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Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model 
of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher 
energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning 
techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present 
and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning 
at the frontiers of particle physics. 

 
 

The standard model of particle physics is supported by an 
abun- dance of experimental evidence, yet we know that it cannot be a 
complete theory of nature because, for example, it cannot incor- porate 
gravity or explain dark matter. Furthermore, many properties of 
known particles, including neutrinos and the Higgs boson, have not yet 
been determined experimentally, and the way in which the emergent 
properties of complex systems of fundamental particles arise from the 
underlying standard-model theory remains unknown. 

Many known particles were discovered using detectors that made sub- 
atomic particles visible to the human eye. For example, bubble cham- 
bers1 filled with superheated liquids that boil when charged particles pass 
through them transform the paths of the particles into visible tracks of 
bubbles, which can then be photographed and analysed. The detectors at 
the Large Hadron Collider (LHC)2 are much more complex and record 
data at far greater rates than is possible using bubble chambers. For exam- 
ple, the LHCb experiment3 analyses as many events every six seconds 
as the Big European Bubble Chamber recorded in its entire 11 years of 
operation (1973–1983), and the datasets collected by the ATLAS4 and 
CMS5 experiments at the LHC are comparable to the largest industrial 
data samples. It is impossible for humans to visually inspect such large 
amounts of data; algorithms running on large computing farms took over 
this task long ago. 

Over the past two decades, particle physics has been migrating towards 
the use of machine-learning methods in the collection and analysis of its 
large data samples6. Pioneering studies that used neural networks7,8 and 
boosted decision trees (BDTs)9,10 in previous-generation experiments11–22 

laid the groundwork for the emergence of machine learning as an essential 
tool at the LHC. Machine-learning algorithms made important contri- 
butions to the discovery of the Higgs boson23,24 and most data-analysis 
tasks now benefit from the use of machine learning. In parallel, the field 
of machine learning has developed at a rapid pace and, in particular, the 
subfield of deep learning has delivered superhuman performance in sev- 
eral domains25,26. Incorporating these tools while maintaining scientific 
rigour required in particle-physics analyses presents new challenges. This 
Review focuses on the application and development of machine-learning 
methods at the LHC, including recent advances based on deep learning. 
In addition, we present some example applications of deep learning within 
the subfield of neutrino physics, in which state-of-the-art methods, such 
as from computer vision, are naturally applicable. 

 
Big data at the LHC 
The sensor arrays of the LHC experiments produce data at a rate of 
about one petabyte per second. Even after drastic data reduction by 
the custom-built electronics used to readout the sensor arrays, which 
involves zero suppression of the sparse data streams and the use of 
various custom compression algorithms, the data rates are still too 
large to store the data indefinitely—as much as 50 terabytes per second, 
resulting in as much data every hour as Facebook collects globally in a 
year27. In this section we first motivate why it is necessary to produce 
such immense data samples, before discussing how machine learning 
is being used to more effectively select—in real time—which data to 
keep for further studies and which data to permanently discard. In 
addition, we show how the use of machine learning is leading to more 
efficient processing of these data using vast computing resources dis- 
tributed around the world. Both of these big-data challenges must be 
overcome before the LHC data can be used to advance our knowledge 
of fundamental particles. 

LHC operations 
Einstein famously related mass m to energy E via E = mc2, where c is the 
speed of light in a vacuum. A powerful particle accelerator such as the 
LHC, which is 27 km in circumference, is therefore required to create 
particles orders of magnitude more massive than the proton, such as 
the Higgs boson. A Higgs boson is produced only once every few billion 
proton–proton collisions at the LHC. Many other interesting reactions 
occur orders of magnitude less often. To enable such data samples to 
be recorded in a reasonable time frame, the LHC collides nearly one 
billion protons per second. 

High-energy collisions can produce hundreds of particles, and 
disentangling such complex events requires detectors with large and 
diverse sensor arrays. The ATLAS and CMS detectors each contain 
roughly 100 million detection elements. Most of the particles pro- 
duced in the LHC experiments decay before they can be detected 
by any of the sensors. Therefore, LHC analyses must infer what the 
underlying reactions were on the basis of the properties of the particles 
that are detected. A wide variety of sensor technologies are used in 
the LHC detectors. The various signals from the particles that are 
detected by these sensor arrays are digitized, converting the physical 
processes involving subatomic particles into large collections of bytes. 
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The extreme rate at which the LHC collides protons, along with the 
size and complexity of the LHC detectors, results in the production of 
enormous data samples. 

