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In the presence of multiscale dynamics in a reaction network, direct simulation methods become
inefficient as they can only advance the system on the smallest scale. This work presents stochastic
averaging techniques to accelerate computations for obtaining estimates of expected values and
sensitivities with respect to the steady state distribution. A two-time-scale formulation is used to
establish bounds on the bias induced by the averaging method. Further, this formulation provides
a framework to create an accelerated “averaged” version of most single-scale sensitivity estimation
methods. In particular, we propose the use of a centered ergodic likelihood ratio method for steady
state estimation and show how one can adapt it to accelerated simulations of multiscale systems.
Finally, we develop an adaptive “batch-means” stopping rule for determining when to terminate the
micro-equilibration process. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942008]

I. INTRODUCTION

Stochastic simulations have been an essential tool in
analyzing reaction networks encountered in biology, catalysis,
and materials growth. However, it is common place for
reaction networks to exhibit a large disparity in time scales.
These multi-scale stochastic reaction networks can impose
an enormous computational burden in order to simulate
them exactly. Exact techniques require computation of every
reaction at the fastest time-scale, resulting in an exponentially
growing load to observe dynamics on the slowest time-
scale. Many works have attempted to develop approximate
algorithms which allow faster computation with minimal loss
of accuracy.1–14

One approach, which we refer to as stochastic averaging,
takes its inspiration from classical singular perturbation theory
of ordinary differential equations.8–12 The idea is that the fast
dynamics come to quasi-equilibrium before the slow dynamics
take effect, hence one may model the slow time scale dynamics
with their averages against the steady-state distribution of the
fast dynamics. By estimating the steady-state expectations of
the slow propensities, one can then jump the system ahead to
the next slow reaction and advance the time clock on the slow
scale (skipping over needless computations of fast reactions).

In addition, one often desires the sensitivities of the
system Sf (θi) = ∂

∂θi
Eθ{ f (X(t))} with respect to the reaction

parameters θi. The sensitivities give important insight into
the system, indicating directions for gradient-descent type
optimization as well as determining bounds for quantifying
the uncertainty.15 Current techniques for estimating the
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sensitivities have large variance, requiring many more
samples than those for estimating Eθ{ f (X)} alone.16–19

Thus, computing sensitivities of multi-scale systems using
single-scale techniques is often a computationally intractable
problem.

In this work, we use results from Two-Time-Scale (TTS)
Markov chains20 to show that the error induced by stochastic
averaging algorithms is inverse to the scale disparity in
the system. As opposed to the previous approaches of
transforming the system variables into auxiliary fast and
slow variables,11,12 we partition the underlying (discrete) state
space and derive a singular perturbation expansion of the
corresponding probability measure. The first order term can
then be identified from computables of the averaged process,
leading to a rigorous theoretical framework for applying
singular perturbation averaging for stochastic systems.

Furthermore, this new formulation allows one to identify
a macroscopic “averaged” reaction network on a reduced
state space whose time-steps are on the macro (slow) time-
scale. Thus, it provides a framework for applying single-
scale sensitivity analysis techniques to the multi-scale system.
Previous works have exploited similar model reduction
techniques to estimate sensitivities via finite differences14

or a “truncated” version of a likelihood ratio estimator.21 This
work develops an accelerated “Two-Time-Scale” version of
the likelihood ratio (Girsanov transform) method18,22–24 for
estimating system sensitivities of the multiscale system. The
TTS-LR method computes sensitivity reweighting coefficients
of the macro (reduced-state) process using a representation in
terms of the steady-state sensitivities of the micro (fast)
process. These micro-level sensitivities can in turn be
computed online during the micro-equilibration process.

The outline of the remainder of the paper is as follows.
Section II gives the theoretical basis of the paper. The two-
time-scale formulation is presented and error bounds are
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established. Section III then uses the TTS framework for
the purpose of sensitivity analysis. The centered ergodic
likelihood ratio estimator is described for single-scale steady-
state sensitivity analysis, and is then adapted to the multiscale
system. Section IV develops a batch-means stopping rule
for determining when the micro-scale system has come to
equilibrium. Numerical results are presented in Section V
supporting the effectiveness of the methods presented.
Concluding remarks are given in Section VI, and proofs
of theorems are relegated to the Appendices A and B.

II. FORMULATION

A. Markov chain model of reaction networks

We briefly review the Markov chain model of reaction
networks. While our motivation stems from chemical reaction
networks, we note that much of the formulation carries over
to general Markov chains on integer lattices.

Suppose we have d species described by
X(t) = [X1(t),X2(t), . . . ,Xd(t)] ∈ M ⊂ Zd and M reactions
r1,r2, . . . ,rM. In stochastic reaction networks, one views X(t)
as a continuous-time Markov chain (CTMC) in the state space
M. When reaction r fires at time t, the state is updated by the
stoichiometric vector ζr so that X(t) = X(t−) + ζr . Given the
set of reaction parameters θ = [θ1, θ2, . . .], one characterizes
the probabilistic evolution of X(t) by the propensity functions

(intensity functions) λr(x; θ). The propensity functions are
such that, given X(t) = x, the probability of one or more
firing of reaction r during time (t, t + h] is λr(x; θ)h + o(h)
as h → 0; i.e., λr(x; θ) is the instantaneous rate/probability of
reaction r firing.

A common model for the propensity functions is that of
mass-action kinetics. Under this assumption, the propensity
functions are of the form

λr(x; θ) = θr · br(x) = θr ·
d
i=1

xi!
(xi − νr, i)! I{x−νr, i≥0}, (1)

where νr, i is the number of molecules of species i required
for reaction r to fire. Mass action kinetics assumes the system
is well-mixed, so molecular interactions are proportional to
their counts.

From the propensity functions λr(x; θ), one can construct
the infinitesimal generator Q = Q(θ) of the Markov chain.
Viewed as an operator on functions f of the state-space M,
we have

(Q f ) (x) =
M
r=1

λr(x; θ) ( f (x + ζr) − f (x)) .

For finite state-spaceM (bounded molecule counts), one may
also view the generator Q(θ) as a matrix. While the state-space
is typically intractably large, the generator is sparse with only
M + 1 non-zero entries in each row,

,

where λ0(x; θ) = M
r=1 λr(x; θ).

Writing Rr(t) to be the counting process representing how
many reactions of type r have fired by the time t, we have that
X(t) = X(0) +M

r=1 Rr(t)ζr . Using the random time change
representation,25,26 we write X(t) as

X(t) = X(0) +
M
r=1

Yr

( t

0
λr(X(s); θ)ds

)
ζr , (2)

where Yr(·) are independent unit-rate Poisson processes. This
representation is tremendously useful in conducting analysis
of the trajectories. In particular, it leads to formulations
of the next-reaction method27,28 and interpreting simulated
trajectories in the path-space to allow for coupling paths19,29,30

as well as path-wise differentiation.16,17

When simulating exact trajectories (using any exact
method; direct SSA, next-reaction, etc.), the propensity
functions λr(x; θ) probabilistically determine both the time
between reactions ∆t as well as the next reaction r∗ to fire.
The likelihood that reaction rk is the next to fire is proportional

to its propensity λk(x; θ); i.e., Pθ,x {r∗ = rk} ∝ λk(x; θ). The
time between reactions has an exponential distribution with
the rate λ0(x; θ) = M

r=1 λr(x; θ); i.e., ∆t ∼ Exp (λ0(x; θ)) with
the mean Ex,θ{∆t} = 1/λ0(x,θ).

Multi-scale dynamics occur when the propensity func-
tions have large magnitude disparities. If λk(x; θ) ≫ λ j(x; θ)
for all j , k, then P{r∗ = rk} ≈ 1 and ∆t ∼ Exp (λ0(x; θ))
≈ Exp (λk(x; θ)). Thus, with a high probability the next
reaction in an exact trajectory will be rk and the time clock will
advance on the order of 1/λk(x; θ). Such multi-scale networks
then require an enormous number of computations to sample
“slow” reactions and reach the required time horizon for the
entire system to relax.

B. Two-time-scale reaction networks

We now consider reaction networks with two scales of
dynamics. For further motivation and discussion of reaction
networks with multiple time-scales, we refer readers to
Refs. 11–14 and references therein. We instead focus on our
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formulation for the separation of time-scales and the averaged
process via the partitioning of the state space into “fast-
classes.” Though analogous to the techniques of transforming
the species variables into auxiliary fast/slow variables11,12 or
projecting to remainder spaces,14 the direct partitioning of the
state space will allow us to construct a singular perturbation
expansion of the probability measure and establish the rate
of convergence of such averaging methods. In addition, it
provides a framework for applying likelihood ratio type
sensitivity estimates to the averaged process as we shall
see in the sequel.

Suppose a reaction network has species [X1,X2, . . . ,Xd]
and reactions r1, . . . ,rM. We shall assume that the propensity
functions λr(x; θ) are of the form (1) (mass-action kinetics,
though other forms may also be treated), and that each reaction
is indexed by its own reaction parameter θr . We assume
that there is a scale disparity in the reaction parameters
between a set of “fast reactions” and a set of “slow
reactions.” Thus we can write θ = [θ1, . . . , θM] = [α/ε,β],
where β = [β1, β2, . . . , βMs] are the slow reaction parameters,
ε ≪ 1 is the stiffness parameter, and α = [α1, . . . ,αM f

] are
the underlying (rescaled) reaction parameters for the fast
reactions.

To ease referencing, we will often index reactions and
propensity functions directly by their reaction parameter.
For example, rβi is the reaction with reaction parameter
βi and propensity function λβi(x; θ) = λβi(x; β) = βibβi(x)
(where bβi is given by (1)). For the fast reactions αi, we
use λεαi

(x; θ) = λεαi
(x; α) = (αi/ε)bαi

(x) to denote the exact
propensity function and λαi

(x; θ) = αi bαi
(x) to denote the

rescaled version.
Let Xε(t) denote the Markov chain determined by the

exact propensity functions λεα(x; θ) and λβ(x; θ). We can write
the generator Qε = Qε(α,β) of the exact process as before,
and observe that

Qε(α,β) = 1
ε
Q(α) + Q(β), (3)

where Q(β) is the generator of the chain under only the slow
dynamics (determined by slow reactions rβ), and Q(α) is the
generator of the chain under only the fast dynamics (with the
rescaled propensity functions λα(x; α)).

