble cham-
berstfilled with superheated liquids that boil when charged particles pass
through them transform the paths of the particles into visible tracks of
bubbles, which can then be photographed and analysed. The detectors at
the Large Hadron Collider (LHC)?are much more complex and record
data at far greater rates than is possible using bubble chambers. For exam-
ple, the LHCb experiment® analyses as many events every six seconds
as the Big European Bubble Chamber recorded in its entire 11 years of
operation (1973-1983), and the datasets collected by the ATLAS*and
CMS?® experiments at the LHC are comparable to the largest industrial
data samples. It is impossible for humans to visually inspect such large
amounts of data; algorithms running on large computing farms took over
this task longago.

Over the past two decades, particle physics has been migrating towards
the use of machine-learning methods in the collection and analysis of its
large data samples®. Pioneering studies that used neural networks’#and
boosted decision trees (BDTs)**in previous-generation experimentstt-22
laid the groundwork for the emergence of machine learningas an essential
tool at the LHC. Machine-learning algorithms made important contri-
butions to the discovery of the Higgs boson?% and most data-analysis
tasks now benefit from the use of machine learning. In parallel, the field
of machine learning has developed at a rapid pace and, in particular, the
subfield of deep learning has delivered superhuman performance in sev-
eral domains?®2, Incorporating these tools while maintaining scientific
rigour requiredin particle-physics analyses presents new challenges. This
Review focuses on the application and development of machine-learning
methods at the LHC, including recent advances based on deep learning.
In addition, we present some example applications of deep learning within
the subfield of neutrino physics, in which state-of-the-art methods, such
as from computer vision, are naturally applicable.

Big data at the LHC

The sensor arrays of the LHC experiments produce data at a rate of
about one petabyte per second. Even after drastic data reduction by
the custom-built electronics used to readout the sensor arrays, which
involves zero suppression of the sparse data streams and the use of
various custom compression algorithms, the data rates are still too
large to store the data indefinitely—as much as 50 terabytes per second,
resultinginas much data everyhouras Facebook collects globallyina
year?’. In this section we first motivate why it is necessary to produce
suchimmense datasamples, before discussing how machine learning
is being used to more effectively select—in real time—which data to
keep for further studies and which data to permanently discard. In
addition, we show how the use of machine learning is leading to more
efficient processing of these data using vast computing resources dis-
tributed around the world. Both of these big-data challenges must be
overcome hefore the LHC data can be used to advance our knowledge
of fundamental particles.

LHC operations

Einsteinfamouslyrelated mass toenergy E via E = m¢c?, where cisthe
speed of light inavacuum. A powerful particle accelerator such as the
LHC, which is 27 km in circumference, is therefore required to create
particles orders of magnitude more massive than the proton, such as
the Higgsboson. AHiggsbosonisproducedonlyonceeveryfewbillion
proton—proton collisions at the LHC. Many other interesting reactions
occur orders of magnitude less often. Toenable such data samples to
be recorded in a reasonable time frame, the LHC collides nearly one
billion protons persecond.

High-energy collisions can produce hundreds of particles, and
disentangling such complex events requires detectors with large and
diverse sensor arrays. The ATLAS and CMS detectors each contain
roughly 100 million detection elements. Most of the particles pro-
duced in the LHC experiments decay before they can be detected
by any of the sensors. Therefore, LHC analyses must infer what the
underlying reactions were on the basis of the properties of the particles
that are detected. A wide variety of sensor technologies are used in
the LHC detectors. The various signals from the particles that are
detected by these sensor arrays are digitized, converting the physical
processesinvolvingsubatomic particlesintolarge collections of bytes.
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The extreme rate at which the LHC collides protons, along with the
size and complexity of the LHC detectors, results in the production of
enormous datasamples.