Real-time analysis 
The LHC experiments use data-reduction schemes executed in real 
time, referred to as triggers, to identify which data to retain for future 
analysis and which to permanently discard. For example, the ATLAS 
and CMS experiments each keep only about 1 in every 100,000 events. 
Despite this, their data samples are each still about 20 petabytes per 
year. The first step in deciding which events to keep relies on logic that 
is encoded directly into the hardware to enable the fastest possible deci- 
sions, such as into devices known as field-programmable gate arrays 
(FPGAs). Machine learning is already used in this environment; for 
example, CMS uses machine learning in its trigger hardware to better 
estimate the momentum of muons28, with the inputs to the algorithm 
discretized to enable the machine-learning response to be encoded in 
a large look-up table that is easily programmed into the FPGAs. 

In addition, the LHC experiments use huge computing farms to pro- 
cess the extreme volumes of data and search for interesting signatures. 
In the case of the LHCb experiment, many of the reactions of greatest 
interest do not produce striking signatures in the detector, making it 
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necessary to thoroughly analyse high-dimensional feature spaces in 
real time to efficiently classify events29. Since the first year of LHCb 
data collection, the primary algorithm used for such classification has 
been machine-learning-based; specifically, a BDT was used for the 
first two years30, which has since been replaced by a MatrixNet algo- 
rithm31. The use of machine learning is now ubiquitous, which has 
greatly improved performance while satisfying the stringent robustness 
requirements of a system that makes irreversible decisions. Currently, 
70% of all data retained are classified by machine-learning algorithms 
and all charged-particle tracks are vetted by neural networks32. As an 
example of the effect of these machine-learning methods, achieving the 
same sensitivity as a recent LHCb search for the dark-matter analogue 
of the photon, which was performed using data collected in 201633, 
would have required 10 years of data collection without the use of 
machine learning. 

Actionable insights from computing metadata 
Processing of the industrial-scale data samples collected by the LHC 
experiments is performed using the computing resources of the LHC 
Computing Grid, which are distributed across dozens of centres world- 
wide. The massive volumes of data moved between grid centres, and 
the large number of CPU processing jobs used to access and analyse 
these data, generate an enormous amount of metadata information 
from which actionable insights can be extracted. Machine-learning 
techniques have recently begun to play a crucial part in increasing the 
efficiency of computing-resource usage at the LHC34–36. One example 
is predicting which data will be accessed the most, as currently mon- 
itored by CMS37 and LHCb38, so that it becomes possible to optimize 
data storage at the grid centres. Another example involves monitoring 
data-transfer latencies over complex network topologies at CMS39, 
using machine learning to identify problematic nodes and to predict 
likely congestions. Currently, machine learning informs the choices of 
the computing-operations teams, but in the future it form the basis of 
fully automatic and adaptive models. 

Machine learning as an established tool 
After identifying and recording the most interesting LHC events and 
processing them on the Computing Grid—two vital tasks supported 
by machine learning—the data are ready for exploration. The first step 
in interpreting these data involves grouping the signals recorded by 
various sensor elements according to which particle created them. 
The types and properties of the particles can then be inferred from the 
subsets of event information associated with them. Finally, after recon- 
structing all detected particles in the event, the data are analysed to 
determine the underlying physical processes that created the particles. 

Fig. 1 | Machine learning for calorimetry at CMS. The mass distribution 
of Z bosons that decay to electron–positron pairs (Z → e+e−), as measured 
in the central part of the CMS detector and binned into 1-GeV bins, is 
shown for three cases: using only the raw information from the detector 
(orange), after clustering the data (green) and after applying the machine- 
learning-based corrections discussed in the text (blue). The true position 
of the peak for this decay is 91 GeV. Image adapted from ref. 101 under a CC 
BY 4.0 license, copyright CERN, reused with permission. 

 
Interpreting such complex data samples is an extremely challenging 
task, which has been revolutionized by the use of machine-learning 
techniques. About 2,000 journal articles have been produced by the 
LHC experiments to date, providing a large library of examples of the 
use of machine learning with these types of complex dataset. In this sec- 
tion we discuss a few highlights, including the role of machine learning 
in the discovery of the Higgs boson23,24. 

