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Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified
manner. Similarities and differences between the methods and choices made in designing the methods
are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and
methods where it is performed in a continuous space are considered. It is pointed out that the usual
prescription for importance sampling may not be advantageous depending on the particular quantum
Monte Carlo method used and the observables of interest, so alternate prescriptions are presented.
The nature of the sign problem is discussed for various versions of PMC methods. A prescription
for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar
approximation and does not have a finite basis error, is presented. This method is likely to be practical
for systems with a small number of electrons. Approximate PMC methods that are applicable to larger
systems and go beyond the fixed-node approximation are also discussed. © 2015 AIP Publishing
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. INTRODUCTION

Quantum Monte Carlo (QMC) methods!~’ are accurate
and versatile methods for treating quantum many-body sys-
tems. The two most commonly used classes of QMC methods
used for pure-state systems are the variational Monte Carlo
(VMC) method and various projector Monte Carlo (PMC)
methods.

PMC methods are stochastic implementations of the po-
wer method for determining expectation values of operators
for the dominant eigenstate (the one with the largest absolute
eigenvalue) of a matrix or integral kernel. They are useful
when the Hilbert space is so large (typically >10'0 states)
that it is impractical to store a single vector of the size of the
Hilbert space, leave alone a matrix. In fact, they can be used
even for infinite continuous Hilbert spaces and for a space
that has both continuous and discrete degrees of freedom,
e.g., space and spin or isospin. In the interest of brevity, we will
use notation appropriate for discrete spaces (sums, matrices,
etc.) interchangeably with notation appropriate for continuous
spaces (integrals, integral kernels, etc.). If it is feasible to store
a vector, then deterministic iterative diagonalization methods,
such as the Lanczos method, are usually preferable since they
do not have a statistical error. PMC methods get around the
memory restriction by storing at any instant in time only a
random sample of the vector elements and computing expec-
tation values as a time average. The members of these samples
are referred to as walkers.

In the context of QMC methods, a method is said to be
exact if it has a statistical error (which goes down as the inverse
square root of the computer time provided that the conditions
for the central limit theorem are satisfied), but no systematic
bias. PMC methods suffer from a sign problem except in some
special situations. Consequently, they frequently employ an
approximation, e.g., the fixed-node (FN) approximation®® or
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in the case of complex wavefunctions, the fixed-phase approx-
imation.'® Although PMC methods do not require good trial
wavefunctions, the systematic bias from such approximations
is much reduced when optimized trial wavefunctions are used.
Expectation values have no bias in the limit that the trial wave-
function is exact, and further, expectation values of operators
that commute with the Hamiltonian have no statistical error
either in this limit.

The VMC method is used to find expectation values of
operators for a given trial wavefunction and to optimize''~!” the
parameters in the trial wavefunction. Since the accuracy and
efficiency of approximate PMC methods also depend crucially
on the trial wavefunction, it is normal procedure to first use
VMC to optimize the trial wavefunction prior to doing the
PMC calculation.

The outline of this paper is as follows. In Sec. II, the
notation is introduced and the VMC method and various PMC
methods are presented in a unified way. In Sec. III, the way
that the sign problem manifests itself in the various methods
is discussed and the pros and cons of various choices that are
made in designing the algorithms are discussed. In Sec. IV, a
continuous real-space algorithm is proposed for calculating the
exact energy for small fermionic systems. In Sec. V, approx-
imate algorithms that go beyond the fixed-node approxima-
tion and are applicable to larger systems are discussed. The
Appendix has a discussion of optimal importance sampling
and near optimal functions that can be efficient in practice. It
also presents an efficient method for sampling the product of
the fixed-node wavefunction and a nodeless guiding function,
which can useful for reducing the statistical error of various
expectation values.

Il. FORMALISM

Consider a basis {¢;} which may be complete or incom-
plete and continuous or discrete. Three functions are of inter-
est, the exact wavefunction |Wy), the trial wavefunction, |¥r),

©2015 AIP Publishing LLC
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and the guiding function, |¥g). (If the basis is incomplete then
“exact” will be used to mean “‘exact in that basis.”) Each of
these functions can be expanded in this basis,

exact wavefunction:

|Wo) = Z eilgs), e =(g:l¥o), (1)

¥1) = Zr|¢>

W) = Z gl g = (9il%c).