Real-time analysis
The LHC experiments use data-reduction schemes executed in real
time, referred to as triggers, to identify which datato retain for future
analysis and which to permanently discard. For example, the ATLAS
and CMS experiments each keep onlyabout Linevery 100,000 events.
Despite this, their data samples are each still about 20 petabytes per
year. The firststepin decidingwhich eventsto keepreliesonlogic that
isencoded directlyintothe hardwareto enablethe fastest possible deci-
sions, such as into devices known as field-programmable gate arrays
(FPGASs). Machine learning is already used in this environment; for
example, CMS uses machine learning inits trigger hardware to better
estimate the momentum of muons?8, with the inputs to the algorithm
discretized to enable the machine-learning response to be encoded in
alarge look-uptable that is easily programmed into the FPGAs.
Inaddition, the LHC experiments use huge computing farms to pro-
cess the extreme volumes of data and search for interesting signatures.
In the case of the LHCb experiment, many of the reactions of greatest
interest do not produce striking signatures in the detector, making it
necessary to thoroughly analyse high-dimensional feature spaces in
real time to efficiently classify events?®. Since the first year of LHCb
data collection, the primary algorithm used for such classification has
been machine-learning-based; specifically, a BDT was used for the
first two years, which has since been replaced by a MatrixNet algo-
rithm®L. The use of machine learning is now ubiquitous, which has
greatlyimproved performance while satisfying the stringent robustness
requirements of asystem that makes irreversible decisions. Currently,
70% of all dataretained are classified by machine-learningalgorithms
and all charged-particle tracks are vetted by neural networks®2. Asan
exampleofthe effect ofthese machine-learningmethods, achievingthe
same sensitivityas arecent LHCb search for the dark-matter analogue
of the photon, which was performed using data collected in 2016%3,
would have required 10 years of data collection without the use of
machine learning.

Actionable insights from computing metadata

Processing of the industrial-scale data samples collected by the LHC
experiments is performed using the computing resources of the LHC
Computing Grid, which are distributed across dozens of centres world-
wide. The massive volumes of data moved between grid centres, and
the large number of CPU processing jobs used to access and analyse
these data, generate an enormous amount of metadata information
from which actionable insights can be extracted. Machine-learning
techniques have recently begunto playa crucial partinincreasing the
efficiency of computing-resource usage atthe LHC3436, One example
is predicting which data will be accessed the most, as currently mon-
itored by CMS®” and LHCb®®, so that it becomes possible to optimize
data storage at the grid centres. Another example involves monitoring
data-transfer latencies over complex network topologies at CMS®°,
using machine learning to identify problematic nodes and to predict
likely congestions. Currently, machine learninginforms the choices of
the computing-operations teams, but in the future it form the basis of
fully automatic and adaptive models.

Machine learning as an established tool

After identifying and recording the most interesting LHC events and
processing them on the Computing Grid—two vital tasks supported
by machine learning—the data are ready for exploration. The first step
in interpreting these data involves grouping the signals recorded by
various sensor elements according to which particle created them.
The typesand properties of the particles can then be inferred from the
subsets of event information associated with them. Finally, after recon-
structing all detected particles in the event, the data are analysed to
determinethe underlying physical processesthat createdthe particles.
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Fig. 1 | Machine learning for calorimetry at CMS. The mass distribution
of Z bosons that decay to electron—positron pairs (Z — e*e™), as measured
in the central part of the CMS detector and binned into 1-GeV bins, is
shown for three cases: using only the raw information from the detector
(orange), after clustering the data (green) and after applying the machine-
learning-based corrections discussed in the text (blue). The true position

of the peak for this decay is 91 GeV. Image adapted from ref. 1®*undera CC
BY 4.0 license, copyright CERN, reused with permission.

Interpreting such complex data samples is an extremely challenging
task, which has been revolutionized by the use of machine-learning
techniques. About 2,000 journal articles have been produced by the
LHC experiments to date, providing a large library of examples of the
use of machinelearning withthesetypes of complex dataset. Inthis sec-
tion we discussafew highlights, includingthe role of machine learning

in the discovery of the Higgs boson?324,

Determining particle properties

The use of machine learning to improve the determination of particle
properties is now commonplace at all of the LHC experiments. For
example, BDTs are used to increase the resolution of the CMS electro-
magnetic calorimeter®®. When an electron or photon enters such a
detector, itrapidlylosesits energy, which is subsequently collected and
measured by the calorimeter. This deposited energy is often recorded
by many different sensors and the readings from these sensors must
be clustered together to recover the original energy of the particle.
Multivariate regression is used by CMS to train BDTs to provide cor-
rections tothese inferred energies on the basis of all of the information
contained in each calorimeter sensor. Applying these energy correc-
tions to the decay of a Z boson into an electron—positron pair results
in a substantial improvement in mass resolution compared to the tra-
ditional clustering approach (see Fig. 1).