As ε → 0 only the fast reactions rα fire, and so we define
an equivalence relation on states s ∈ M, by si ↔ s j if they are
mutually accessible through only fast reactions. This defines
a partition of the state spaceM into “fast-classes”Mk which
are by construction the invariant (irreducible) classes of M
under Q(α); e.g.,

M =
NC
k=1

Mk =

x(1)1 , x(1)2 , . . . , x(1)m1, x

(2)
1 , . . . , x(2)m2, . . .


,

where NC are the number of invariant “fast-classes,” and
mk =

�
Mk

�
is the number of states inside fast-class Mk. For

ease of presentation, in the present discussion we shall assume
the state space is finite.

Assumption 2.1 (finite state space). The state space M
is finite, such that |M | = m. Thus the number of fast classes

NC < ∞ and the number of states in each fast-class mk < ∞,
so that m = m1 + m2 + · · · + mNC

.

Assumption 2.1 is made only to simplify the discussion.
One may also treat the infinite state case with some mild
additional conditions on Q(α) and Q(β) to ensure non-
explosiveness and ergodicity of the underlying (rescaled)
chain.20 For example, one can require that the reactions
which increase the total molecule count have propensities
which grow at most linearly with the total molecule
count.13,14 In addition, we shall impose the following
assumption.

Assumption 2.2 (recurrent states). Each state of M is
recurrent, so that there are no absorbing/transient states.

Assumption 2.2 is satisfied if, for example, all
reactions are reversible (or often times if only the fast
reactions are reversible). One may also treat the case with
transient/absorbing classes with some additional stability
assumptions to ensure the fast dynamics decay to steady-state;
see Section 4.4 of Ref. 20 for more details.

Under Assumption 2.2, we can reorder the state space so
that

Q(α) = diag[Q(1)(α), Q(2)(α), . . . , Q(NC)(α)]
is block-diagonal. Here, one can view the generators Q(k)(α)
as the restriction of Q(α) to the (irreducible) fast-class Mk

(fast-only dynamics when X(0) ∈ Mk). In light of the finite
state-space and positive recurrence, each Q(k)(α) is ergodic
and has a stationary (steady-state) probability measure π(k) =
π(k)(α) such that π(k)Q(k) = 0 (with π(k),0 interpreted as row
vectors).

Using the above formulation, we can restate the averaging
principle9–14 as follows. For small ε and X(0) ∈ Mk, Xε(·)
will relax to its steady-state distribution π(k) on the micro
time-scale εt before any slow reaction fires (on the macro
time scale t). Thus, one can use the stationary average of the
slow propensity functions

λβ j
(X (t) ; β,X(0) ∈ Mk) ∼ λβ j

(Mk; θ)
∆
= Eπ(k )(α)


λβ j

(X ; β) (4)

to determine the distribution of time until the next slow
reaction as well as the probabilities for the next slow reaction
being rβ j

. These can then be used to simulate a trajectory of
the slow (macro-scale) process. We shall further develop this
idea more precisely in the remainder.

Write m =
�
M

�
, and mk =

�
Mk

�
as before, so that

Qε(θ), Q(α), Q(β) ∈ Rm×m, Q(k)(α) ∈ Rmk×mk, and π(k)(α)
∈ R1×mk. Write π(α) = diag

�
π(1),π(2), . . . ,π(NC)� ∈ RNC×m.

Write 1mk
for [1,1, . . . ,1]′ ∈ Rmk×1 and 1 = diag

1m1,1m2, . . . ,1mNC


.

With π(α) describing the limit behavior inside each
fast-class on the micro time scale, one can then consider the
distribution of the exact system Xε on the macro time scale.
Heuristically, one expects a trajectory to enter a fast-class of
states Mk1 and quickly iterate through many fast reactions
until the distribution of the trajectory reaches the steady-state
π(k1). Eventually, a slow reaction will fire to move the trajectory
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FIG. 1. A depiction of the macro chain of a two-time-scale reaction net-
work. Each fast-class Mk is an equivalence class of states accessible by
fast-reactions rα. Slow reactions rβ carry each fast-class to a unique new
fast-class. The averaged system X (t) forms a meta “macro” Markov chain
among fast-classes with propensities λβ

(
X ;β,π(α)) .

to a new fast-classMk2 (see Figure 1). Writing

Q = Q(α,β) ∆= 
π(α) · Q(β) ·1 ∈ RNC×NC, (5)

we see that Q is itself a generator of an “averaged” CTMC
reaction network, whose “states” correspond to fast-classes
Mk. Write X(t) for the “averaged” process generated by Q.
Together, Q and X(t) describe the limit (as ε → 0) of the
average rate that the exact process Xε(t) moves between the
fast-classes {Mk}NC

k=1 via slow reactions.
Furthermore, we can identify the elements of Q from the

steady-state averages of the slow propensity functions. First,
note that every slow reaction carries each fast class to a unique
new fast-class; that is, if x ↔ y and λβ(x),λβ(y) > 0, then
rβ(x)↔ rβ(y). Thus, rβ(Mk) is well-defined. Then, using the
form of Q together with (5), we have

Qk1,k2
=


β∈β

rβ(Mk1
)=Mk2

λβ(Mk1; θ) (6)

for k1 , k2, and similarly we see that

Qk1,k1
= −


β∈β
λβ(Mk1; θ) ∆=−λβ0(Mk1; θ). (7)

With this formulation, we see that generator Q corresponds
to a meta “macro” reaction network with the state-
spaceM =

�
M1,M2, . . . ,MNC

	
, reactions {rβ : β ∈ β}, and

propensities {λβ(X ; θ) : β ∈ β}. Figure 1 depicts such a
macro chain for the macro-process X(t).

If we can estimate the average slow-propensities

λβ(Mk; θ) within each fast-class (say, through ergodic time
averages of the fast-only process), then one can simulate
a trajectory of the macro-process X(t) from these average
propensities using any single-scale Monte Carlo simulation
(e.g., direct SSA, next-reaction, etc.). Furthermore, if one is
ultimately concerned with estimating Eθ { f (Xε(t))} for some
observable (quantity of interest) f :M → R, then one can
define an augmented functional f onM by

f (Mk; α) ∆=Eπ(k )(α) { f (X)} =


x∈Mk

f (x)π(k)x (α). (8)

It shall be shown that Eθ


f (X(t)) ≈ Eθ { f (Xε(t))} for large
enough t and sufficiently small ε.

To illustrate how one can implement the averaging scheme
to generate macro-trajectories, we present the following TTS
version of the direct SSA (since it is the most succinct to write).
In this case, the TTS SSA is essentially the same algorithm
as in Refs. 9 and 11. However, we emphasize that the same
method can be used to create a TTS version of any exact
method defined by the propensity functions. In particular, one
can just as easily construct an analogous TTS next-reaction
type algorithm28–30 for tightly coupled trajectories.

Algorithm 1 (TTS-SSA). To simulate a trajectory of the
macro-process X(T) until macro time-horizon Tfinal:

(1) Initialize x at a macro time T ; x ∈ Mk for some
(unknown) k.

(2) Simulate the fast-only reaction network Q(k)(α) until
time-averages of observable f and slow propensities λβ
relax to steady-state:

1
t

 t

0
f
(X (k)(s)) ds → Eπ(k )(α)


f (X) ≡ f (k),

1
t

 t

0
λβ

(X (k)(s); β)
ds → Eπ(k )(α)


λβ

(X ; β
)

≡ λβ(k; θ).
(3) Observe terminal state x(k) ∼ π(k). Compute λβ0

=
Ms

j=1 λβ j
.

(4) Sample time to next slow reaction: ∆T ∼ Exp(λβ0).
(5) Sample next slow reaction to fire β∗ ∼ 1/λβ0

λβ1, . . . ,λβMs


.

(6) Update macro time T ← T + ∆T and move to the next
fast class by taking x = x(k) + ζβ∗.

(7) Return to (1) until macro time horizon Tfinal is reached.

Write pT = pT(X ; α,β) for the probability measure
(on M) induced by the averaged process X at time T . At
the end of a TTS simulation, one obtains a terminal state
X(T) = x ∼ p0

T = p0
T(X ; α,β), where p0

T is the probability
measure on M induced by the last state observed from
the terminal fast-class. Thus, p0

T is determined by pT and
π(α). Write pε

T = pε(Xε; α,β) for the probability measure
on M induced from the exact process Xε. Since pε

T is the
distribution we would see from an exact simulation, and p0

T

is the distribution from the TTS simulation, the question
becomes: What is the error of p0

T from pε
T? One can take

a singular perturbation expansion of pε
T in terms of ε and

identify the leading term as p0
T to obtain the following result,

whose proof we defer to Appendix A 1.

Theorem 2.3 (Error in Probability). Let κ = − 1
2 max

Re(ν) : ν is a non-zero eigenvalue of a Q(k). Then under
Assumptions 2.1, 2.2, we have

∥p0
T − pε

T ∥ ≤ O (ε + exp {−κT/ε}) , (9)

where ∥ · ∥ denotes the l2 norm.

In Theorem 2.3, κ is the slowest rate of convergence
of Q(k) to the steady-state π(k) among all fast-classes Mk.
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Thus, as long as the macro time horizon T is large enough
to ensure the fast dynamics have relaxed to steady state
(T > −ε/κ log(ε)), then the error becomes ∥p0

T − pε
T ∥ ≤ O(ε).