=(¢il¥r), (2

trial wavefunction:
guiding function:

The trial wavefunction, |¥1), and the guiding function,
|Wg), are usually chosen to be the same function, but they
play different roles and in many circumstances, large gains
can be achieved by choosing them to be different. Wt is used
to calculate variational and mixed estimators of operators A,
ie., <‘PT|A|\PT>/ <\PT|\IJT> and <\PT|AA|‘IJO>/A<\PT|\PO>. As such, the
requirements on |Wr) are that A(i) = % can be computed
quickly, typically in time of O(N?) or better, where N is the
number of particles, and that the local energy E; (i) = %
fluctuates as little as possible. l

Y instead is used to choose the probability density that
is sampled, i.e., ‘I’é in VMC and Y%, or YgW¥gy in PMC.
Consequently, Wg must be such that g; # 0 if ¢; # 0. If Y1
also satisfies this condition, then Wg can be chosen to be Wr.
Reasons to have ¥ # W1 are (a) to allow Wt to be sparse,
which may be necessary to enable rapid evaluation of the
local energy, and (b) to reduce the variance of estimators of
expectation values, in particular to have finite-variance rather
than infinite-variance estimators for certain expectation values.

A. Variational Monte Carlo

The variational energy is

(Pl Apwn)y i (Palo0) (il H9)) (61 ¥)
VUMWY N Wlg) (i)
t2 2 Hl ti

ZNstt H”ZI ) vast 1282t—i“
Sy s g2lt
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B ZNst 2 z

2 2
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where Ny is the number of states (possibly infinite) in the
Hilbert space and the local energy, Ey (i), at state i is defined as

N Ny
gy = (PN _ 2 Hift )
L = = .
(¢il'¥r) £
The notation in the last line of Eq. (4) indicates that the Nyic
Monte Carlo points are sampled from the distribution ‘}’é (usu-
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ally using the Metropolis-Hastings algorithm!'®!%). The value
of Ey depends only on Wr, but the statistical error depends
on W1 and . Since E| (i) — Ej in the limit that Y1 — ¥,
the bias and statistical error of the energy estimator vanish as
Y1 — Y. For fixed Y, the usual choice, ¥ = W, eliminates
the fluctuations in the denominator but does not minimize the
fluctuations of the energy. In fact for some expectation values
of interest, e.g., the derivative of the energy with respect to a
variational parameter, the choice Wg = Wt yields an infinite-
variance estimator, whereas a more intelligent choice for ¥g
yields a finite-variance estimator. Various choices for Y are
discussed in the Appendix. The choice W5 = W1 does have the
advantage that the quantum mechanical expectation value, Ey,
becomes a single MC expectation value, rather than a ratio of
MC expectation values. Since ratios of expectation values are
not expectation values of ratios, the choice Yg = Wt results in
simpler expressions for unbiased quantum mechanical expec-
tation values.

B. Projector Monte Carlo

Projector Monte Carlo methods, in common with the
coupled cluster method, take advantage of the fact that the
exact energy can be written as the mixed expectation value,

. (WolA1¥r) _ S (Pol i) (il H ;) (61%¥r)
(¥ol¥r) ZfVSl<‘I’o|¢'><¢'|‘PT>
ZNSte Hjt Z;VSI tgt Z :Ul}
) Y\ eit; ) ZNSle gz
~ Z,NSteigiﬁEL(i)
] [ZNMICV’—",EL(i)]q,G% _ (gE.L(i))q,Gq,o. o
12 ]y (& e,

If no approximations are made, the PMC energy is exact (it
has no bias), independent of Wt and g, but the statistical error
depends on Wt and ¥g. In FN-PMC, ¥ is usually chosen to
be Wt and the statistical error depends on ¥r. In a discrete
space, the bias depends on Y1 whereas in a continuous space,
it depends only on the nodes of 1. As in the case of VMC,
the statistical error and bias of the energy vanish as Y1 — Yy,
since Ey (i) = Ey, independent of i.

1. Projectors

In VMC, the quantities appearing in the expectation values
are explicitly known and so the distribution we choose to
sample is also known and can be sampled using the Metropolis-
Hastings algorithm.'®!° In PMC, the quantities appearing in
the expectation values involve the exact wavefunction, Py,
or the fixed-node wavefunction, Wgy, which are unknown.
However, they can be sampled by repeated application of a
projector. A projector, P(t), is any function of the Hamiltonian
that has one eigenvalue equal to one, and all other eigen-
values of absolute magnitude smaller than one. Examples of
projectors are the exponential projector, P(7) = " E11-H) 3ls0
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known as the imaginary-time propagator, the linear projector,
i+7(Erl-H), and m I use the word “p{ojector”
rather loosely, since a large number of applications of P(7) onto
an arbitrary state are required to project it onto the ground state
|'o). Although there is no upper limit to 7 for the exponential
projector, in practice, rather small values of 7 are used because
known explicit expressions for it in the chosen basis become
exact only in the 7 — 0 limit. For the linear projector, there is a
strict upper limit, 7 < (Epax — Emin)/2; else, the dominant state
of P is the highest state of A rather than the desired ground
state of H. Hence, it can be used only for Hamiltonians with
bounded spectra.

2. Taxonomy of PMC methods

There exist several PMC methods that differ in many
details, but they can be classified according to three important
characteristics.