Determining particle properties 
The use of machine learning to improve the determination of particle 
properties is now commonplace at all of the LHC experiments. For 
example, BDTs are used to increase the resolution of the CMS electro- 
magnetic calorimeter40. When an electron or photon enters such a 
detector, it rapidly loses its energy, which is subsequently collected and 
measured by the calorimeter. This deposited energy is often recorded 
by many different sensors and the readings from these sensors must 
be clustered together to recover the original energy of the particle. 
Multivariate regression is used by CMS to train BDTs to provide cor- 
rections to these inferred energies on the basis of all of the information 
contained in each calorimeter sensor. Applying these energy correc- 
tions to the decay of a Z boson into an electron–positron pair results 
in a substantial improvement in mass resolution compared to the tra- 
ditional clustering approach (see Fig. 1). 

Discovery of the Higgs boson 
As stated above, a Higgs boson is produced only once every few billion 
proton–proton collisions at the LHC; however, the Higgs boson usually 
decays in ways that mimic much more copiously produced processes. 
The cleanest experimental signature of the Higgs boson involves its 
decay into two muon–antimuon pairs, which occurs roughly once every 
10 trillion proton–proton collisions. This and a few other processes 
were used in the Higgs discovery analyses. Most were selected owing to 
their striking experimental signatures, which made it possible to obtain 
pure signals using relatively simple analyses. An important exception 
was the analysis of the Higgs boson decaying into two photons by the 
CMS experiment. 
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Determining the properties of the Higgs boson 
The standard model contains only one Higgs boson, which is the sim- 
plest explanation for the phenomenon known as electroweak symmetry 
breaking. Many extensions to the standard model predict that there are 
many Higgs bosons; for example, super-symmetric theories predict a 
rich Higgs sector, and other theories predict that the Higgs boson is 
a composite object, not a fundamental particle. The standard model 
provides precise predictions for the properties of the Higgs boson and 
it is vital that these predictions are tested experimentally to determine 
the nature of the Higgs particle discovered at the LHC. 

The Higgs-boson discovery analyses firmly established its interac- 
tions with the electroweak-force-carrying particles, namely the pho- 
ton, W boson and Z boson. The standard model also predicts that the 
Higgs boson interacts with fermions (quarks and leptons) and that the 
strength of each of these interactions is proportional to the masses of 
the fermions. This means that the Higgs boson is expected to decay into 
heavier quarks and leptons more often than into their lighter cousins. 
The ATLAS and CMS experiments have thus far observed the Higgs 
boson decaying into the heaviest kinematically accessible quark, the 
beauty quark41,42, and into the most massive lepton (a heavier ver- 
sion of the electron known as the tau lepton). Machine learning had a 

1 major role in each of these discoveries, although we describe only the 
ATLAS search for the decay of the Higgs boson into an antitau–tau pair 

Fig. 2 | Separating signal events from background in the ATLAS 
experiment. a, The BDT-score distribution for a search for the Higgs 
boson decaying to a tau-lepton pair (H → τ+τ−), with bin widths of 0.17. 
The black circles show the score of a machine-learning algorithm known 
as a BDT for data from the ATLAS detector during the 2012 data-taking 
period, where the error bars show the Poisson statistical uncertainties. 
This BDT was trained to distinguish a Higgs signal from various non- 
Higgs backgrounds. The coloured area shows the stacked contributions 
of the different background processes: Z → τ+τ− decays (blue), other 
particles decaying to a tau-lepton pair (brown) and fake tau particles 
(where at least one tau lepton is misidentified; green). The dotted red line 
shows the expected total counts assuming a Higgs-boson production rate 
identical to the standard-model expectation (μ = 1); the solid red line 
shows the expected total counts assuming a Higgs-boson production rate 
of μ = 1.4, which is still compatible with the standard model; the hatched 
area shows the systematic uncertainty on the expected total count. The 
excess counts compared to the coloured region (mainly in the rightmost 
two bins) are attributed to the Higgs boson. b, The ratios of the data (black 
circles), expected counts for μ = 1 (dashed red line), expected counts 
for μ = 1.4 (solid red line) and uncertainty (hatched region) from a to 
the expected counts for μ = 1.4 (so the solid red line is identically 1) are 
shown, along with the ratio of the expected counts excluding the Higgs 
contribution (the sum of the green, brown, blue and hatched regions in a) 
to the expected counts for μ = 1.4 (black line). Image adapted from ref. 43 

under a CC BY 4.0 license, copyright CERN. 