Writing π0(α,β) for the stationary distribution corre-
sponding to the TTS probability measure p0

T(α,β), it is not
hard to see that π0(α,β) = π · π, the product of the steady-state
distribution between fast-classes π(α,β) and the steady-state
distribution within fast-classes π(α). Write πε for the steady-
state distribution corresponding to the exact process generated
by Qε. Then using Theorem 2.3 and exponential convergence
to the steady state, we obtain the following error bounds (see
Appendix A 2).

Corollary 2.4 (error in expectation). Under Assump-
tions 2.1 and 2.2, ∥π0 − πε∥ ≤ O(ε) and ∥π0 − pε

T ∥ ≤ O(ε)
for sufficiently large T. Thus, for all bounded functions f on
the state spaceM,

���EpT


f (X(T)) − Epε
T
{ f (Xε(T))}��� ≤ ∥ f ∥∞∥p0

T − pε
T ∥

≤ O(ε)
���Eπ


f (X) − Eπε { f (Xε)}��� ≤ ∥ f ∥∞∥π0 − πε∥ ≤ O(ε).

(10)

Corollary 2.4 is of great practical use, as it says that
the expected value of the macro-process X(T) with macro-
observable f :M → R provides an O(ε) estimate of the
expected value of the exact system Xε(T) with observable
f :M → R. Since we can use TTS algorithms (such as
Algorithm 1) to quickly generate trajectories of X(T) while
estimating the macro-observable f (Mk) at each state along the
way, this provides a method to very quickly generate estimates
of Epε

T
{ f (Xε(T))} with at most O(ε) bias. As ε → 0, the bias

decreases linearly while the computational savings increase
as O(1/ε).

III. TWO-TIME-SCALE SENSITIVITY ANALYSIS

Computing the system sensitivities
Sf ,T(θi) ∆= ∂

∂θi
Eθ { f (X(T))} with respect to reaction param-

eters θi ∈ θ provides great insight into the model. As such,
numerous works have constructed and analyzed methods
to estimate the sensitivities from sample trajectories of the
system.16–19,21,23,29,31,32

Different methods work better for different systems or
different criteria, but all methods have higher (sometimes
stupendously higher) variance in the estimation of Sf ,T(θi)
compared to the estimation of Eθ { f (X(T))}, thus requiring
a very large number of samples to estimate the sensitivity
precisely. If the system is stiff (as in (3)) so that each exact
trajectory Xε(T) requires a prohibitively large computational
load, then the large number of sample paths required
to estimate the sensitivity Sε

f ,T(θi) ∆= ∂θi EpεT (θ) { f (Xε(T))}
makes the problem computationally intractable.

Corollary 2.4 gives that the expectation of the
macro “averaged” reaction network f (X(T)) gives an
accurate approximation of the expectation of the exact
network; EpT (θ)


f (X(T)) = Epε

T
(θ) { f (Xε(T))} +O(ε). A

natural question to ask is whether the sensitivities of the
exact system converge to the sensitivities of the averaged

system (i.e., if the derivative commutes with the limit). Using
the recent result of Ref. 14, one can derive the following
(the details are deferred to Appendix A 3).

Proposition 3.1 (convergence of sensitivities).

lim
ε→0

Sε
f ,T(θi) = S f ,T(θi) ∆= ∂

∂θi
EpT (θ)


f (X(T)) . (11)

Thus, if we can compute the sensitivity of the macro
reaction network f (X(T)) (whose sample paths have orders
of magnitude less cost to simulate than the exact stiff network
f (Xε(T))), then this provides an accurate estimate of the exact
sensitivity. Furthermore, since X(·) is formulated as a reaction
network with propensities {λβ(x,θ) : β ∈ β} and observable
values f (Mk) (both of which are estimated during a TTS
simulation), we can apply most of the existing single-scale
sensitivity estimation methods to estimate S f ,T(θi) and thus
Sε
f ,T(θi).

We note that (11) gives that the sensitivity of the exact
system converges to the sensitivity of the averaged system, but
does not give the rate of convergence. Currently, this is an open
question. Since from (10) we have the expectation converges
at a rate O(ε), one might suspect that the sensitivity also
converges at rate O(ε), at least for certain classes of networks
(e.g., linear propensities). Computational tests suggest this is
the case, and the subject of ongoing work33 is to establish
a precise statement on the rate of convergence. However,
the remainder of this work shall focus on the development
and practical implementation of a multiscale likelihood ratio
estimator of the limit sensitivity S f ,T(θi).

In what follows, we review the likelihood ratio method
for computing system sensitivities for single-scale reaction
networks. We address the high variance of the likelihood
ratio method by combining centering and ergodic-averaging
techniques for a Centered Ergodic Likelihood Ratio (CELR)
estimator with dramatically smaller variance for steady-state
sensitivity estimation. We then derive a two-time-scale version
that allows one to estimate the full gradient of a stiff system
using any TTS Monte Carlo method for simulating a macro-
trajectory.

A. Likelihood ratio methods

LR methods18,21–24,34 (aka the Girsanov transform
method) attempt to compute the derivative by reweighting
the observed trajectory by its “score” function of the density.
Here, one views θ as parametrizing the probability measure
on the path-space P(·, t; θ). If P(·, t; θ) is differentiable with
respect to θi, then under mild regularity conditions we have

Sf , t(θi) ∆= ∂

∂θi
Eθ0 { f (X(t))}

=


Ω

f (X(t,ω))
∂
∂θi

�
θ0P(dω, t; θ)

P(dω, t; θ) P(dω, t; θ0)
= Eθ0

�
f (X(t))Wθi(t)

	
. (12)

Using random-time-change representation (2) it can be
shown22 that the reweighting process Wθi(t) is a zero-mean
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martingale process and can be represented by

Wθi(t) =
M
r=1

 t

0

∂λr
∂θi

�
X(s−),θ0�

λr (X(s−),θ0) dRr(s)

−
M
r=1

 t

0

∂λr
∂θi

�
X(s−),θ0� ds, (13)

where dRr(s) is simply the counting measure of reaction r
which equals 1 at times s at which reaction r fires and is zero
otherwise. Thus, assuming one can compute ∂θi λr(x,θ), then
Wθi(t) has a computationally tractable form as follows.

We write X̂l for the lth state of the system through a
trajectory, and ∆l for the holding time in the lth state. Write
Tl for the time of the l jump, so that Tl =

l−1
j=0∆ j. We denote

N(t) as the total number of reactions which have fired by time
t and r∗

l
for the index of the reaction which takes the system

from the lth state to the l + 1th state. Then Wθi has the explicit
form

Wθi(t) =
N (t)−1
l=0



∂

∂θi
log λr∗

l

�
X̂l,θ

0� −
M
r=1

∂λr
∂θ

�
X̂l,θ

0�
∆l



−
M
r=1

∂λr
∂θ

�
X̂l,θ

0� �T − TN (T )
�
.

In simulation, the LR estimate is computed via en-
semble averages estimated by empirical averaging Sf ,T(θi)
≈ LR(NS, θi) with the empirical estimator

LR(NS, θi) ∆= 1
NS

NS
n=1

[ f (x(T))]n 
�
Wθi(T)

�
n
, (14)

where NS is the number sample paths, [ f (x(T))]n is the
observable value at terminal time T for the nth sample path,
and similarly [Wθi(T)]n is the terminal value of Wθi(T) for
the nth sample path. While the reweighting process Wθi(t)
has zero mean, its variance grows with time,18,23 making it
quite inefficient for large time horizons. The variance can be
reduced by using the centered likelihood ratio estimate

CLR(NS, θi) ∆= LR(NS, θi) − 1
NS

2




NS
n=1

[ f (x(T))]n



×



NS
n=1

�Wθi(T)
�
n



. (15)

Since Eθ{Wθi(T)} ≡ 0, the second term does not impose any
bias into estimate (12), but is coupled to the first term to
reduce the observed variance.18

Suppose one is interested in the steady-state sensi-
tivities, Sf ,∞(θi) ∆= ∂θiEπ(θ) { f (X)}. It is well known that
EpT (θ) { f (X(T))} = Eπ(θ) { f (X)} +O

�
e−κT

�
for some mixing

rate κ, and thus for large T one can use the terminal distribution
of f (X(T)) and Wθi(T) in (12) to obtain an estimate of
the steady-state sensitivity with exponentially small bias.23

However, the major difficulty in using likelihood ratio
estimates is the large variance of the estimator f (X(T))Wθi(T),
which is proportional to Var{ f (X(T))}Var{Wθi(T)}.18,22 It
can be seen that Var

�
Wθi(T)

	
= O(T), so one must balance

choosing a terminal time T large enough to ensure sufficient

decay of the bias EpT (θ) { f (X(T))} − Eπ(θ) { f (X)}, yet as
small as possible to contain the growth of the Var

�
Wθi(T)

	
.

While centering as in (15) helps to reduce the variance of the
estimator, the variance is usually much larger than comparable
finite difference or pathwise derivative methods.16–18

Instead of using the terminal distribution f (X(T))
as an approximation of the steady-state distribution,
one could instead use the ergodic-average (time-average)
1/T

 T

0 f (X(s))ds. The bias of the ergodic-average decays
slower than the terminal distribution (O(1/T) compared
to O(e−κT)), but has the advantage that variance decays
with time as well; that is, Var


1/T

 T

0 f (X(s))ds

= O(1/T)

whereasVar { f (X(T))} → Var { f (X(∞))} = σ2 (see Ref. 35,
pp. 96 and 228 for more details). While such time-averaging
substitutions for steady-state sensitivities are well known in
other settings, the technique has not appeared in the recent
literature involving steady state sensitivity estimation for
stochastic reaction networks16,18,21,23 and so we describe it
below.