1. The form of the projector, (7). The most common choices
are the exponential projector, also known as the imaginary-
time propagator, P(t) = exp(t(Er — H)), and the linear
projector, 1 + 7(Ey — H).

2. The choice of basis states, i.e., the space in which the MC
walk is performed. Two examples are (a) real space, i.e., the
states are specified by the positions of the N particles or
(b) orbital occupation space, i.e., the states are specified by
which orbitals are occupied.

3. Whether permutation symmetry is applied to the states or
not, i.e., whether states that are related by permutation
symmetry are considered to be the same state or different
states. We will refer to unsymmetrized basis states as
Ist-quantized states and symmetrized basis states as 2nd-
quantized states.

Table I describes some commonly used PMC methods.
For example, the diffusion Monte Carlo (DMC) method®20-23
uses P = " Er1-H) and 1st-quantized walkers in the space
of electron coordinates, whereas the full configuration inter-
action quantum Monte Carlo (FCIQMC) method?*?> and its
semistochastic extension, the S-FCIQMC method?® use P
=1+ 7(Er1 - A) and 2nd-quantized walkers in the occupa-
tion number space of orthogonal orbitals.

3. Importance sampled projectors

The projector provides the way to sample the exact ground
state wavefunction, ¥y, with components e;. In MC methods,
when calculating expectation values, we can always factor
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the integrand into a probability distribution and the remaining
factor, which is the quantity that is averaged during the MC run.
A good choice for the probability distribution can significantly
reduce the statistical error of the MC estimate; this process is
called importance sampling.

In the context of PMC, importance sampling is done by
similarity transforming the projector,?’ with a diagonal matrix
whose diagonal components are the components of the guiding
function, Wg. So, the importance-sampled projector P has
components,

5 _ &P

Pij=——. (7
8ij

:E:1¥j€i=:eu
7

it can readily be verified that P has a dominant eigenstate with
eigenvalue 1 and elements g;e;,

5 iPij
Z Pij(gje;) = Z (gg_j) (gje;) = giei.
J

j J

Now, since

®)

©))

Hence, repeated application of P results in sampling p
= Ys%o.

The efficiency of the algorithm depends not only on the
projector but also on how it is sampled. For any given projector,
it is always possible to sample it by first sampling from an
arbitrary probability density and then reweighting the sampled
point by the ratio of the projector to the sampled probability
density at that point. Small weight fluctuations make for higher
efficiency. In the ideal case, the probability density is propor-
tional to the projector so that the reweighting factor becomes
i Pi ;7 which is independent of the sampled point, i. This is
called “heat-bath sampling.”

Note that in the limit that ¥g — ¥,

ZE;':L

so P; i becomes a column-stochastic matrix. Hence, in this limit
if heat-bath sampling is used, the weights do not fluctuate at all.

Since QMC methods usually suffer from a sign problem,
most QMC calculations make an approximation, e.g., the
fixed-node approximation®” in DMC and the phaseless approx-
imation®® in AFQMC. In the fixed-node approximation, the
projection is done subject to the constraint that the projected
state has the same nodes as Wr. It is common practice in
FN calculations to choose Wg = ¥r. In calculations that go

(10)

TABLE I. Classification of some commonly used PMC methods by the form of the projector, the basis used,
and its quantization. The annotation, “samp. 7,” indicates that the value of 7 is not fixed but is sampled from a

probability density.

Method Projector 1-particle basis Quantization
DMC eT(Eri-1) r Ist
GFMC (Refs. 27 and 28) eTETI-H) (qamp. 1) r Ist
LRDMC (Ref. 29) i+7(E71-H) T Ist
S-FCIQMC i+7(Er1-H) P 2nd
Phaseless AFQMC (Ref. 30) eT(Eri-H) ¢'f°mnh0g 2nd

i




164105-4 C. J. Umrigar

beyond the fixed-node approximation, e.g., release-node calcu-
lations,?'3132 wherein the fixed-node constraint is released for
a certain number of MC generations, it is common practice to
use a nodeless g (see, e.g., Eq. (23)) that approximates |y
far from the nodes of Wt and is rounded off near the nodes
of Wr. However, this linkage — using Wg = ¥ for FN calcu-
lations and using a nodeless W for methods that go beyond
the FN approximation — is not required. In Section IV, we
propose an exact DMC method that can use either a nodeless
Yg, or g = V1. In the Appendix, we show that it is possible
to do FN calculations by fixing the nodes with Wt but using
a nodeless W for importance sampling. This has the benefit
of reducing the statistical error of some expectation values;
in particular, the variance of some estimators is altered from
being infinite to being finite.