Discovery of the Higgs boson

Asstated above, a Higgs boson is produced only once every few billion
proton—proton collisions atthe LHC; however, the Higgs boson usually
decays in ways that mimic much more copiously produced processes.
The cleanest experimental signature of the Higgs boson involves its
decay intotwo muon-antimuon pairs, which occurs roughly once every
10 trillion proton—proton collisions. This and a few other processes
wereusedinthe Higgsdiscoveryanalyses. Mostwereselected owingto
their striking experimental signatures, which made it possible to obtain
pure signals using relatively simple analyses. Animportant exception
was the analysis of the Higgs boson decaying into two photons by the
CMS experiment.
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Fig. 2 | Separating signal events from background in the ATLAS
experiment. a, The BDT-score distribution for a search for the Higgs
boson decaying to a tau-lepton pair (H — 7*77), with bin widths of 0.17.
The black circles show the score of a machine-learning algorithm known
asa BDT for data from the ATLAS detector during the 2012 data-taking
period, where the error bars show the Poisson statistical uncertainties.
This BDT was trained to distinguish a Higgs signal from various non-
Higgs backgrounds. The coloured area shows the stacked contributions

of the different background processes: Z — ¥t~ decays (blue), other
particles decaying to a tau-lepton pair (brown) and fake tau particles
(where at least one tau lepton is misidentified; green). The dotted red line
shows the expected total counts assuming a Higgs-boson production rate
identical to the standard-model expectation (i = 1); the solid red line
shows the expected total counts assuming a Higgs-boson production rate
of u = 1.4, which is still compatible with the standard model; the hatched
area shows the systematic uncertainty on the expected total count. The
excess counts compared to the coloured region (mainly in the rightmost
two bins) are attributed to the Higgs boson. b, The ratios of the data (black
circles), expected counts for u = 1 (dashed red line), expected counts

for u = 1.4 (solid red line) and uncertainty (hatched region) from a to

the expected counts for 1 = 1.4 (so the solid red line is identically 1) are
shown, along with the ratio of the expected counts excluding the Higgs
contribution (the sum of the green, brown, blue and hatched regions in a)
to the expected counts for u = 1.4 (black line). Image adapted from ref. 43
under a CC BY 4.0 license, copyright CERN.

The CMSanalysis involved searching for asmall excess of diphoton
candidates, manifested as a narrow peak in the diphoton mass spec-
trum, in the presence of a large smoothly distributed background. This
background largely consisted of diphotons that originated from pro-
cesses other than the Higgs decay and from candidates formed from
one real photon combined with an artificial photon signal (that is, a
photon inferred from the detector signals that did not correspond to an
actual photon produced in the physical process). Two BDTs were used
to improve the diphoton mass resolution by better determining which
proton—proton collision the photons were produced in. Because both
the standard-model Higgs process and the dominant background pro-
cessesarewellunderstood,itwas possibletousesimulated datasamples
to train a BDT. On the basis of the response of this BDT, the CMS
diphotons were either discarded or kept for further analysis. The dipho-
tons selected were also categorized using the BDT response, making
itpossibletoanalyse arare—buthighly pure—subset of Higgs decays
separately. A simultaneous fit was performed to the mass distributions
of all categories, which greatlyenhanced the sensitivity tothe presence
ofaHiggssignal. The increase in sensitivity due tothe use of machine
learning was equivalent to collecting 50% more data.