The idea is to simply replace the terminal-state observable
f (X(T)) with the ergodic average 1/T

 T

0 f (X(s))ds in the
LR scheme (12)–(15). The philosophy is that by incurring
some small amount of additional bias in the mean value, the
ergodic steady-state sensitivity estimate has smaller variance
than the terminal-state distribution. In fact, using Fubini’s
theorem and the fact that limT→∞EpT (θ){ f (X(T))Wθ(T)}
= ∂θEπ(θ){ f (X)},31 it is not hard to derive

EpT (θ){1/T
 T

0
f (X(s))dsWθ(T)}

= 1/T
 T

0
EpT (θ){ f (X(s))Wθ(T)}ds → ∂θEπ(θ){ f (X)}

as T → ∞ and hence the ergodic estimator is asymptotically
unbiased. Thus we have the ergodic likelihood ratio,

ELR(NS, θi) ∆= 1
NS

NS
n=1

1
T

 T

0
f (x(s))ds



n

�Wθi(T)
�
n
. (16)

Unfortunately, one usually sees that the variance of the ELR
is much the same as the LR because the variance of W (T)
dominates in (16) for large T . However, we can make a further
attempt to reduce the variance by centering the ELR to derive
the centered ergodic likelihood ratio CELR,

CELR(NS, θi) ∆=ELR(NS, θi)

− 1
NS

2




NS
n=1

1
T

 T

0
f (x(s))ds



n




×



NS
n=1

�Wθi(T)
�
n



. (17)

In practice we have observed that the combination of centering
and ergodic averaging in the CELR method results in an O(1)
estimator, compared to O(T) for the LR and ELR estimators
and ≈O(T1/2) for the CLR.

As an example, Figures 2 and 3 compare estimators
(14)–(17) by sample size for the system
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FIG. 2. Comparison of estimators
(14)–(17) by sample size for a steady
state sensitivity estimation problem.
The oscillations of the estimators
by sample size give a depiction of
the relative variance of each of the
estimators. The CELR method does so
well it can barely be discerned from the
analytic steady state sensitivity.

A1 + A1
α1/ε


α2/ε

A2 + A2, B1 + B1
α3/ε


α4/ε

B2 + B2,

A2
β1


β2

B2

at steady-state using observable f (X) = |B1| and differenti-
ating against parameter θ = β1. Here we use initial point
(A1, A2,B1,B2) = (10,15,15,10) and nominal parameter values
α = [1,2,3,4], β = [1.5,2.5], and ε = 10−3. The exact system
Xε(t) is simulated to time T = 100 for which the system
is approximately at steady state. Figure 2 plots the exact
(analytic) steady state sensitivity with the different estimators

against the number of samples used for ensemble averaging.
As the sample size grows, we see that the LR and ELR
estimators both perform badly compared to their centered
counterparts due to their high variance. In fact, the ELR
actually does worse than the LR for this sample path due to its
slightly greater bias. The CLR estimator does better at large
sample sizes, but nowhere near as well as the CELR estimator
which can barely be discerned from the analytic value.
Figure 3 shows just the CLR and CELR estimators in order
to better see the comparison. The takeaway is that combining
centering with ergodic-averaging gives dramatically better
variance reduction than either technique applied separately.

FIG. 3. Comparison of estimators (15)
and (17) by sample size for a steady-
state sensitivity estimation problem.
The variance of the CELR method is
drastically less than the CLR method
with only a slight increase in the bias.
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More examples which contrast the different LR estimators can
be seen in the recent comparison study in Ref. 36, which also
gives some insight into why Var{ELR} ≈ Var{LR} = O(T)
whereas Var{CELR} = O(1) as T → ∞.

B. TTS likelihood ratio

In what follows, we describe how the above single-scale
likelihood ratio methods can be adapted to the macro-process
X(T) for use in (11). Recall that the reaction parameters can be
classified as fast or slow, θ = [α,β] with α = [α1, . . . ,αM f

]
and β = [β1, . . . ,βMs]. To apply likelihood ratio methods to
compute ∂θiEθ


f (X(T)), we exploit that the macro-process

X(T) is identified as reaction network with propensities

λβr(X ; α,β) = Eπ(X )(α)
�
λβr(X ; β)	

=


x∈M
X

λβr(x; β)π(X )(x; α)

(for βr ∈ β), and observable

f (X ; α) = Eπ(X )(α) { f (X)} =


x∈M
X

f (x)π(X )(x; α).

Thus the macro-sensitivities can be represented by

∂

∂θi
EpT (θ)


f
(
X(T); θ)

= EpT (θ)

∂

∂θi
f
(
X(T); θ) + f

(
X ; θ

)
W θi(T)


, (18)

where the macro-reweighting process W θi(T) is given by

W θi =

Ms
r=1

 T

0

∂
∂θi
λβr

(
X(s); θ)

λβr

(
X(s); θ) dRβr(s)

−
Ms
r=1

 T

0

∂

∂θi
λβr

(
X(s); θ) ds. (19)

Therefore, in order to apply (18) we need to be able to compute
the derivatives of the averaged observable ∂θi f

(
X(s); θ) as

well as the derivatives of the averaged propensity functions
∂θi λβr

(
X(s); θ) .

Suppose θi = βi ∈ β is a slow reaction parameter. If the
original observable f (X) has no direct parameter dependence,
then ∂βi f (X(s),θ) ≡ 0. Furthermore, under mass-action
kinetics, the averaged propensities have ∂βi λβr(X(s); θ)
= bβr(X ; α)δi,r , where bβr(X ; α) = 1/βr · λβr(X ; α) is already
computed during a TTS simulation and δi,r = 1 if i = r and 0
otherwise. Thus the slow sensitivities are directly computable
from a standard TTS simulation.

Suppose θi = αi ∈ α is a fast reaction parameter. Then
computing ∂αi

f (X(s); α) and ∂αi
λβr(X(s); α,β) is more

problematic, as they only depend indirectly on α through
the fast-class steady-state measures π(α). Thus explicit
computation is often infeasible. However, one may estimate
∂αi
Eπ(X )(α) { f (X)} and ∂αi

Eπ(X )(α)
�
λβr(X); β	 through any

sensitivity analysis method from a simulation with only fast
reactions. For example, when running the fast-only simulation
(under Q(X )(α)) for equilibration in Algorithm 1, one can
compute the corresponding likelihood ratio process W (X )

αi
(t) as

in (13) (with t large enough so that p(X )
t (α) ≈ π(X )(α)). Then

one can estimate the derivatives in (18) and (19) by

∂

∂αi
f (X ; α) ≈ E

p(X )
t


1
t

 t

0
f (X(s))ds


Wαi

(t)

,

∂

∂αi
λβr(X ; θ) ≈ E

p(X )
t


1
t

 t

0
λβr(X(s))ds


Wαi

(t)

,

(20)

using the proposed CELR method (17) during the micro-
equilibration computation. Plugging these estimated values
into (19) allows one to calculate Wαi

for each macro-trajectory,
which in turn allows for sensitivity estimation with respect to
αi in (18).

We note that our derivation leads to a different form of
the multi-scale LR estimator than that of Ref. 21. The latter
estimated the reweighting measures for the exact process
Wε

αi
(t) by adding together the micro-reweighting measures

Wαi
from within each fast class visited, the idea being

that Wαi
(t) is a zero-mean martingale which adds no new

information and only adds in variance once the fast-only
process has converged to steady-state. Henceforth, we refer
to this approach as the “Truncated Likelihood Ratio,” as it
approximates the exact reweighting coefficient Wε(t) via a
truncated observation within each fast-class. Conversely, the
TTS likelihood ratio uses the exact representation (19) for the
macro-process, and then estimates the terms via (20).

C. Stiff versus rescaled sensitivities

We note that the above procedure will estimate “rescaled”
sensitivities with respect to the parameter set θ = [α,β].
However, depending on the context of the application, the
actual objective may be to estimate the “stiff” sensitivities
with respect to θε = [α/ε,β] = [αε,β]. The sensitivities of
the slow parameters β are the same, but the TTS sensitivity
scheme (as do other multiscale methods14,21) estimates fast
sensitivities against the rescaled parameter αi rather than
against the stiff parameter αε

i = αi/ε. Naturally, one wonders
what the relationship is between the stiff sensitivities ∂αε

i
and

the rescaled sensitivities ∂αi
. Here we show that, against the

exact steady state measure πε, the two sensitivities differ by a
factor of ε.

We first present a lemma about general stationary
sensitivities of ergodic continuous-time Markov chains, whose
proof we defer to Appendix A 4.

Lemma 3.2. Let Q = Q(θ) be the generator of an ergodic
continuous-time Markov chain determined by a parameter
vector θ. Let π = π(θ) be the corresponding stationary
distribution. Then we can represent the derivatives ∂θπ(θ)
as

∂π

∂θ
= π

(
∂Q
∂θ

)
Q+ [1π − I] , (21)

where Q+ is the pseudo-inverse of the generator Q.

Lemma 3.2 has potential to be interesting in its own
right as a method for computing steady-state sensitivities of
reaction networks with relatively small (effective) state space
M. If one can construct the generator Q, then (21) gives the
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vector ∂π
∂θ

and thus of the steady-state expected value

∂

∂θ
Eπ(θ) { f (X ; θ)}

=

x∈M

∂ f (x; θ)
∂θ

π(x; θ) +

x∈M

f (x; θ)∂π(x; θ)
∂θ

. (22)

For example, for reaction networks with mass-action
propensities, the entries of Q shall always be linear in
the parameters θ. Therefore, the derivatives ∂Q

∂θ
are easy

to compute (whereas the stationary distribution π(θ) can
be quite complex as a function of θ). Thus by computing
the pseudo-inverse Q+ from Q at the nominal value of θ
(e.g., via singular value decomposition), one can analytically
compute the system sensitivities without need of Monte Carlo
simulation. For larger reaction networks, it may be possible
to combine the finite state projection method37,38 with this
pseudo-inverse technique to estimate the exact sensitivities by
computing the analytic sensitivities of the reduced system.

Finally, equipped with Lemma 3.2, we can prove the
following.

Proposition 3.3 (stiff vs. rescaled sensitivities).