 
The CMS analysis involved searching for a small excess of diphoton 

candidates, manifested as a narrow peak in the diphoton mass spec- 
trum, in the presence of a large smoothly distributed background. This 
background largely consisted of diphotons that originated from pro- 
cesses other than the Higgs decay and from candidates formed from 
one real photon combined with an artificial photon signal (that is, a 
photon inferred from the detector signals that did not correspond to an 
actual photon produced in the physical process). Two BDTs were used 
to improve the diphoton mass resolution by better determining which 
proton–proton collision the photons were produced in. Because both 
the standard-model Higgs process and the dominant background pro- 
cesses are well understood, it was possible to use simulated data samples 
to train a BDT. On the basis of the response of this BDT, the CMS 
diphotons were either discarded or kept for further analysis. The dipho- 
tons selected were also categorized using the BDT response, making 
it possible to analyse a rare—but highly pure—subset of Higgs decays 
separately. A simultaneous fit was performed to the mass distributions 
of all categories, which greatly enhanced the sensitivity to the presence 
of a Higgs signal. The increase in sensitivity due to the use of machine 
learning was equivalent to collecting 50% more data. 

(H → τ+τ−) in detail here. 
The study of tau particles is challenging because they decay before 

being detected and because their decays always involve neutrinos 
that escape detection and carry away energy. Furthermore, the decay 
Z → τ+τ− occurs about 1,000 times more often than does H → τ+τ−. 
The ATLAS analysis divided the data sample into six distinct kin- 
ematic regions. A BDT was trained in each region using 12 weakly 
discriminating input features43. In Fig. 2 we show an example BDT 
response distribution obtained in one region. The combined analysis 
of all six regions provided strong evidence for the realization of the 
Higgs boson coupling to tau leptons in nature, with about 40% better 
sensitivity achieved through the use of machine learning. Thus far, the 
interactions of the Higgs boson with quarks and leptons appear to be 
consistent with standard-model predictions. The simulation that led 
to this result was eventually released through Kaggle as the basis of 
the 2014 Higgs Machine Learning Challenge44, where data scientists 
competed to provide alternative machine-learning methods to isolate 
the H → τ+τ− signal. Table 1 shows the impact of machine learning 
on the measurement of several key processing involving Higgs bosons 
at ATLAS and CMS. 

A high-precision test of the standard model 
The standard model predicts that only three out of every billion Bs 
particles—bound states that contain a beauty quark—decay into a 
muon–antimuon final state. The fact that this decay rate is so highly 
suppressed in the standard model contributes to it being extremely 
sensitive to potential quantum effects induced by as-yet-unknown 
particles, especially from an extended Higgs sector; for example, certain 
super-symmetric theories predict an order-of-magnitude enhancement 
in this decay rate. The CMS and LHCb experiments were the first to 
find evidence for this decay, using data samples collected in the first 
few years of the LHC, and a combined analysis of these datasets pro- 
duced the first observation of it45. The analyses used BDTs to reduce 
the dimensionality of the feature space—excluding the mass—to one 
dimension and then an analysis was performed of the mass spectra 
across bins of BDT response. This approach preserved as much infor- 
mation as possible about the mass spectra of both the signal and back- 
grounds, providing the best possible sensitivity to this extremely rare 
decay of the Bs meson into a muon–antimuon final state. The decay 
rate observed is consistent with the standard-model prediction with 
a precision of about 25%, which places stringent constraints on many 
proposed extensions to the standard model. Finally, a more recent 
update from the LHCb experiment achieved the first single-experiment 
observation46; achieving a similar sensitivity without the use of machine 
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Table 1 | Effect of machine learning on the discovery and study of 
the Higgs boson 

Computer vision for neutrino experiments 
Loosely inspired by the structure of the visual cortex, CNNs use a strategy 

 
 

Analysis 

 
Years of data 
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Sensitivity 
without machine 
learning 

Sensitivity 
with machine 
learning 

Ratio 
of P 
values 

Additional 
data 
required 

that decreases their sensitivity to the absolute position of elements in an 
image and that makes them more robust to noise. Deep CNNs are able 
to extract complex features from images and now outperform humans 