Determining the properties of the Higgs boson

The standard model contains only one Higgs boson, which is the sim-
plest explanation for the phenomenon known as electroweak symmetry
breaking. Many extensions to the standard model predict that there are
many Higgs bosons; for example, super-symmetric theories predict a
rich Higgs sector, and other theories predict that the Higgs boson is
a composite object, not a fundamental particle. The standard model
provides precise predictions for the properties of the Higgs boson and
itisvital that these predictions are tested experimentally to determine
the nature of the Higgs particle discovered at the LHC.

The Higgs-boson discovery analyses firmly established its interac-
tions with the electroweak-force-carrying particles, namely the pho-
ton, W boson and Z boson. The standard model also predicts that the
Higgs boson interacts with fermions (quarks and leptons) and that the
strength of each of these interactions is proportional to the masses of
the fermions. This meansthatthe Higgsbosonisexpected todecayinto
heavier quarks and leptons more often than into their lighter cousins.
The ATLAS and CMS experiments have thus far observed the Higgs
boson decaying into the heaviest kinematically accessible quark, the
beauty quark*'?, and into the most massive lepton (a heavier ver-
sion of the electron known as the tau lepton). Machine learning had a
major role in each of these discoveries, although we describe only the

ATLAS search for the decay of the Higgs boson into an antitau-tau pair

(H — T°77) in detail here.

The study of tau particles is challenging because they decay before
being detected and because their decays always involve neutrinos
that escape detection and carry away energy. Furthermore, the decay

Z — 5T~ occurs about 1,000 times more often than does H —» 771"

The ATLAS analysis divided the data sample into six distinct kin-
ematic regions. A BDT was trained in each region using 12 weakly
discriminating input features®. In Fig. 2 we show an example BDT
response distribution obtained in one region. The combined analysis
of all six regions provided strong evidence for the realization of the
Higgs boson coupling to tau leptons in nature, with about 40% better
sensitivityachieved through the use of machine learning. Thus far, the
interactions of the Higgs boson with quarks and leptons appear to be
consistent with standard-model predictions. The simulation that led

to this result was eventually released through Kaggle as the basis of
the 2014 Higgs Machine Learning Challenge*4, where data scientists
competed to provide alternative machine-learning methods to isolate
the H — t¥1~ signal. Table 1 shows the impact of machine learning
onthemeasurementofseveral keyprocessinginvolvingHiggsbosons

at ATLAS and CMS.

A high-precision test of the standard model

The standard model predicts that only three out of every billion Bs
particles—bound states that contain a beauty quark—decay into a
muon-antimuon final state. The fact that this decay rate is so highly
suppressed in the standard model contributes to it being extremely
sensitive to potential quantum effects induced by as-yet-unknown
particles, especially from an extended Higgs sector; for example, certain
super-symmetric theories predict an order-of-magnitude enhancement
in this decay rate. The CMS and LHCb experiments were the first to
find evidence for this decay, using data samples collected in the first
few years of the LHC, and a combined analysis of these datasets pro-
duced the first observation of it*>. The analyses used BDTs to reduce
the dimensionality of the feature space—excluding the mass—to one
dimension and then an analysis was performed of the mass spectra
across bins of BDT response. This approach preserved as much infor-
mation as possible about the mass spectra of both the signal and back-
grounds, providing the best possible sensitivity to this extremely rare
decay of the Bs meson into a muon—antimuon final state. The decay
rate observed is consistent with the standard-model prediction with
aprecision of about 25%, which places stringent constraints on many
proposed extensions to the standard model. Finally, a more recent
update fromthe LHCb experimentachievedthefirstsingle-experiment
observation*®; achieving a similar sensitivity without the use of machine
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Table 1 | Effect of machine learning on the discovery and study of
the Higgsboson

Sensitivity Sensitivity Ratio Additional

Yearsofdata without machine withmachine of P data
Analysis  collection learning learning values required
CcMms?* 2011-2012 2.20, 2.70, 40 51%
H—yy P=0.014 P = 0.0035
ATLAS*®  2011-2012 2.50, 340, 18 85%
H—Tt*T~ P = 0.0062 P =0.00034
ATLAS®®  2011-2012 1.90, 250, 47  73%
VH — bb P = 0.029 P = 0.0062
ATLAS*  2015-2016 2.80, 3.00, 1.9 15%
VH — bb P = 0.0026 P=0.00135
CMStoo 2011-2012 1.40, 210, 4.5 125%
VH — bb P=0.081 P=0.018