∂

∂αε
i

Eπε { f (X ; θε)} = ε

∂

∂αi
Eπε { f (X ; θε)}


. (23)

Proof. Write the exact generator Qε as Qε = Q(θε)
= (1/ε)Q(α) + Q(β) = Q(αε) + Q(β). For a fast reaction
parameter αε

i = αi/ε application of the chain rule gives
∂αi
λk(x; αε) = 

∂αε
i
λk(x; αε) /ε, from which it follows (us-

ing (3)) that ε

∂αi

Q(αε) = ∂αi
Q(α) = ∂αε

i
Q(αε). Putting

this relation into (21), we then have

∂

∂αε
i

πε = ε


∂

∂αi
πε


. (24)

Similarly we see that ∂αi f (x,αε) = 
∂αε

i
f (x,αε) /ε.

Finally, putting these relations into (24) we obtain (23). �

Therefore, by multiplying the TTS sensitivity estimate
(against αi) by a factor of ε, one thus obtains the estimate
against the original parameter αε

i . Thus one can use the TTS
scheme to estimate the full gradient of ∇θεEπε { f (X ; θε)}.

IV. BATCH-MEANS STOPPING RULE

A crucial question when implementing a TTS simulation
is: How long to run the micro-equilibration for? That is, how
large a value of t does one use to compute the ergodic averages

f
(
X ; θ

)
≈ 1

t

 t

0
f
(X (X )(s); θ) ds,

λβ

(
X ; θ

)
≈ 1

t

 t

0
λβ

(X (X )(s); β)
ds

for a desired level of accuracy δ? Taking too small a value
for t risks imposing a large bias. However, the O(1/t) rate of
convergence for the ergodic average implies almost nothing
is gained by integrating t past the relaxation time of the
system. Furthermore, when computing the micro-sensitivities
one uses the micro-reweighting process Wαi

(t) via (20), where

the variance of Wαi
(t) increases with the time-horizon t.

Thus, we would ideally take the smallest value of t such
that ∥p(X )

t − π(X )∥ ≤ O(δ). However, different fast-classes X
can have vastly different sizes. This can result in significantly
different relaxation times for each class. It is then ideal to have
an adaptive stopping rule which terminates the micro (fast-
only) simulations when the ergodic averages have converged
to the steady state mean.

Current implementations of an “averaged” or “multi-
scale” SSA use a constant relaxation time t f for the micro-
averaging step11,21 whose choice is motivated by some a priori
insight into the system. In Refs. 10 and 39 the authors also use
a fixed time t, but then exploit algebraic relations of the steady-
state means to try to obtain better approximations. In Ref. 9, a
stopping rule is developed which determines that equilibrium
is reached when the averaged values of the propensities of
the forward and backward reactions are approximately equal
for each reaction pair. However, experience has shown this
“partial-equilibrium” stopping rule can stop prematurely (in
the transient regime) with significant probability for systems
with relatively few reaction-pairs. Thus, we seek to obtain
a robust, adaptive stopping rule for terminating the micro-
equilibration simulation.

A. Batch-means for steady-state estimation

The problem at hand is really one about Markov chain
mixing-times and the integrated autocorrelation time τint.
Analytically, the mixing and integrated autocorrelation times
are related to the spectral gap of the underlying generator.40–42

Unfortunately, for large systems direct computation is usually
infeasible. Some common approaches involve estimation
autocorrelation function A(t) of the process and then
exploiting the relation τint = 2

 ∞
0 A(t)dt to derive estimates

of τint from the estimates of A(t).41,43,44 However, if the goal
is to terminate the simulation when the ergodic average has
converged appropriately, then these methods are indirect and
can be computationally intensive. Another common approach
is to exploit the regenerative structure of Markov chains45 to
obtain independent and identically distributed samples of the
process and obtain confidence bounds on the ergodic average.
However, these methods can be inefficient for complex
systems where the return time to the initial state can be
quite large.

We instead turn to the method of batch means35,46

for determining confidence bounds (and thus a measure of
convergence) for the steady-state estimation problem inside
each fast-class. The use of batch means is applicable to a wide
range of problems (any which satisfy a central limit theorem),
and its implementation is very straightforward.

For a general Markov chain X(s) with an observable
function f , write Y (s) = f (X(s)) and Y (t) = 1/t

 t

0 Y (s)ds.
We denote fπ = Eπ { f (X)} for the steady-state value we
wish to estimate. Then under some general conditions42 Y (s)
satisfies a functional central limit theorem,

t
√
ε


Y (t/ε) − fπ


t≥0

D−→ {σB(t)}t≥0

in the sense of weak convergence as ε → 0.



074104-10 Hashemi et al. J. Chem. Phys. 144, 074104 (2016)

Suppose that t ≥ Nbτrelax, where τrelax is the relaxation
time of the system and Nb is a number of “batches” (bins) to
partition the trajectory into. Then the batch means

Y k(t) ∆= 1
t/Nb

 kt/Nb

(k−1)t/Nb

Y (s)ds

are approximately (as t → ∞) independent and identically
distributed samples of N

�
fπ,σ2Nb/t

�
. Thus

Nb
Y (t) − fπ

sNb
(t)

D−→ TNb−1

as t → ∞, where TNb−1 is the Student’s t-distribution and
s2
Nb
(t) is the sample variance among batches,

s2
Nb
(t) ∆= 1

Nb − 1

Nb
k=1


Y k(t) − Y (t)2

.

Thus, for t sufficiently large, a (1 − δCI)100% confidence in-
terval for the value of fπ is given by Y (t) ± MOE (t,Nb, δCI),
where

MOE (t,Nb, δCI) ∆= �tquantile
� sNb

(t)
√

Nb

(25)

and tquantile is the (1 − δCI/2)th quantile of the Student’s
t-distribution with Nb − 1 degrees of freedom.

The usual perspective for applying batch means is that one
has a fixed set of data {Y (s) : s ∈ [0, t]} to partition, and then
must choose the number of batches Nb appropriately so that
each batch length t/Nb is long enough so that the batch mean
errors


Y k(t) − Y (t) are approximately independent, identi-

cally distributed, and Gaussian. One then often chooses Nb to
be relatively small (say, 5–30)41,47 to ensure the independent
and Gaussian assumptions hold. When viewing the asymptotic
structure as the amount of data t grows, then one can ensure
that the asymptotic central limit theorem holds if the number
of batches grows as Nb(t) ≃ √t. In Ref. 46, the authors
consider strategies which let the number of batches grow if
the correlation between batches is near 0, and otherwise hold
Nb(t) fixed until the batch correlation decays to 0.

Since our goal is to simulate only enough (micro-scale)
data so as to determine the steady-state values fπ, we
instead take the perspective that one has a fixed number
of batches Nb desired, and that one should generate data
{Y (s) : s ∈ [0, t]} until each of the batch means Y k(t) are
(approximately) independent and identically distributed about
fπ. For a fixed level of precision δprecise, confidence level
δCI , and the number of batches (independent samples) Nb,
the batch-means stopping rule terminates the simulation
when MOE(t) = MOE(t,Nb, δCI) ≤ δprecise, where MOE(t) is
defined by (25). Figure 4 gives a depiction of how the batch-
means stopping rule is implemented.

In addition to giving an on-line estimate of the relaxation
time of the system, the batch-means stopping rule gives
Nb − 1 (nearly) independent samples of trajectories with initial
distribution approximately equal to the stationary distribution.
Furthermore, one can compute the reweighting coefficients
Wk,θ(t) in each batch to give Nb (nearly) independent samples
of the steady-state reweighting coefficients (in a manner
similar to the “Time-Averaged Correlation Function” method
of Ref. 23).

FIG. 4. A sketch of the batch-means stopping rule. The process is simulated
for a fixed number of jumps (NJ = 20) to a terminal time t1, and then
the trajectory is partitioned into Nb = 4 batches to compute the variance
between the batch meansY k(t1). If the confidence bounds are precise enough
(MOE(t1) ≤ δprecise), then the simulation is terminated and each batch gives
an iid sample of N

�
fπ,σ

2�. Otherwise, another NJ = 20 jumps are simulated
and the process is repeated.

B. Batch-means stopping implementation

Suppose we have a general reaction network with Mr

reactions and Mθ reaction parameters. Here we allow the
possibility that Mr , Mθ for general propensity functions
λr(x; θ) (e.g., Michaelis-Menten kinetics), whose parameter
derivatives ∂θiλr(x; θ) we can compute explicitly for all
i = 1, . . . ,Mθ and all r = 1, . . . ,Mr . Denote by ζr the stoi-
chiometric vector for the rth reaction. Our goal is to estimate
the gradient ∇θEπ(θ) { f (X)} for some observable function f .

We introduce the following notation for the batch-means
stopping rule. X̂(n) is the nth state of the reaction network,
T(n) is the time of the nth jump, and f̂ (n) = f (X̂(n))
for the value of the observable at the nth state. F(n)
=
 T (n)

0 f (X(s)) ds is the time-integrated value of f up to
the nth jump, r∗(n) is the reaction which fires at jump n
(taking the system from X̂(n) to X̂(n + 1)), êi is the vector
in R1×Mθ with 1 in the ith component and zeros elsewhere.
R(n,θ) ∈ R1×Mθ and B(n,θ) ∈ R1×Mθ are the first and second
terms of (13) with respect to each of the parameters θi ∈ θ
(i = 1, . . . ,Mθ). Nb is the number of batches (approximately
independent samples) to be used, δCI is the desired confidence
level (for a (1 − δCI)100% confidence interval), and δprecise is
the maximum allowed radius of the confidence interval at the
stopping time. NJ is the number of jumps to simulate before
retesting the batches for convergence. Then one can write the
batch-means stopping rule as follows.

Algorithm 2 (batch-means stopping rule with sensitivity
estimation).