CMS24 

H → γγ 

ATLAS43 

H → τ+τ− 

ATLAS99 

VH → bb 

ATLAS41 

VH → bb 

CMS100 

VH → bb 

2011–2012 2.2σ, 
P = 0.014 

2011–2012 2.5σ, 
P = 0.0062 

2011–2012 1.9σ, 
P = 0.029 

2015–2016 2.8σ, 
P = 0.0026 

2011–2012 1.4σ, 
P = 0.081 

2.7σ, 
P = 0.0035 

3.4σ, 
P = 0.00034 

2.5σ, 
P = 0.0062 

3.0σ, 
P = 0.00135 

2.1σ, 
P = 0.018 

4.0 51% 

 
18 85% 

 
4.7 73% 

 
1.9 15% 

 
4.5 125% 

in certain image-classification tasks. Another strength of CNNs is their 
ability to identify objects in an image, as demonstrated for example 
by their use in self-driving cars, owing to translation-invariant feature 
learning. This translational invariance presents a challenge for the LHC 
experiments, whose detectors consist of layers of distinct detector tech- 
nologies moving out from the proton–proton collision region. These 
detectors provide rich information in the absolute reference frame of 
the detector, which is transformed into a more natural format for a 
CNN-based approach. By contrast, this characteristic of CNNs is par- 
ticularly useful for neutrino experiments, which necessarily use large 

 

Five key measurements of three decay modes of the Higgs boson H for which machine learning 
greatly increased the sensitivity of the LHC experiments, where V denotes a W or Z boson, γ 
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with 
machine learning is given, in terms of both the P values and the equivalent number of Gaussian 
standard deviations σ. (We present only analyses that provided both machine-learning-based and 
non-machine-learning-based results; the more recent analyses report only the machine-learning- 
based results.) The increase in sensitivity achieved by using machine learning, as measured by 
the ratio of P values, ranges roughly from 2 to 20. An alternative figure of merit is the minimal 
amount of additional data that would need to be collected to reach the machine-learning-based 
sensitivity without using machine learning, which varies from 15% to 125%. 

 
learning would have required the collection of about four times as much 
data. This is just one of many examples of high-precision tests of the 
standard model at the LHC for which machine learning has markedly 
increased the power of the measurement. 

The emergence of deep learning 
Machine learning in particle physics, including the examples presented 
in the previous two sections, has traditionally involved the use of 
field-specific knowledge to engineer tools to extract the features of the 
data that are expected to be the most useful for a given measurement. 
This enables the incredibly rich initial data to be interpreted using 
only a small number of features. For example, in the aforementioned 
Bs decay, a human-designed tracking algorithm first reconstructs the 
paths taken by the muon and the antimuon in a magnetized parti- 
cle-physics detector, and from these paths the momenta of the particles 
are inferred. However, only the dimuon mass and the angle between 
them are used in the BDT. The rest of the kinematic information is 
discarded. 

For many tasks, information can be lost when these human- 
designed tools are used to extract features that fail to fully capture the 
complexity of the problem. As in the fields of computer vision and 
natural language processing26,47, there is a growing effort in particle 
physics to skip the feature-engineering step and instead use the full 
high-dimensional feature space to train cutting-edge machine-learning 
algorithms, such as deep neural networks48. In this approach, domain 
expertise is used to design neural-network architectures that are best 
suited to the specific problem. Studies of such applications have grown 
substantially in number and complexity within the past several years, 
beginning around 2014 with applications of deep neural networks to 
data analysis49, quickly expanding to the first applications of computer 
vision50–52 and to the current broad study of deep learning throughout 
the field of particle physics53–56. 

In this section we highlight a few recent applications of two types 
of deep learning algorithm in particle physics: convolutional and 
recurrent neural networks (CNNs and RNNs, respectively)57,58. The 
outputs of many particle-physics detectors can be viewed as images, 
and the application of computer-vision techniques is being explored in 
simplified settings by the LHC community59–65 and with initial studies 
on ATLAS and CMS simulations66,67. However, such techniques are 
more naturally applicable in the area of neutrino physics, for which 
reason we focus our discussion of CNNs to neutrino experiments. 
Similarly, there are many applications of RNNs, but for brevity we 
discuss only their use for the study of high-energy beauty quarks at 
ATLAS and CMS. 

homogeneous detectors owing to the incredibly small probability that 
a neutrino will interact within a small volume of material. A neutrino 
interaction can take place anywhere within these detectors and locating 
them is a critical part of neutrino-physics analyses. 