Five key measurements of three decay modes of the Higgs boson H for which machine learning
greatly increased the sensitivity of the LHC experiments, where vV denotes a W or Zboson, y
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with
machinelearningis given,in terms of both the Pvalues and the equivalent number of Gaussian
standard deviationso. (Wepresentonlyanalysesthatprovidedbothmachine-learning-based and
non-machine-learning-based results; the more recent analysesreport only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by
the ratio of Pvalues, ranges roughly from 2 to 20. An alternative figure of meritis the minimal
amountofadditionaldatathatwould needtobe collectedtoreachthe machine-learning-based
sensitivity without using machine learning, which varies from 15% to 125%.

learning would have requiredthe collection of about fourtimesas much
data. This is just one of many examples of high-precision tests of the
standard model at the LHC for which machine learning has markedly
increased the power of the measurement.

The emergence of deep learning

Machine learningin particle physics, includingthe examples presented
in the previous two sections, has traditionally involved the use of
field-specific knowledge toengineer tools toextract the features of the
data that are expected to be the most useful for a given measurement.
This enables the incredibly rich initial data to be interpreted using
only a small number of features. For example, in the aforementioned
Bs decay, a human-designed tracking algorithm first reconstructs the
paths taken by the muon and the antimuon in a magnetized parti-
cle-physics detector, and from these paths the momenta of the particles
are inferred. However, only the dimuon mass and the angle between
them are used in the BDT. The rest of the kinematic information is
discarded.

For many tasks, information can be lost when these human-
designed tools are used to extract features that fail to fully capture the
complexity of the problem. As in the fields of computer vision and
natural language processing?®7, there is a growing effort in particle
physics to skip the feature-engineering step and instead use the full
high-dimensional feature space to train cutting-edge machine-learning
algorithms, such as deep neural networks*. In this approach, domain
expertise is used to design neural-network architectures that are best
suited to the specific problem. Studies of such applications have grown
substantially in number and complexity within the past several years,
beginning around 2014 with applications of deep neural networks to
dataanalysis*®, quickly expanding tothe firstapplications of computer
vision®®-°2and to the current broad study of deep learning throughout
the field of particle physics>3-5¢.

In this section we highlight a few recent applications of two types
of deep learning algorithm in particle physics: convolutional and
recurrent neural networks (CNNs and RNNSs, respectively)®”:%8. The
outputs of many particle-physics detectors can be viewed as images,
and the application of computer-vision techniques is being explored in
simplified settings by the LHC community®*-®and with initial studies
on ATLAS and CMS simulations®®67. However, such techniques are
more naturally applicable in the area of neutrino physics, for which
reason we focus our discussion of CNNs to neutrino experiments.
Similarly, there are many applications of RNNSs, but for brevity we
discuss only their use for the study of high-energy beauty quarks at
ATLAS and CMS.

Computer vision for neutrino experiments

Loosely inspired by the structure of the visual cortex, CNNs use a strategy

that decreases their sensitivity tothe absolute position of elementsinan
image and that makes them more robust to noise. Deep CNNs are able
toextract complex features from images and now outperform humans

in certainimage-classification tasks. Another strength of CNNsis their
ability to identify objects in an image, as demonstrated for example
by their use in self-driving cars, owingtotranslation-invariant feature
learning. Thistranslational invariance presentsa challenge forthe LHC
experiments, whose detectors consist of layers of distinct detector tech-
nologies moving out from the proton—proton collision region. These
detectors provide rich information in the absolute reference frame of
the detector, which is transformed into a more natural format for a
CNN-based approach. By contrast, this characteristic of CNNs is par-
ticularly useful for neutrino experiments, which necessarily use large

homogeneous detectors owingtothe incredibly small probability that
aneutrino will interact within a small volume of material. A neutrino
interaction cantake place anywhere within these detectorsandlocating
them is a critical part of neutrino-physics analyses.