(1) Initialize
• X̂(0) = x0, f̂ (0) = f

�
X̂(0)�, T(0) = 0, F(0) = 0, R(0)

= [0, . . . ,0] ∈ R1×Mθ, B(0) = [0, . . . ,0] ∈ R1×Mθ. tests
= 0 (number of times the data has been tested for
convergence). Calculate tquantile = (1 − δCI/2) quantile
of a Student’s t-distribution with Nb − 1 degrees of
freedom.

(2) Generate and Record Data Simulate NJ jumps
and record values immediately after each jump. For
n = NJ · tests, . . . ,NJ · (tests + 1) − 1,
• compute λr(X̂(n); θ), ∂

∂θi
λr(X̂(n),θ) for all

r = 1, . . . ,Mr and all θi = 1, . . . ,Mθ. Set λ0(X̂(n); θ)
=

Mr
r=1 λr(X̂(n),θ), and ∂

∂θi
λ0(X̂(n),θ) = Mr

r=1
∂
∂θi
λr

(X̂(n),θ) for all θi ∈ θ.
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• Sample
∆t(n) ∼ Exp

�
λ0(X̂(n),θ)�,

and
r∗(n) ∼ 1

λ0(X̂ (n),θ) ×
�
λ1(X̂(n); θ), . . . ,λMr(X̂(n); θ)�.

• Update
T(n + 1) = T(n) + ∆t(n),
X̂(n + 1) = X̂(n) + ζr∗(n),
f̂ (n + 1) = f (X̂(n + 1)),
F(n + 1) = F(n) + f̂ (n) · ∆t(n),
R(n + 1,θ) = R(n,θ) +Mθ

i=1 êi
×


∂
∂θi
λr∗(n)

�
X̂(n),θ� /λr∗(n) �X̂(n),θ�,

b̂(n,θ) = Mθ
i=1 êi ·

Mr
r=1

∂
∂θi
λr(X̂(n),θ) ,

B(n + 1,θ) = B(n,θ) + b̂(n,θ) · ∆t(n),
W (n + 1,θ) = R(n + 1,θ) − B(n + 1,θ).

(3) Test Batches for Convergence
• Nend = NJ · (tests + 1) = index of last available data

point.
Ȳ = F (Nend) /T(Nend) = total time-averaged value
tbatch = T(Nend)/Nb = time length each of batch.
Initialize FB = 0 (total integral through end of previous
batch).
• For k = 1, . . . ,Nb

– indB(k) = max {n : T(n) ≤ k · tbatch} = index of
the last jump in batch k.

– FB
A (k) = F(indB(k)) + f̂ (indB(k))
× [k · tbatch − T(indB(k))] − FB = total integrated
value of f (X(s)) inside batch k.

– Y k = FB
A (k)/tbatch = kth batch-mean.

– FB ← FB + FB
A (k) (update integral to end of

previous batch).
• s2

Nb
= 1

Nb−1
Nb

k=1


Y k − Y

2
= variance between

batches.
• MOE = tquantile ∗


s2
Nb
/Nb = margin of error for confi-

dence interval.
• If MOE ≤ δprecise, then go to (4). Else, tests ← tests + 1

and go back to (2).

(4) Compute LR Weights in each batch.
Initialize W B(θ) = [0, . . . ,0] ∈ R1×Mθ. For k = 1, . . . ,Nb,

• W B
A (k,θ) = W (indB(k),θ)
−b̂(indB(k),θ) · [k · tbatch − T(indB(k))]
−W B(θ).
• W B(θ) ← W B(θ) +W B

A (k,θ).

(5) Compute Sensitivity Estimates for ∇θEπ(θ) { f (X)}:

• Likelihood Ratio

LR =
1

Nb

Nb
k=1

f̂ (indB(k))W B
A (k,θ).

• Centered Likelihood Ratio

CLR = LR

−


1
Nb

Nb
k=1

f̂ (indB(k))

·


1
Nb

Nb
k=1

W B
A (k,θ)


.

• Ergodic Likelihood Ratio

ELR =
1

Nb

Nb
k=1

Y kW B
A (k,θ).

• Centered Ergodic Likelihood Ratio

CELR = ELR −


1
Nb

Nb
k=1

Y k


·


1
Nb

Nb
k=1

W B
A (k,θ)


.

V. SIMULATION RESULTS

Here we present numerical results to display the
performance of the proposed algorithms. In what follows,
we compare the output of an exact simulation at the single
time scale (STS) to the accelerated two time scale (TTS)
approximation. From (11), we expect the differences in
observable averages and their derivatives to be O(ε). Because
differences are small, we use a simple test system for which
many samples can be run to obtain accurate statistics.

Consider a reaction network with species A, B, and C and
isomerization reactions given by

A
k1/ε→ B, B

k2/ε→ A, B
k3→ C.

For small values of ε, the system becomes stiff as the
isomerization between A and B reaches equilibrium much
faster than B is converted to C. A TTS approximation assumes
that A → B and B → A are fast and equilibrated.

We first compare the output of the accelerated TTS
simulation against the exact STS simulation for varying
levels of stiffness ε. For our simulations, initial conditions
of (A0,B0,C0) = (100,0,0) and the parameters (k1, k2, k3)
= (1,1.5,2) are chosen. 10 000 replicate (independent)
trajectories are run for various values of ε. Statistics are
taken at a termination time of t = 0.5 s. Species averages
are calculated as arithmetic averages over the independent
trajectories while sensitivities are computed with the CLR
method shown in (15). The error due to statistical averaging
is estimated using t-test statistics for averages and a
bootstrapping method for sensitivities. Sensitivities with
respect to the “slow” parameter k3 are displayed for each
species. As discussed in previous works,21 sensitivities with
respect to parameters related to fast reactions encounter
significant noise, and thus we omit them in order to clearly
observe the difference between STS and TTS. Figure 5 shows
the disparity between the STS and TTS systems for various
values of ε. Errors are normalized by the TTS value such
that Error = STS−TTS

|TTS| . Indeed, one observes the difference is
proportional to ε, as expected from Corollary 2.4 and (11).

Next, the CLR and CELR methods from
Section III A are tested in performing sensitivity analysis
in a TTS system. The reaction network described in
Section II B is simulated using Algorithm 1. To assess
convergence of the microscale distribution, the batch-means
stopping criterion described in Section IV is used with a
tolerance of δ = 0.05. 1000 replicate trajectories are run to
a time horizon of t f = 100 s. The initial conditions used
are (A0,B0,∗0) = (30,60,10) and the parameters used are
(αε

1 ,α
ε
2 , β1, β2, β3) = (1/ε,1.5/ε,2,1,0.4).
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FIG. 5. Normalized error of the two-time-scale (TTS) (accelerated, approx-
imate) simulation from the exact single-time-scale (STS) simulation. The
plot (a) shows errors in species averages while the plot (b) shows errors in
sensitivities of each species with respect to k3. Points indicate simulation
statistics while dashed lines confirm the linear trend. The error bars are 95%
confidence intervals of statistical noise.

Species populations, time-averaged species populations,
and trajectory derivatives are recorded for each run over time.
Using these recorded statistics, the sensitivities for all 15 (3
species and 5 parameters) species/parameter combinations are
computed at each time point. Figure 6 shows the time evolution
of the normalized errors in sensitivity estimates of the species
B over time. Estimated values from simulation are referenced
to the analytical answer as computed from a differential
algebraic equation (see Appendix B) and normalized by that
amount so that Error = estimated−analytical

|analytical| .

FIG. 6. Time evolution of normalized errors obtained for sensitivities com-
puted by CLR and CELR estimators. Simulation estimates are referenced
and normalized by the analytical solution at each time point to compute
the error. The graphs (a)–(c) show estimates of different sensitivity indices
for the species B. One observes that the variance of the CLR estimates
increases with time, making for inefficient estimation. In contrast, the CELR
estimates (the solid red line) converge quickly to the steady state sensitivities
with variance which is roughly constant with time, allowing for efficient
steady-state sensitivity estimation.

TABLE I. Comparison of the error and statistical noise for the CLR and
CELR estimators at a short time (during the transient regime) and at a long
time (corresponding to steady state). Values in the table refer to the sensitivity
of the species B with respect to the parameter given by the row label. Values
are reported as a percent of the analytically obtained sensitivity value.

Percent error

CLR CELR CLR CELR

t = 1.3 s t = 100 s

α1 −1.4 −40.0 −83.5 0.0
α2 −3.0 −40.3 −63.0 −1.1
β1 0.2 −39.1 −64.1 1.2
β2 −1.1 −16.7 −22.6 −2.8
β3 −1.4 −23.3 20.6 −0.1

Half-length of 95% confidence interval

α1 12 8 99 11
α2 12 7 94 11
β1 12 7 91 11
β2 13 10 108 12
β3 21 14 171 18

As expected, CLR estimates are noisy, with variance
that grows linearly with time. At short times, the variance
is small enough to obtain reasonable estimates. As time
increases, the noise becomes significant with respect to the
actual values (the magnitude of the normalized error becomes
comparable to 1). In contrast, the CELR fails at short times
with a noticeable bias. However, the bias, which exists due
to a relaxation period, decays as O(1/t) when time increases
and the system approaches its steady-state. The variance of
the CELR estimates remains constant because the variance
of trajectory derivatives increases linearly in time while the
variance of ergodic species averages is proportional to 1/t.
At long times (where the CLR is too noisy for efficient
estimation), the ergodic likelihood ratio obtains accurate
estimates with very low variance. Therefore, it is advisable to
use the CLR method for short times (in the transient regime)
and the CELR method for long times to obtain steady state
values.

Table I shows the error and statistical noise of the CLR
and CELR estimations of sensitivities of the species B at
short (t = 1.3 s) and long (t = 100 s) times. Statistical noise
is obtained from bootstrapping the samples used to compute
the sensitivity estimates. At t = 1.3, the CLR method has low
error (theoretically, there is no bias) as well as low variance.
The CELR estimator has a similarly low variance, but high
error (due to the O(1/t) bias). At t = 100 s, the CLR estimates
have much higher variance which induces large empirical
error. In contrast, the bias of the CELR estimate decreases
in time while the variance remains low, providing very small
empirical errors at large times.