4. Growth estimator for the energy

The energy expression in Eq. (6) is called the “mixed en-
ergy” estimator since it is obtained from the mixed expectation
value of H between (¥,| and |Wr). Since P is a function of
H, the energy can also be obtained from computing a mixed
expectation value of P between (¥y| and |¥), and then deduc-
ing the lowest eigenvalue of A from the largest eigenvalue
of P. This is the “growth” estimator. Of course, both of these
estimators give the exact energy if no approximations such as
the fixed-node approximation are made. If W = W1, then not
only are the expectation values of Enix and Eg, close, but even
the finite sample errors of Enx and E, are close, since their
difference comes only from the nonlinearity of P as a function
of A. Hence, e.g., in DMC, where it is normal practice to use
Wg = W1, Enix and Ey have nearly the same statistical error
and Enix — Ey is much smaller than either statistical error pro-
vided that no unnecessary weight fluctuations are introduced,
i.e., provided that the split-join algorithm?? or the stochastic
reconfiguration algorithm,*34 rather than the integerization
algorithm, is used to control the spread of walker weights. On
the other hand, in the S-FCIQMC methods, Wg =1 is used
and the growth and mixed estimators can have very different
statistical errors.

C. Practicality of QMC methods

In order for VMC and PMC to be practical for reasonably
large systems, it is essential that the cost of each of the follow-
ing steps:

1. proposing the MC move,
2. computing g; and ¢;,
3. computing Ej (i),

scale as a low-order polynomial in N. In the case of discrete-
space QMC methods, the last requirement is satisfied usually
by choosing a basis in which the Hamiltonian is sparse. In
addition, Wr is also sometimes chosen to be sparse. In the
case of continuous real-space QMC methods, it is automat-
ically satisfied since the potential energy is usually local in
that basis unless nonlocal pseudopotentials are used, and the
kinetic energy is obtained by taking the Laplacian of the
trial wavefunction. In addition, in most cases, only approx-
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imate PMC calculations are practical because of the sign
problem.

lll. SIGN PROBLEM

PMC methods can suffer from a sign problem. Except for
a few special situations, e.g., 1-dimensional problems in real
space, fermionic systems almost always have a sign problem.
In all PMC methods, the sign problem occurs because an
undesired state grows relative to the state of interest when
the system is evolved by repeated stochastic applications of
the projector. This results in a computational cost that grows
exponentially with system size N. A reasonable definition® is
that there is no sign problem if the computer time required to
compute the value of an observable for an N-particle system
with specified error, €, scales as T oc N%¢2, where 6 is a small
power (say, 6 < 4). (It is assumed that N is increased in some
approximately homogeneous way, e.g., adding more atoms
of the same species.) The details of how the sign problem
manifests itself is different in the various PMC methods, and
we discuss two examples before making some more general
comments on the sign problem.

A. Sign problem in DMC

DMC employs the exponential projector, P(1) = em(Eri-H),
The walk is done in the 1st-quantized space of electron coor-
dinates, i.e., walkers are specified by the 3N coordinates of
the N electrons and walkers that are related by a permutation
of electron coordinates are considered as residing on different
states.

An approximate projector in the real-space basis, usually
referred to as a Green function in the context of DMC, is

G(R',R,7) = (R'|P(7)|R)
, —(RQ’;R)Z . ( Epe ‘V(R’);’V(R) )T

~ TR : (11)

It is nonnegative everywhere, so there is no sign problem if
one were interested in the dominant state of this projector.
However, the dominant state of this projector is the bosonic
ground state whereas the state of interest is the fermionic
ground state. If one started with a positive distribution and a
negative distribution such that their sum is purely fermionic as
illustrated in Fig. 1, and applied the projector deterministically,
both the positive and the negative distributions would tend
to the bosonic ground state, but their sum would yield the
fermionic ground state, though with an amplitude that gets
exponentially small relative to the amplitude of the individual
components with increasing MC time. However, the projec-
tion is done stochastically and the probability of positive and
negative walkers landing on the same state at the same MC
time step and cancelling is very small if the portion of the
state space that contributes significantly to the expectation
values is finite and large, and it is zero if the state space is
continuous (unless the dynamics of the walkers is modified to
force opposite-sign walkers to land on the same spot). Hence,
it is not possible to sum the positive and negative contributions
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Fermi ground state
Bose ground state
(a) Trial state
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Plus walkers
(b) Minus walkers

Plus walkers
Minus walkers
(C) Fermionic state

Plus walkers
Minus walkers
Fermionic state

©)]

Plus walkers
Minus walkers
(d) Fermionic state

Plus walkers
Minus walkers
Fermionic state

®

FIG. 1. Demonstration of the sign problem in DMC. (a) The green curve schematically depicts the bosonic ground state, the red curve the fermionic ground
state, and the blue curve an approximate fermionic wavefunction. (b) The starting positive distribution is shown in red and the starting negative distribution in
green. Their sum is purely fermionic. (c)-(f) The red and the green curves show the evolution of the positive and negative distributions. Their sum, the blue
curve, converges to the fermionic ground state. (f) For a finite population, the walkers are depicted as delta functions and in a continuous space, they never meet
and cancel (unless they are forced to in some way). Consequently, there is an exponentially vanishing “signal to noise” ratio.

to extract the fermionic ground state. This is demonstrated in
Fig. 1. Furthermore, note that the problem cannot be solved by
using an extremely large population of walkers. This enhances
the probability of cancellations, but, because of fluctuations,
eventually only positive or only negative walkers will survive
and so the fermionic state will completely disappear.