The detectors ofthe NOvA experiment®are filled with scintillating
mineral oil, which emits light when a charged particle passes through
it. Each NOVA event consists of two images: one taken from the top
and the other from the side. The NOVA collaboration has developed
a machine-learning algorithm®2 composed of two parallel networks
inspired by the GoogleNet® architecture. The NOvA CNN extracts
features from both views simultaneously and combines them to cat-
egorize neutrino interactions in the detector. This network, which
improves the efficiency of selecting electron neutrinos by 40% with
no loss in purity, has served as the event classifier in searches both for
the appearance of electron neutrinos’®and for a new type of particle
called a sterileneutrino™.

The detector at the MicroBooNE experiment72, which contains 90
tonnes of liquid argon, detects neutrinos sent from the booster neu-
trino beamline at Fermilab. Each MircoBooNE event corresponds toa
33-megapixel image that probably containsbackground tracks caused
by cosmic rays. Identifying signals of neutrino interactions in such
events, in which both the signal and background tracks vary in size
from a few centimetres to metres, is one of the most challenging tasks
of the experiment. MicroBooNE recently demonstrated the ability to
detectneutrinointeractions usinga CNN '3, Specifically, analgorithm
called Faster-RCNN"*uses spatially sensitive information from inter-
mediate convolution layers to predict a bounding box that contains the
secondary particles produced in a neutrino interaction. In Fig. 3 we
show an example outputin which the network successfullylocalized a
neutrino interaction with high confidence. Finally, bytakingadvantage
of accelerated computing on GPUs, these CNNs can run much faster
than the conventional algorithms used by previous neutrino experi-
ments. This makes them ideally suited to the task of real-time image
classification and object detection.

RNNSs for beauty-quark identification

The study of high-energy beauty quarks is of great interest atthe LHC
becausethese particles are frequently produced inthe decays of Higgs
bosons and top quarks and are predicted to be important components
of the decays of super-symmetric and other hypothetical particles. A
high-energy beauty quark radiates a substantial fraction of itsenergy in
the form of a collimated stream of particles, called a jet, before forming
abound state with an antiquark or two additional quarks. This radiation
is emitted over a distance comparable to the size of a proton, making it
impossible to observe the emission process directly. The beauty-quark
bound states live for only a picosecond, corresponding to millimetre-
to centimetre-scale flight distances at the LHC, before randomly
decaying into one of athousand possible sets of commonly produced
particles. Therefore, to identify jets that originate from high-energy
beauty quarks, it is necessary to be able to determine whether parti-
cles were produced directly in the proton—proton collision or in the
subsequent decay of a long-lived bound state at a location displaced
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Fig. 3 | Neutrino selection and isolation in MicroBooNE. The
MicroBooNE event display shows a simulated neutrino interaction (inside
the yellow box) overlaid on a cosmic-ray background image taken using
the real detector. The yellow boxed region contains all charge depositions
caused by secondary charged particles being produced in the simulated
neutrino interaction. The CNN receives as input the display without the
yellow box indicated and draws the red box, which matches the yellow box
remarkably well and successfully captures the most interesting part of the
neutrino interaction. Image adapted from ref. %, copyright Sissa Medialab,
reused with permission of IOP Publishing.

from the proton—proton collision. Because jets typically contain
between 10 and 50 particles, the number of potential discriminating
features varies on a per-jet basis. Traditional jet-identification algo-
rithms rely on either identifying secondary production points explicitly
fromthe crossing of particle trajectories, a highly challenging task, or
compressing the information with engineered features and neglecting
the correlations between particles when using single-particle features.
Although such algorithms have been combined with machine learning
for some time”>78, machine learning could also be used to improve
identification by using the low-level particle features within a jet.