The detectors of the NOvA experiment68 are filled with scintillating 
mineral oil, which emits light when a charged particle passes through 
it. Each NOvA event consists of two images: one taken from the top 
and the other from the side. The NOvA collaboration has developed 
a machine-learning algorithm52 composed of two parallel networks 
inspired by the GoogleNet69 architecture. The NOvA CNN extracts 
features from both views simultaneously and combines them to cat- 
egorize neutrino interactions in the detector. This network, which 
improves the efficiency of selecting electron neutrinos by 40% with 
no loss in purity, has served as the event classifier in searches both for 
the appearance of electron neutrinos70 and for a new type of particle 
called a sterile neutrino71. 

The detector at the MicroBooNE experiment72, which contains 90 
tonnes of liquid argon, detects neutrinos sent from the booster neu- 
trino beamline at Fermilab. Each MircoBooNE event corresponds to a 
33-megapixel image that probably contains background tracks caused 
by cosmic rays. Identifying signals of neutrino interactions in such 
events, in which both the signal and background tracks vary in size 
from a few centimetres to metres, is one of the most challenging tasks 
of the experiment. MicroBooNE recently demonstrated the ability to 
detect neutrino interactions using a CNN73. Specifically, an algorithm 
called Faster-RCNN74 uses spatially sensitive information from inter- 
mediate convolution layers to predict a bounding box that contains the 
secondary particles produced in a neutrino interaction. In Fig. 3 we 
show an example output in which the network successfully localized a 
neutrino interaction with high confidence. Finally, by taking advantage 
of accelerated computing on GPUs, these CNNs can run much faster 
than the conventional algorithms used by previous neutrino experi- 
ments. This makes them ideally suited to the task of real-time image 
classification and object detection. 

RNNs for beauty-quark identification 
The study of high-energy beauty quarks is of great interest at the LHC 
because these particles are frequently produced in the decays of Higgs 
bosons and top quarks and are predicted to be important components 
of the decays of super-symmetric and other hypothetical particles. A 
high-energy beauty quark radiates a substantial fraction of its energy in 
the form of a collimated stream of particles, called a jet, before forming 
a bound state with an antiquark or two additional quarks. This radiation 
is emitted over a distance comparable to the size of a proton, making it 
impossible to observe the emission process directly. The beauty-quark 
bound states live for only a picosecond, corresponding to millimetre- 
to centimetre-scale flight distances at the LHC, before randomly 
decaying into one of a thousand possible sets of commonly produced 
particles. Therefore, to identify jets that originate from high-energy 
beauty quarks, it is necessary to be able to determine whether parti- 
cles were produced directly in the proton–proton collision or in the 
subsequent decay of a long-lived bound state at a location displaced 

 



 

 

 
 
 
 
 
 
 
 
 

 
Fig. 3 | Neutrino selection and isolation in MicroBooNE. The 
MicroBooNE event display shows a simulated neutrino interaction (inside 
the yellow box) overlaid on a cosmic-ray background image taken using 
the real detector. The yellow boxed region contains all charge depositions 
caused by secondary charged particles being produced in the simulated 
neutrino interaction. The CNN receives as input the display without the 
yellow box indicated and draws the red box, which matches the yellow box 
remarkably well and successfully captures the most interesting part of the 
neutrino interaction. Image adapted from ref. 73, copyright Sissa Medialab, 
reused with permission of IOP Publishing. 

 

from the proton–proton collision. Because jets typically contain 
between 10 and 50 particles, the number of potential discriminating 
features varies on a per-jet basis. Traditional jet-identification algo- 
rithms rely on either identifying secondary production points explicitly 
from the crossing of particle trajectories, a highly challenging task, or 
compressing the information with engineered features and neglecting 
the correlations between particles when using single-particle features. 
Although such algorithms have been combined with machine learning 
for some time75,76, machine learning could also be used to improve 
identification by using the low-level particle features within a jet. 