B. Sign problem in S-FCIQMC

It may appear from the above discussion that the sign
problem can be solved by performing the MC walk in a 2"-
quantized, i.e., antisymmetrized, basis. Each 2nd-quantized
basis state consists of all the permutations of the corresponding
Ist-quantized basis states. Then, there are no bosonic states
or states of any symmetry other than fermionic, so there is
no possibility of getting noise from non-fermionic states. Of

course, it is well known that this does not solve the sign prob-
lem. The problem is that different paths leading from a state
to another can contribute with opposite sign. If the opposite
sign contributions occur at the same MC step, then the contri-
butions cancel and yield a net contribution of smaller absolute
magnitude, just as they would in a deterministic calculation.
The problem occurs when opposite sign contributions occur at
different MC steps. Further, since ¥ and —¥ are equally good,
they are each sampled with equal probability in the course of
a long MC run.

In a few special situations, the sign problem is absent.
The necessary and sufficient condition for there to be no sign
problem is that all columns (or equivalently rows) of the pro-
jector have the same sign structure aside from an overall sign.
Equivalently, there is no sign problem if it is possible to find a
set of sign changes of the basis functions such that all elements
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of the projector are nonnegative. For example, the projector
with the following sign structure:

+ - + 4+
— + — —

(12)
+ -+ 4+
+ -+ 4+

does not have a sign problem, since changing the sign of the
2nd basis state makes all the elements nonnegative. Note that
it is not necessary to actually make these sign changes — the
projectors before and after the sign changes are equally good.

Although a 2nd-quantized basis does not solve the sign
problem, it is advantageous to use a 2nd-quantized basis when
designing an exact fermionic algorithm. First, an antisym-
metrized basis is a factor of N! smaller, and so, the probability
of opposite sign walkers meeting and cancelling is greater.
Second, since each 2nd-quantized basis state consists of a
linear combination of 1st-quantized basis states, 2nd-quantized
states that are connected by the projector may have multiple
connections for each of the constituent 1st-quantized states.
Hence, there is the possibility of internal cancellations in the
2nd-quantized basis, which reduces the severity of the sign
problem.* Third, since bosonic and other symmetry states are
eliminated, it is clear that one can achieve a stable signal to
noise for any large but finite basis by making the walker popu-
lation very large. The limit of an infinite walker population is
equivalent to doing a deterministic projection, which of course
does not have a sign problem.

Booth, Thom, and Alavi** did just this by inventing highly
efficient algorithms for dealing with a large number of walkers
and demonstrated that a finite signal to noise ratio and therefore
accurate energies can be attained in practice for small mole-
cules in a small basis, using a large but manageable number of
walkers. The MC walk, in their FCIQMC method is done in
an orbital occupation number (or equivalently determinantal)
basis. In a subsequent paper, Cleland, Booth, and Alavi® intro-
duced the initiator approximation which greatly reduces the
walker population needed to achieve a stable signal to noise
ratio. Only states that have more walkers on them than some
threshold value can spawn walkers on states that are not already
occupied. The associated initiator error disappears of course in
the limit of an infinite population. However, it can be of either
sign and it can be nonmonotonic, so extrapolation to the infinite
population limit can be tricky. In subsequent papers, Alavi and
coworkers have improved the efficiency of these calculations®®
and published calculations on various molecules, the homoge-
neous electron gas®’ at small r,, and even solids,*”*® though
in a small basis. The related model space QMC (MSQMC)
method* permits the calculation of quasi-degenerate excited
states. In a recent paper,** the FCIQMC method has been
extended to calculate the reduced 2-body density matrix, which
allows for a variational estimate of the energy and therefore an
easier extrapolation to the infinite population limit.