VI. CONCLUSIONS

This work develops a TTS framework for multiscale reac-
tion networks. By decomposing the system into “fast-classes,”
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one can approximate the behavior of the multiscale system by
a lower-dimensional, single-scale, “macro-averaged” reaction
network. By applying a singular perturbation expansion of
the underlying probability measures, we have established
rigorous bounds on the bias induced by the approximate
macro-averaged model. We then proposed a TTS algorithm
for simulating the macro reaction network, using an adaptive
batch-means stopping rule for determining when the micro-
scale dynamics have sufficiently equilibrated.

In addition, we have shown that the sensitivities of the
macro-averaged system provide accurate approximations for
the multiscale system. Since the macro-averaged system
is single-scale, it is possible to incorporate most existing
sensitivity estimation methods to the TTS algorithm to obtain
estimates of the system sensitivities. We demonstrated the
efficiency of a CELR estimator for steady-state sensitivity
analysis, and detailed how it can be adapted to the two-time-
scale algorithm. Simulations were then used to confirm the
analytic error bounds and demonstrate the efficiency of the
TTS ergodic likelihood ratio estimator.
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APPENDIX A: PROOFS OF RESULTS

In this section we outline the proofs on the error bounds
of the averaged reaction network and convergence of the
sensitivities. The error bounds in this work are largely direct
applications of the results in Ref. 20 to the two-time-scale
reaction networks formulated here. We present an overview
of the proofs for insight and completeness. Similarly, the
sensitivity convergence result comes from Ref. 14; we shall
only show how to fit their result to the two-time-scale
framework.

1. Proof of Theorem 2.3

Using the formulation of the exact generator Qε(θ)
= (1/ε)Q(α) + Q(β), the error bound on the induced
probability measures of the exact and averaged systems is
a direct application of Theorem 4.29 of Ref. 20. We outline
the main steps below.

Write pε(t) ∈ R1×m for the probability measure of the
exact system at time t. From the Kolmogorov forward equation
(a.k.a. chemical master equation), we have

dpε(t)
dt

= pε(t)


1
ε
Q(α) + Q(β)


. (A1)

Define the differential operator Lε on functions with values in
R1×m by Lε f = ε df

dt
− f (Q + εQ). Then Lε f = 0 if and only

if f solves CME (A1). The form of differential equation (A1)
suggests the plausibility of a singular perturbation expansion

of pε(t) by

pε(t) =
∞
i=0

εiφi(t) +
∞
i=0

εiψi

( t
ε

)
. (A2)

Assuming for the moment that such a representation holds,
we proceed to derive the form of the “regular” terms φi(t) and
the “boundary layer” terms ψi(t). Applying Lε to (A2) and
equating terms of ε leads to the recursive equations

ε0 : φ0(t)Q = 0

ε1 : φ1(t)Q = dφ0(t)
dt

− φ0(t)Q
...

εi : φi(t)Q = dφi−1(t)
dt

− φi−1(t)Q

(A3)

and similarly, using the “stretched-time” variable τ = t/ε one
has equations for ψ(τ),

ε0 :
dψ0(τ)

dτ
= ψ0(τ)Q

ε1 :
dψ1(τ)

dτ
= ψ1(τ)Q − ψ0(τ)Q

...

εi :
dψi(τ)

dτ
= ψi(τ)Q − ψi−1(τ)Q.

(A4)

At t = 0,
∞
i=0

εi (φi(0) + ψi(0)) = pε(0), (A5)

so φ0(0) + ψ0(0) = pε(0) and φi(0) + ψi(0) = 0 for all i ≥ 1.
Since pε(t) is a probability measure with pε(t) · 1 = 1, by
sending ε → 0 in (A2) it follows that

φ0(t) · 1 = 1 and φi(t) · 1 = 0 (A6)

for all t ∈ [0,T] and all i ≥ 1.
Turning to the leading regular term φ0(t), we note

that φ0(t) · Q = 0 is not uniquely solvable because Q
= diag[Q(1), . . . , Q(NC)] has rank m − NC. However, writing
φ
(k)
0 (t) for the sub-vector of φ0(t) corresponding to fast-class
Mk, then we must have φ(k)0 (t) · Q(k) = 0 for all k = 1, . . . ,NC.
Since each Q(k) is an irreducible generator, we then have
φ
(k)
0 (t) = γ(k)(t)π(k) for some scalar multiplier γ(k)(t). It can

be seen (Proposition 4.2420) that γ(k)(t) = pk(t), where p(t)
is the probability measure among fast-classes M1, . . . ,MNC

induced by generator Q (as in (5)) and initial distribution
pε(0) ·1 = P {Xε(0) ∈ Mk}. This in turn determines a unique
solution for φ(k)0 (t) and therefore φ0(t). It follows that φ0(t) is
exactly the measure p0

t in Theorem 2.3 induced by the TTS
simulation procedure.

With φ0(t) determined, (A5) then gives the initial condi-
tion ψ0(0) = pε(0) − φ0(0) = pε(0)[Im −1π], from which one
can solve (A4) to obtain ψ0(τ) = ψ0(0) · exp

Qτ

. It can be

shown (Proposition 4.2520) that

∥ψ0(τ)∥ ≤ C exp {−κτ} , (A7)

where C depends on the Jordan-form of Q. Higher order terms
can also be solved for recursively (Proposition 4.2620), and it
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can be shown (Proposition 4.2820)

sup
0≤t≤T

∥
n
i=0

εiφi(t) +
n
i=0

εiψi(t/ε) − pε(t)∥ = O(εn+1). (A8)

In particular, using the 0th-order expansion we have

∥p0
T − pε

T ∥ = ∥φ0(T) − pε(T)∥
≤ ∥φ0(T) + ψ0(T/ε) − pε(T)∥ + ∥ψ0(T/ε)∥
≤ ∥O(ε) +O(exp−κT/ε)∥. (A9)

�

2. Proof of Corollary 2.4

With singular perturbation bound (A8), Corollary 2.4
follows immediately. Since the exact process Xε(t) is ergodic,
there exists a time horizon Tε such that ∥pε(t) − πε∥
≤ ε for t ≥ Tε. Similarly, by (A7) there exists T such
that ∥ψ0(t)∥ ≤ ε for t ≥ T , and ∥p(t) − π∥ ≤ ε for t ≥ T ,
implying that ∥φ0(t) − ππ∥ = ∥p(t)π − ππ∥ ≤ ε. Then taking
T ≥ max{Tε,T ,T̄} and applying (A8), we have

∥pε(t) − ππ∥ ≤ ∥pε(t) − φ(t) − ψ(t/ε)∥
+ ∥φ(t) − ππ∥ + ∥ψ(t/ε)∥
≤ O (ε + exp {−κt/ε})

∥πε − ππ∥ ≤ ∥πε − pε(T)∥ + ∥pε(T) − ππ∥ ≤ O(ε)
and the corollary follows. �

3. Proof of Proposition 3.1

Proposition 3.1 is simply the application of Theorem 3.2
of Ref. 14 to the TTS framework. The method and framework
for separating time scales in Ref. 14 is slightly different
from the TTS framework used here, but it can be seen that
the two are equivalent. Here, we briefly review the multiscale
framework of Ref. 14 and show how one can translate between
their “remainder spaces” and the TTS “fast-classes.”

a. Scaling rates and remainder spaces

As in Refs. 13 and 18, Ref. 14 considers reaction rates
of the form aN

k
(x, θ) = N ρkλk(x, θ) which scale with the

“system size” or “normalization parameter” N ≫ 0, where
ρk is the scaling rate for the kth reaction channel. For a
given normalizing parameter N , the corresponding system is
denoted by XN(t). One analyzes the system against a reference
time scale γ by XN

γ (t) = XN(tNγ). For a given normalizing
parameter N0 ≫ 0, the corresponding system is denoted by
XN0(t). One analyzes the system against a reference time scale
γ by XN

γ (t) = XN(tNγ).
The scaling rates ρk determine the time scales at which

the reaction channels fire. For a system with a single level
of stiffness, there are only two scaling rates, ρfast > ρslow,
which partition the reaction channels as either fast or slow.
Write Γ1 = {k : ρk = ρ f ast} for the fast reaction index set,
and similarly Γ2 for the slow reaction index set.

Take S2 = {v ∈ Rd
+ : ⟨v, ζk⟩ = 0 for all k ∈ Γ1} so

that ⟨XN
γ (t), v⟩ is unchanged by fast reactions. Then take

L2 = span(S2) and Π2 to be the projection map from Rd to L2,
so that Π2ζk = 0 for all k ∈ Γ1.

LetL1 = span{(I − Π2)x : x ∈ M}, and for any v ∈ Π2M
letHv = {y ∈ L1 : y = (I − Π2)x,Π2x = v, x ∈ M}, the set of
remainders of elements inM which get projected to v . Then
we can define an operator Cv by

Cv f (z) =

k ∈Γ1

λk(v + z, θ)[ f (z + ζk) − f (z)]

which is a generator of a Markov chain with state space Hv

(note that y ∈ Hv =⇒ y + ζk ∈ Hv for all k ∈ Γ1).
Assuming Hv under Cv is ergodic, there is a stationary

distribution πv. Then for each slow reaction k ∈ Γ2
one can define the “averaged” propensities λ̂k(v, θ) =


Hv

λk(v + z, θ)πv(dz) for all v ∈ Π2M. Using the random time
change representation, define the Markov chain on Π2M by

X̂θ(t) = Π2x0 +

k ∈Γ2

Yk

( t

0
λ̂k(X̂(s), θ)ds

)
Π2ζk . (A10)

Taking γ2 = −ρslow as the slow time scale, one has
Π2XN

γ2,θ
⇒ X̂θ as N → ∞13 under more general conditions

than Assumptions 2.1, 2.2. Under this context, Theorem 3.2
of Ref. 14 states that

lim
N→∞

∂

∂θ
E


f (XN
γ2,θ

(t)) = ∂

∂θ
E
�

fθ(X̂θ(t))	 , (A11)

where fθ(v) =

Hv

f (v + y)πvθ(dy).

b. Equivalence of fast-classes and remainder spaces

Here we show how the TTS framework is equivalent to
the scaling rate framework. Consider a TTS reaction network
as described by (3). Taking N = 1/ε, ρ f ast = 1, ρslow = 0, it
is easy to see that

XN
0,θ(t) = XN

θ (t) D= Xε(t)
so limN→∞ XN

0,θ(t) = limε→0 Xε(t). It remains to identify
fθ
�
X̂θ(t)� from (A10), (A11) with f

(
X(t)) from (8). We

do so by showing the equivalence of the fast-classesMl and
the remainder spaces Hv.