RNNSs have proven to be extremely successful at processing long
sequences of data, most famously acting as the core of Google’s cur-
renttranslation service*’. RNNs process sequences in such away that
information across the entire sequence can be accumulated and used.
Applyingan RNN tojet classification requires the particles in the jetto
be ordered to forma sequence, such as by ranking them by howincom-
patible they are with originating from the proton—proton collision. A
set of features foreach particleis providedtothe RNN, whichistrained
todiscriminate between beauty-quark jetsandall other types of jet. The
use of an RNN at the ATLAS experiment reduced the misidentifica-
tion rate by a factor of four relative to a non-machine-learning-based
algorithm””. Whenthe RNN is itself used as an input feature in the sub-
sequent training of a BDT or neural network, the misidentification rate
was reduced byafactor of three relative to the machine-learning result
without the use of the RNN as an input feature®. Similar approaches
arealso being explored at the CMS experiment’®; more sophisticated
RNN structures have been studied in a simplified setting and show
promising results®,

Training and validation

The machine-learningalgorithmsused in particle physicsare typically
trained using supervised learning®and data samples for which the true
origins, identities and properties of the particles are known a priori.
The algorithms learn to identify patterns in the training data, mak-
ing it possible for them to predict information about particles in data
samples for which expert labelling of datais impossible. Itis vital that
any machine-learning tool undergoes rigorous validation and testing
and that the uncertainty on its performance is well understood. There
isalwaysthe possibilitythat some featuresused byamachine-learning
algorithmare not properly modelled in the training samples, which—if
not properlyaccounted for—could lead toa false discovery. Ultimately,
we use machine-learningtoolsto minimize uncertainties; the validation

procedures discussed in this section are important for gaining confi-
dence in the behaviour of these tools.

Learning from simulation

The need tounderstand what signals will look like in the detectors and
what other processes can mimic the signals has led to the development
of high-quality simulation tools. Furthermore, the standard model pro-
vides accurate predictions of the rates and kinematic distributions of
many of the processes that can mimic interesting signatures (referred
to as backgrounds) and that contribute to particle-physics data sam-
ples, providing important benchmarks for validating the simulation
tools and understanding their uncertainties. Therefore, simulated
data samples are often used to train the machine-learning algorithms
because in such samples all information is known by construction.
An important exception is that it is often possible to obtain highly
pure background-only datasamples, such asbyusingevents collected
under different experimental conditions, and such samples are often
used as background samples duringtraining. A hybrid approachisalso
possible. The MicroBooNE CNN discussed above was trained using
simulated neutrino interactions overlaid on cosmic-ray background
images taken with the real detector.

Testing for bias

The quality and robustness of all machine-learning tools are vali-
dated using well-known reactions recorded by the experiments. One
approach, which is used by all LHC experiments®2%, involves con-
structing data samples in which the data are fully understood without
the use of machine learning. For example, the LHCbh experiment uses

JIY — ™t~ decaystovalidate its muon-identification neural network
(NN)®2; J/yp is a copiously produced charm—anticharm bound state,

which canbeidentified with 99.9% purity when basingaselection cri-

terion on the LLNN response to either the antimuon (i) or muon (¢ ™).
The identity of the other particle is therefore known without using the
UNN, providing an unbiased data sample with which the performance
of the NN can be studied. Domain-specific knowledge is then used
to transfer what is learned on these validation samples, in terms of

both the expected performance and its uncertainty, toany analysis that
uses that specific machine-learningalgorithm. Inthe case of the LNN,
the algorithm is studied in ranges of the values of muon and event-
level properties and the response of the detector within these ranges
is assumed to be independent of the process that produces the muon.
Another approach involves hybridevents, wherebythe dataare aug-
mented with simulations to produce a test sample that mimics asignal.
One example used by NOvA84takes abundant and pure muon-neutrino
charged-current data and replaces the detected muon with a simu-
lated electron. These hybrid events allow the performance of NOvVA’s
machine-learning algorithms to be studied on rare electron-neutrino
charged-current interactions, which are expected to look identical to
muon-neutrino charged-current interactions in the detector apart
from the muon-to-electron swap. Similar techniques were used for
the H — T" 1~ decay by ATLAS*} and CMS®,