In many problems of interest, much of the spectral weight
of the ground state is concentrated on a relatively small portion
of the entire Hilbert space. Nevertheless, the rest of Hilbert
space needs to be included in order to get sufficiently accurate
results. The S-FCIQMC method?® takes advantage of this.
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(This method was previously referred to as the semistochastic
quantum Monte Carlo (SQMC) method.?® In this paper, we
call it S-FCIQMC to emphasize that it is an extension of the
FCIQMC method.) The most important states are identified
by an iterative procedure using 2nd-order perturbation theory.
Transitions between these important states are done determin-
istically, whereas the rest of the transitions are done stochasti-
cally. Since deterministic projection has no sign problem and
no statistical error, the severity of the sign problem and the
magnitude of the statistical error are reduced. The S-FCIQMC
method in fact makes two other important modifications to the
FCIQMC method that result in greatly improved efficiency.
First, Wt is chosen to be an optimized linear combination of
basis states (determinants), as opposed to just the Hartree-
Fock state in the original FCIQMC method, and second, the
S-FCIQMC method uses real weights for the walkers, whereas
the original FCIQMC method used integer weights. The deter-
ministic part of the projector and the local energy components
(the numerators and the denominators of Ep ) for all the connec-
tions to Wt are precomputed and stored before the MC run since
these elements are used at every MC step. These modifications
result in efficiency gains of three orders of magnitude®® using
a deterministic space and Wr of around 10* determinants on a
single core. Since both the deterministic space matrix elements
and the connections to Wt can be distributed, much larger deter-
ministic spaces and Wt can be used on large parallel computers.

C. Discussion of sign problem

The nature of the sign problem in the FCIQMC method has
been elucidated in Refs. 35 and 41. We briefly review some of
the points made there and add a few more general observations
since the nature of the sign problem depends on the three
characteristics we used in the taxonomy of PMC methods.

Since the projector and the Hamiltonian are functions of
each other, they share the same eigenstates and statements
relating the dominant state and the dominant fermionic state of
the projector can be turned into equivalent statements relating
the ground state and the fermionic ground state of the Hamil-
tonian.

A lst-quantized basis allows states of various symmetries
and the sign problem occurs because the fermionic ground state
of the Hamiltonian is not the dominant state of the projector.
In real space, the projector has nonnegative off-diagonal ele-
ments, provided the potential is local. So the dominant state
is entirely of one sign and is therefore the physical bosonic
ground state of the Hamiltonian. The severity of the sign prob-
lem is related to the gap between the fermionic and bosonic
ground states. In a discrete basis, one can reduce the severity of
the sign problem by imposing the condition that no more than
one electron can occupy any single particle state since then the
relevant gap is smaller — it is between the fermionic and the
hard-core bosonic ground states.

A 2nd-quantized basis allows only states of the correct
symmetry. Unlike the Ist-quantized case, even in real space
and using a local potential, the projector typically has some
negative off-diagonal elements that cannot be eliminated by
altering the sign of some of the states. The severity of the sign
problem can be characterized by the gap between the dominant
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state of the projector and the dominant state of the projec-
tor with all off-diagonal elements replaced by their absolute
values*' which need not be the physical bosonic state. This
gap is always smaller than or equal to the relevant gap in
the 1st-quantized basis.? If the gap is zero, then there is no
sign problem. This has already been discussed in the case of
FCIQMC in Ref. 41 but is generally true for 2nd-quantized
bases.

MC methods that use an orbital basis, e.g. S-FCIQMC
and AFQMC, have a less severe sign problem than methods
that use a real space basis, e.g. DMC, in the following sense.
For an independent particle Hamiltonian, e.g. Hartree-Fock,
if the MC walk is performed in the space of determinants of
the eigenorbitals of that Hamiltonian, then there is no sign
problem since the projector is diagonal. The sign problem
arises only from the difference of the true Hamiltonian from the
independent particle Hamiltonian. Similarly, in the AFQMC
method,*” the independent particle part of the projector is
treated deterministically and therefore has no sign problem.
The severity of the sign problem depends on the choice of the
orbitals and experience indicates that natural orbitals are often
better than Hartree-Fock orbitals. In contrast, the DMC method
has a sign problem even for independent particle Hamiltonians.

If a linear projector is used, there is little or no internal
cancellation when using a 2nd-quantized basis. For example,
there are no internal cancellations for the Hubbard model both
in real space and in momentum space.>> There is also no
cancellation® for the ab initio Coulombic Hamiltonian in real
space in the LRDMC method.” In contrast, the exponential
projector has considerable internal cancellation for this Hamil-
tonian since all N! permutations contribute to the weight of
the final state, the even permutations with one sign and the
odd permutations with the opposite sign. Even though there
are N! cancelling contributions, at small T there will be little
cancellation because the contribution from the identity permu-
tation will dominate. So, it is important to have a projector
with a small time step error so that a sufficiently large 7
can be used. In addition to internal cancellation, one needs
to have also inter-walker cancellation. This is more effective
if the walkers are concentrated on a small number of states,
so in this respect orbital space is preferable to real space.
The AFQMC method® has both these desirable properties
(exponential projector and 2nd-quantized orbital basis), but an
effective cancellation scheme has yet to be devised. However,
even in the absence of cancellations, accurate calculations for
the Hubbard model and for the Cr, molecule in a finite basis
have been done*>** using “free projection.”