Lemma 1.1. The projection map Π2 is invariant on fast-
classes Ml. The set of remainder spaces {Hv : v ∈ Π2M}
is in one-to-one correspondence with the set of fast-classes
{Ml}. Additionally, each x ∈ Ml corresponds to a unique
element y ∈ Hv for some v ∈ Π2M.

Proof. Define η : {Ml} → {Hv : v ∈ Π2M} by

η(Ml) = HΠ2(x) for any x ∈ Ml .

Then η is well-defined, since x, y ∈ Ml implies that y
= x +


k ∈Γ1 ckζk for some ck ∈ N, and Π2(ζk) = 0 for all

k ∈ Γ1 gives Π2(y) = Π2(x). Clearly, η is also onto.
It remains to establish η is injective. It is sufficient to show

that if Π2(x) = v and Π2(x ′) = v for x, x ′ ∈ M, then x and x ′

belong to the same fast-classMl. Since Π2 projects onto the
span of the complement of span {ζk : k ∈ Γ1}, we have v − x
=


k ∈Γ1 ckζk and v − x ′ =


k ∈Γ1 c′

k
ζk for some ck,c′k ∈ R.
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Then x ′ = x +


k ∈Γ1(ck − c′
k
)ζk, with x ′, x, ζk ∈ Nd, so it

follows that (ck − c′
k
) ∈ N for all k. Hence x and x ′

communicate by fast reactions and thus belong to the same
fast-classMl. Therefore, Π2 is invariant on fast-classes and η
is injective.

Finally, since Π2(·) is invariant on fast-classes Ml, it
follows that x → x − Π2(x) bijectively maps elements of
∪lMl to elements of ∪v∈Π2(M)Hv such that x, x ′ ∈ Ml implies
(x − Π2(x)), (x ′ − Π2(x ′)) ∈ HΠ2(Ml). �

Because of the direct correspondence between
{Π2(x) : x ∈ M} and {Ml}, we see (upon reordering states)
that for v = Π2(Ml), we have πvθ = π(l)θ , so that λ̂k(v, θ)
= λk(Ml, θ), and fθ(v) = f (Ml, θ). Thus, fθ

�
X̂(t)� has the

same distribution as f (Ml, θ) and so ∂
∂θ
E
�

fθ
�
X̂θ(t)�	

= ∂
∂θ
E


f
(
Xθ(t)

)
. Therefore, using (A11) we have

lim
ε→0

∂θE { f (Xε(t))} = lim
N→∞

∂θE


f
(
XN

0,θ(t)
)

= ∂θE
�

fθ
�
X̂θ(t)�	 = ∂θE


f
(
X(t))

(A12)

and hence Proposition 3.1.

4. Proof of Lemma 3.2

This proof of pseudo-inverse sensitivity representation
(21) for continuous-time chains is adapted from an analogous
result for discrete-time chains in Ref. 48.

Recall that for an ergodic CTMC with generator Q(θ),
one can compute the steady-state probability vector π(θ)
by solving the linear system π · Q = 0 and π · 1 = 1. By
differentiating π(θ) · Q(θ) = 0, we have the relation

∂π

∂θ
Q = −π ∂Q

∂θ
.

Then by expanding with the Moore-Penrose pseudo-inverse,
we have (

∂π

∂θ

) ′
= (Q)′

(
−∂Q
∂θ

) ′
π′ +

�
I − (Q′)+Q′� w

for some vector w.
Now, we see by the projection property of (Q′)+Q′

= (QQ+)′ = QQ+ that the operator I −QQ+ is the projection
operator onto the kernel of Q′ = span of π′, so that
(I −QQ+)w = γπ′ for some scalar γ. Thus we have the
relation

∂π

∂θ
= π

(
−∂Q
∂θ

)
Q+ + γπ

for some γ ∈ R. It remains to determine γ to have a method
of relating the sensitivity coefficient to a linear transformation
of π.

Now, we can see that π(θ) · 1 = 1, so that ∂π
∂θ
· 1 = 0.

Thus, we have

0 =
∂π

∂θ
· 1 = π

(
−∂Q
∂θ

)
Q+1 + γπ1

so that

γ = γπ1 = π
∂Q
∂θ

Q+1.

Putting the above together, we can write ∂π
∂θ

as

∂π

∂θ
= π

(
∂Q
∂θ

)
Q+ [1π − I]

as in (21).

APPENDIX B: ANALYTIC SOLUTION
OF THE MODEL SYSTEM

In a well-mixed system with linear propensities, the
time-evolution of the system can be obtained from a set
of ordinary differential equations (ODE). The STS system
can be modeled with a system of ODEs. The TTS system
imposes algebraic constraints for the fast modes, resulting in
an algebraic differential system of equations. In both cases,
a set of adjoint ODEs can be used to compute sensitivities
alongside species populations.

In our model system, gaseous species A adsorbs onto a
catalyst surface, isomerizes to species B, and then desorbs. A
diagram of the reaction network is shown in Figure 7. The
reactions along with their rate laws are shown in Table II.
NA, NB, and N∗ denote the surface coverages of species A,
B, and empty sites, respectively. The adsorption/desorption of
species A is assumed to be much faster than the others. The
separation of time scales is captured with the dimensionless
parameter ε ≪ 1. The system contains M = 3 species and
R = 6 reactions. Mathematically, we use the M × 1 column
vector N to specify the species populations, where N1 = NA,
N2 = NB, and N3 = N∗.

The linear dependence of the reaction rates is written as

r(N) =



ε−1α1N3

ε−1α2N1

β1N1

β2N2

β3N2



. (B1)

FIG. 7. Visual diagram of reaction network.

TABLE II. Reactions for the benchmark network.

Index Reaction Rate

1 ∗→ A ε−1α1N∗
2 A→ ∗ ε−1α2NA

3 A→ B β1NA

4 B→ A β2NB

5 B→ ∗ β3NB
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FIG. 8. Network results for the two time-scale system. Graphs show pop-
ulation counts (top left), derivatives of species A (top right), derivatives of
species B (bottom left), and derivatives of empty sites (bottom right).

Each row of the stoichiometric matrix corresponds to
a different species, which are N1, N2, and N3, respectively.
The columns correspond to each of reactions 1-5 in order.
Extracting the information from Table II and putting it in
mathematical form gives the M × R stoichiometric matrix

S =



1 −1 −1 1 0
0 0 1 −1 1
−1 1 0 0 −1



. (B2)

The transformation matrix

T =



1 0 0
0 1 0
1 1 1



(B3)

yields y = T · N and T can be decomposed into Tf

=
�
1 0 0

�
and Ts =

1 1 0
0 0 1


for the slow modes by

looking at the 0 rows of S′f . This gives us the transformed

variables as yf =
�
N1
�

and ys =


N2
N1 + N2 + N3


.

TABLE III. Comparison of the CLR and CELR estimators with the ODE
solution. Values show actual values rather than errors. Values in the table
refer to the sensitivity of the species B with respect to the parameter given by
the row label. 95% confidence intervals are based on statistical noise.

t = 1.3 s

ODE CLR CELR

α1 11.9 11.8 ± 1.5 7.2 ± 0.9
α2 −7.9 −7.7 ± 1.0 −4.7 ± 0.6
β1 9.9 10.0 ± 1.2 6.0 ± 0.8
β2 −17.4 −17.2 ± 2.4 −14.5 ± 1.7
β3 −17.4 −17.1 ± 3.4 −13.3 ± 2.4

t = 100 s

ODE CLR CELR

α1 13.9 2.3 ± 13.7 13.9 ± 1.4
α2 −9.3 −3.4 ± 8.9 −9.2 ± 1.0
β1 11.6 4.1 ± 10.6 11.7 ± 1.2
β2 −16.5 −12.8 ± 18.1 −16.1 ± 2.0
β3 −16.5 −19.9 ± 29.0 −16.5 ± 3.2

In the context of our example problem, we can assign
physical meaning to the transformation: The variable y1 = NA

is affected by both slow and fast reactions. For a given
set of slow variables, we can solve for y1 to specify the
equilibrium constraint of r1 = r2. The variable y2 = NB is
unaffected by the fast adsorption/desorption of A, but is
affected by the slow reactions. Finally, the variable y3
= NA + NB + N∗ is a second “slow” variable. In this example
y3 = 1 applies at all times due to stoichiometric constraints.
However, it is still identified as a “slow mode” because this
constraint is not a consequence of disparities in reaction time
scales.

The system is simulated with the choice of parameters

N0 =


30
60
10


, α1 = 1, α2 = 1.5, β1 = 2, β2 = 1, β3 = 0.4, ε

= 0.01. The simulation results are shown in Figure 8. Table III
shows values at t = 1.3 s and t = 100 s along with CLR
and CELR estimates with statistical confidence intervals.
Derivatives with respect to β2 and β3 overlap because both
affect system properties through the independent parameter
β2 + β3.

In general, the system parameters need not be the rate
constants themselves. A different parameterization would
involve a transformation of the rate constants. Sensitivities
could be obtained through a chain rule.
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