RNNs have proven to be extremely successful at processing long 
sequences of data, most famously acting as the core of Google’s cur- 
rent translation service47. RNNs process sequences in such a way that 
information across the entire sequence can be accumulated and used. 
Applying an RNN to jet classification requires the particles in the jet to 
be ordered to form a sequence, such as by ranking them by how incom- 
patible they are with originating from the proton–proton collision. A 
set of features for each particle is provided to the RNN, which is trained 
to discriminate between beauty-quark jets and all other types of jet. The 
use of an RNN at the ATLAS experiment reduced the misidentifica- 
tion rate by a factor of four relative to a non-machine-learning-based 
algorithm77. When the RNN is itself used as an input feature in the sub- 
sequent training of a BDT or neural network, the misidentification rate 
was reduced by a factor of three relative to the machine-learning result 
without the use of the RNN as an input feature78. Similar approaches 
are also being explored at the CMS experiment79; more sophisticated 
RNN structures have been studied in a simplified setting and show 
promising results80. 

Training and validation 
The machine-learning algorithms used in particle physics are typically 
trained using supervised learning81 and data samples for which the true 
origins, identities and properties of the particles are known a priori. 
The algorithms learn to identify patterns in the training data, mak- 
ing it possible for them to predict information about particles in data 
samples for which expert labelling of data is impossible. It is vital that 
any machine-learning tool undergoes rigorous validation and testing 
and that the uncertainty on its performance is well understood. There 
is always the possibility that some features used by a machine-learning 
algorithm are not properly modelled in the training samples, which—if 
not properly accounted for—could lead to a false discovery. Ultimately, 
we use machine-learning tools to minimize uncertainties; the validation 

procedures discussed in this section are important for gaining confi- 
dence in the behaviour of these tools. 

Learning from simulation 
The need to understand what signals will look like in the detectors and 
what other processes can mimic the signals has led to the development 
of high-quality simulation tools. Furthermore, the standard model pro- 
vides accurate predictions of the rates and kinematic distributions of 
many of the processes that can mimic interesting signatures (referred 
to as backgrounds) and that contribute to particle-physics data sam- 
ples, providing important benchmarks for validating the simulation 
tools and understanding their uncertainties. Therefore, simulated 
data samples are often used to train the machine-learning algorithms 
because in such samples all information is known by construction. 
An important exception is that it is often possible to obtain highly 
pure background-only data samples, such as by using events collected 
under different experimental conditions, and such samples are often 
used as background samples during training. A hybrid approach is also 
possible. The MicroBooNE CNN discussed above was trained using 
simulated neutrino interactions overlaid on cosmic-ray background 
images taken with the real detector. 

Testing for bias 
The quality and robustness of all machine-learning tools are vali- 
dated using well-known reactions recorded by the experiments. One 
approach, which is used by all LHC experiments82,83, involves con- 
structing data samples in which the data are fully understood without 
the use of machine learning. For example, the LHCb experiment uses 
J/ψ → μ+μ− decays to validate its muon-identification neural network 
(μNN)32; J/ψ is a copiously produced charm–anticharm bound state, 
which can be identified with 99.9% purity when basing a selection cri- 
terion on the μNN response to either the antimuon (μ+) or muon (μ−). 
The identity of the other particle is therefore known without using the 
μNN, providing an unbiased data sample with which the performance 
of the μNN can be studied. Domain-specific knowledge is then used 
to transfer what is learned on these validation samples, in terms of 
both the expected performance and its uncertainty, to any analysis that 
uses that specific machine-learning algorithm. In the case of the μNN, 
the algorithm is studied in ranges of the values of muon and event- 
level properties and the response of the detector within these ranges 
is assumed to be independent of the process that produces the muon. 

Another approach involves hybrid events, whereby the data are aug- 
mented with simulations to produce a test sample that mimics a signal. 
One example used by NOvA84 takes abundant and pure muon-neutrino 
charged-current data and replaces the detected muon with a simu- 
lated electron. These hybrid events allow the performance of NOvA’s 
machine-learning algorithms to be studied on rare electron-neutrino 
charged-current interactions, which are expected to look identical to 
muon-neutrino charged-current interactions in the detector apart 
from the muon-to-electron swap. Similar techniques were used for 
the H → τ+τ− decay by ATLAS43 and CMS85. 