IV. EXACT PMC IN REAL SPACE

An important advantage of real-space PMC methods
(e.g., DMC) compared to orbital-space PMC methods (S-
FCIQMC and CP-AFQMC) is that an infinite continuous basis
is used from the outset and so an extrapolation to infinite
basis size is not required. In the S-FCIQMC approach, the
computational cost to achieve a given statistical error goes up
at least as szas, where Ny, is the size of the single-particle
basis if the MC moves are proposed from an approximately
uniform distribution. Even if the MC moves are proposed using
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an approximate heat-bath algorithm,*** i.e., the probabilities
are roughly proportional to the projector matrix elements, the
cost still goes up with basis size, but much more slowly. Hence,
motivated by the success of the S-FCIQMC approach, it is
reasonable to ask whether an exact PMC algorithm (i.e., one
that does not make a fixed-node approximation) can be devised
in real space. At first sight, it seems much harder to do this
since in a continuous space walkers never land on the same
state by accident and therefore never cancel. However, one can
devise a dynamics that forces two or more walkers to move to
the same state. Kalos and coworkers**>? and Anderson and
coworkers>** have for many years explored such approaches
with only limited success. Accurate potential energy surfaces
for 3- and 4-electron molecules have been computed.’*>* The
new ideas presented in this paper will hopefully lead to more
widely useful algorithms.

The first thing to note is that it is advantageous to work
in a 2nd-quantized rather than a 1st-quantized basis, but hith-
erto, this has not been done in real space. Each 2nd-quantized
walker consists of N! 1st-quantized walkers, i.e., there are 1st-
quantized walkers at every permutation of R = ry,1),...,ry.
When importance sampling is not used the walkers represent
Py so those at even permutations have one weight and those at
odd permutations have minus that weight. When importance
sampling is used, the walkers represent Yg¥y and if ¥g is
an antisymmetric function (e.g., ¥r), all permutations have
the same weight. In either cases all permutations of course
contribute equally to expectation values since the contributions
contain a factor of Wp/%Ws which cancels any possible sign
change in the weights.

Starting from Eq. (11), the projector for the 2nd-quantized
walkers could be obtained by summing the probabilities of
all permutations of initial electron positions to evolve to final
electron positions. This results in a determinantal form for the
projector

g(ri,r) g(ry,r) g(ry,ry)
g(ry,ry)  g(ry,r) g(ri,ry)
GR',R,7) = :
g(ry.r)  g(ry,r) g(ry.ry)
7(V(R/)+(V(R) -
o) (13)
where
1 —(r'i—r})2
g(rir;) = e (14)

V2nt

and V(R) is the potential energy. Note that the diagonal term
from the expansion of the determinant is just the usual DMC
projector in the absence of importance sampling shown in
Eq. (11).

Of course, it is not practical to use this form of the projec-
tor since the potential energy V(R) diverges to +oo at particle
coincidences. One can greatly improve upon this projector
by using an antisymmetrized version of the pair-product pro-
jector used in path-integral Monte Carlo.’ The pair-product
projector contains both electron-nuclear and electron-electron



164105-8 C. J. Umrigar

factors. The former, being single-particle in nature, can be
antisymmetrized using a determinant. So, an approximate anti-
symmetric projector is

g(ri,r)  g(ri,r) g(ry,ry)

g(rhr))  g(ryry) g(ry,ry)
GR',R,7) = :

g(ry.r))  g(ry,r) g(ry.ry)

% e(ET_Uee(R,,R))T’ (15)

where g(r},ri) is now the product of the pair projector of an
electron moving from r; to r;. interacting with all the nuclei,

Nnuc

8(0),1) = [ | pen() = Xooti — 10, 7) (16)

a=1
and U.(R’,R) is either the end-point pair product action®> of
the electrons interacting with each other,

u(r,.,r’

i ij,T) +u(r;;,r;j,7)

2 )

Uee R, R) = " (17)

i<j
or the pair product action® of the electrons interacting with
each other for the identity permutation,

Uee R, R) = )" u(x], i, 7). (18)

i<j
Itis likely that antisymmetrizing the full pair-product projector
would yield a more accurate projector, but the O(N!) compu-
tational cost would be prohibitive, whereas the projector of

Eq. (15) has only O(N?) cost.

The importance-sampled projector, G»(R’, R, 7) is related

to G(R’,R, 7) in the usual way,

. , , 1
GL(R,R,7) = Y6(R")G(R",R, T) FoR) (19)
To propagate with Go(R’,R, ), we need to sample from
a normalized probability density and then reweight by the
ratio of G»(R’, R, 7) to that density. A good choice is the drift-
diffusion projector in Eq. (A27), but with the drift velocity
given by

_ VrGy(R,R,7)
GxR.R,7) |pr

provided that Wg is nodeless. Note that if G,(R",R,7) is
replaced by the usual drift-diffusion-reweighting form of the
importance sampled projector, G(R’,R,7), but with the
reweighting term evaluated only at R, then V(R) reduces to
the usual V(R) in Eq. (A26).