The approaches presented above are reminiscent of the procedures
used to characterize the performance of complex detectors in past
decades. Alternatively, tools developed by the machine-learning
community can be used to probe the response of the algorithms. For
example, t-distributed stochastic neighbour embedding (t-SNE)® is
a non-parametric embedding technique that allows the proximity of
points in a high-dimensional space to be visualized using only two
dimensions. It can be used to study the groupings of different events
according to the features extracted by a deep neural network. Events
with overlapping extracted features, which the network interprets to be
similar, are near each other in the £~-SNE mapping; conversely, events
with little or no overlap are far from each other in the mapping. These
t-SNE projections are used to ensure that the groupings match the
intuition about the physical processes being studied, to check whether
non-training events are embedded as expected, and can even be used in
conjunction with auto-encoder neural networksto search foranomalies
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Fig. 4 | Exploring NOvA'’s event-selection neural network using
t-SNE. The features extracted using NOVA’s neutrino-interaction CNN
are projected into a two-dimensional space using the t-SNE method.
The points represent events from the CNN training sample, with the
colours denoting the true event types: muon-neutrino (v,) charged-
current interactions (dark blue), electron-neutrino (ve) charged-current
interactions (light blue), tau-neutrino (v,) charged-current interactions
(yellow) and various neutrino (vx) neutral-current interactions (red).

inlarge datasets. InFig. 4 we provide anexample ofsucha¢t-SNE using
simulated neutrino interactions at the NOVA experiment.

Conclusions and outlook

Within the next decade the LHC will increase the rate at which it
collides protons by an order of magnitude, resulting in much higher
data rates and even more complex events to disentangle. Neutrino-
physics detectors will continueto increase insize and complexity. The
tasks discussed in this Review will become even more challenging.
Fortunately, machine learning is advancing rapidly, producing tools
thatare potentiallyapplicabletoawide array of tasks in particle physics.
By continuing to map the challenges faced in particle physics to those
addressed by the machine-learning community, it is possible to turn
the latest developments in machine learning intotools for discoveryin
high-energy particle physics, suchas by conducting machine-learning
competitions with LHC benchmark datasets (https://www.kaggle.
com/c/trackml-particle-identification). We briefly discuss a few poten-
tial future applications below, which have already shown promising
results for simplified test cases.

The machine-learning community continues to discover powerful
methods for processing and classifying complex data with inherent
structure, such as trees and graphs. Complex data structures are prev-
alentatthe LHC. The set of particles that make up ajet can be mapped
toatree structure. We have already discussed how RNNs can be used
to identify jets that originate from beauty quarks, but this is just one
of the many potential applications of RNNSs, or of graph convolutional
networks, to the study of jets®’. L

Generative models, which learn the probability distribution of fea-
tures directly, are capable of producing simulated data that closely
approximate experimental data using tools such as generative
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The subplots show example event topologies from points in the two-
dimensional t-SNE space, with the intensity of the colour indicating the
amount of energy deposited and the axes denoting the spatial location of
the charge deposits in the detector. The various types of event are clustered
into distinct regions in the horizontal direction, while the multiplicity of
the particles in each event is found to be correlated with the location of the
events in the vertical direction.

adversarial networks®® and variational auto-encoders®®. A generative
adversarial network uses one neural network, the ‘generator’, to generate
potential data samples using random noise as input, while a second net-
work, the ‘adversary’, penalizes the generator duringtrainingifthe data
that it generates can be distinguished fromthe training data. Although
theyare difficulttotrain, these networks can potentially generate large
data samples much faster than can existing simulation tools, offering
the possibility of providing the orders-of-magnitude-larger simulation
samplesthat will be required by future experiments. Early work in this
direction is encouraging®®°:%2, demonstrating thataccurate simulations
ofasimplified calorimeter can be produced while achieving a marked
decrease in the computational resources required.

The adversarial approach can also be applied to training classifiers
with the ability to enforce invariance to latent parameters. This repre-
sentsanew way of making classifiers robustagainst systematicuncer-
tainties®® and is a viable approach to avoid biasing a physical feature
such as mass®. Several promising alternatives are also being investi-
gated®°7, some of which have been used for analysis at LHCbh%. All
of these approaches share the common theme of altering the training
of the algorithms to reduce the potential bias learned. These are only
a few of the machine-learning developments that are revolutionizing
datainterpretation in particle physics, greatlyincreasing the discovery
potential of present and future experiments.
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