The approaches presented above are reminiscent of the procedures 
used to characterize the performance of complex detectors in past 
decades. Alternatively, tools developed by the machine-learning 
community can be used to probe the response of the algorithms. For 
example, t-distributed stochastic neighbour embedding (t-SNE)86 is 
a non-parametric embedding technique that allows the proximity of 
points in a high-dimensional space to be visualized using only two 
dimensions. It can be used to study the groupings of different events 
according to the features extracted by a deep neural network. Events 
with overlapping extracted features, which the network interprets to be 
similar, are near each other in the t-SNE mapping; conversely, events 
with little or no overlap are far from each other in the mapping. These 
t-SNE projections are used to ensure that the groupings match the 
intuition about the physical processes being studied, to check whether 
non-training events are embedded as expected, and can even be used in 
conjunction with auto-encoder neural networks to search for anomalies 
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Fig. 4 | Exploring NOvA’s event-selection neural network using 
t-SNE. The features extracted using NOvA’s neutrino-interaction CNN 
are projected into a two-dimensional space using the t-SNE method. 
The points represent events from the CNN training sample, with the 
colours denoting the true event types: muon-neutrino (νμ) charged- 
current interactions (dark blue), electron-neutrino (νe) charged-current 
interactions (light blue), tau-neutrino (ντ) charged-current interactions 
(yellow) and various neutrino (νx) neutral-current interactions (red). 

in large datasets. In Fig. 4 we provide an example of such a t-SNE using 
simulated neutrino interactions at the NOvA experiment. 

Conclusions and outlook 
Within the next decade the LHC will increase the rate at which it 
collides protons by an order of magnitude, resulting in much higher 
data rates and even more complex events to disentangle. Neutrino- 
physics detectors will continue to increase in size and complexity. The 
tasks discussed in this Review will become even more challenging. 
Fortunately, machine learning is advancing rapidly, producing tools 
that are potentially applicable to a wide array of tasks in particle physics. 
By continuing to map the challenges faced in particle physics to those 
addressed by the machine-learning community, it is possible to turn 
the latest developments in machine learning into tools for discovery in 
high-energy particle physics, such as by conducting machine-learning 
competitions with LHC benchmark datasets (https://www.kaggle. 
com/c/trackml-particle-identification). We briefly discuss a few poten- 
tial future applications below, which have already shown promising 
results for simplified test cases. 

The machine-learning community continues to discover powerful 
methods for processing and classifying complex data with inherent 
structure, such as trees and graphs. Complex data structures are prev- 
alent at the LHC. The set of particles that make up a jet can be mapped 
to a tree structure. We have already discussed how RNNs can be used 
to identify jets that originate from beauty quarks, but this is just one 
of the many potential applications of RNNs, or of graph convolutional 
networks, to the study of jets87. 

Generative models, which learn the probability distribution of fea- 

ve charged current 
 

vµ  charged current 

The subplots show example event topologies from points in the two- 
dimensional t-SNE space, with the intensity of the colour indicating the 
amount of energy deposited and the axes denoting the spatial location of 
the charge deposits in the detector. The various types of event are clustered 
into distinct regions in the horizontal direction, while the multiplicity of 
the particles in each event is found to be correlated with the location of the 
events in the vertical direction. 

 
adversarial networks88 and variational auto-encoders89,90. A generative 
adversarial network uses one neural network, the ‘generator’, to generate 
potential data samples using random noise as input, while a second net- 
work, the ‘adversary’, penalizes the generator during training if the data 
that it generates can be distinguished from the training data. Although 
they are difficult to train, these networks can potentially generate large 
data samples much faster than can existing simulation tools, offering 
the possibility of providing the orders-of-magnitude-larger simulation 
samples that will be required by future experiments. Early work in this 
direction is encouraging63,91,92, demonstrating that accurate simulations 
of a simplified calorimeter can be produced while achieving a marked 
decrease in the computational resources required. 

The adversarial approach can also be applied to training classifiers 
with the ability to enforce invariance to latent parameters. This repre- 
sents a new way of making classifiers robust against systematic uncer- 
tainties93 and is a viable approach to avoid biasing a physical feature 
such as mass65. Several promising alternatives are also being investi- 
gated94–97, some of which have been used for analysis at LHCb98. All 
of these approaches share the common theme of altering the training 
of the algorithms to reduce the potential bias learned. These are only 
a few of the machine-learning developments that are revolutionizing 
data interpretation in particle physics, greatly increasing the discovery 
potential of present and future experiments. 
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