Since we want |¥g| o< |¥'1| far from the nodes of Wr, a
good nodeless W is W = f(d)|¥1|, with the f(d) in Eq. (A17)
and d in Eq. (A15). (Other choices are possible. Refs. 31 and
56 use

V(R) (20)

,_ Det(@u(r))?

= 21
[T; Sk 3 (r:) D

and
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1

d= —— (22)
i) |A,-_jl 1
respectively,’’ where ¢ are the orbitals in the determinant
and A~! is the inverse of the Slater matrix.) Note that this
Y does not cause large weight fluctuations, because its local
energy is not being used in a reweighting term. Note also
that one can use Wg = Wr, but something other than the drift-
diffusion projector would need to be used to propose moves
in order avoid imposing a FN constraint. If Y = Wr, for the
energy estimate, n = 1 and m = 0 at the nodes of ¥t (see the
Appendix), so the statistical error of the energy converges to
zero as \/In(Nyc)/Nmc, whereas for a nodeless W, n = 0 and
m = 0 at the nodes of W1 and the usual v'1/Nyc convergence
is obtained.

A. Cancellations

Since the sign of the contributions to the expectation
values is the sign of the product of the walker weights and
Y1(R")/Ys(R’), we will speak about positive and negative
contribution walkers. The MC run is started with positive
contribution walkers only. However, upon evolving walkers
with the G,(R’,R, 7) of Eq. (19), their contribution can change
sign. Hence, it is necessary to devise a mechanism for opposite
sign contribution walkers to meet and cancel.

1. Internal cancellations

Note that relative to a 1st-quantized approach, we have
internal cancellations in our 2nd-quantized approach because
odd and even permutations of electrons in the initial walker
contribute with opposite sign to a given permutation in the
propagated walker. At large 7, in the absence of time step error,
the true projectors (with or without importance sampling>®)
are close to the corresponding fixed-node projectors provided
that Wt is a good approximation to ¥y, even though at small
7 they are very different.>® This is because 11_)r1010 G>(R",R,7)
Yo(R"). So, using a 2nd-quantized continuoils real-space basis
and the exponential projector, the sign problem becomes less
severe with increasing 7. This is as expected since the internal
cancellations within a 2nd-quantized walker are more effective
at large 7.

The internal cancellations within a walker ameliorate the
sign problem but do not eliminate it (except in the T — oo
limit). So, we need to cancel walkers that are not related
by symmetry. When the QMC walk is in a discrete space
(e.g., in S-FCIQMC), opposite contribution walkers®® cancel
when they land on the same state. When the walk is in a
continuous space (DMC), walkers never land on the same state
by accident, but one can alter the walker dynamics to force
them to land on the same state, without introducing any bias in
the expectation values. There exist exact methods, e.g., those
developed by Kalos and coworkers**? to drive the walkers to
land on the same state, thereby allowing cancellations.

2. Walker pairing

At each MC step, each negative contribution walker is
paired with a positive contribution walker, the latter being
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much more numerous. For these methods to be efficient
(reasonably small weight fluctuations), it is important that each
member of the pair starts off at a distance that is comparable to,
or smaller than, the extent of the projector. Hence, it is crucially
important that G»(R’,R, 7) have a small time step error, so that
a large enough 7 can be employed. One needs to identify
which pairs (or larger groups) of walkers are close, taking into
consideration that the electrons of one walker can be permuted
to minimize the distance. It may seem that this entails an O(N'!)
computational cost, but the cost can be reduced to O(N?).
First, a coarse grouping of walkers can be made by dividing
3D space into boxes and calculating occupation numbers for
the boxes. (Unlike the discrete case, the occupation numbers
are of course not limited to 0 and 1 any more.) This step
takes just O(N) time. Then, each negative contribution walker
is paired with the positive contribution walker that is closest
to it from among the small group of walkers that have the
same occupation numbers (provided there are some) using
the Hungarian algorithm®' for the assignment problem. This
algorithm takes only N3 time to identify the permutation that
minimizes the distance between two walkers.

When the paired walkers are sufficiently close, they can be
cancelled efficiently by forcing them to move to the same state
in a single step, as discussed next. If they are not sufficiently
close, then the paired walkers undergo a correlated dynamics
that bring them closer over the next several steps,*2 as dis-
cussed in Section IV A 4.

3. Correlated dynamics for single-step cancellations

A pair of opposite contribution walkers at R; and R,
can be moved to the same state in various ways. We
present one, which avoids large weight fluctuations. Pick
one of the two walkers, each with probability half. Assume,
for the rest of this discussion that the first walker is
picked; the other case is completely analogous. Sample a
move from Gpp(R{,Ri,7) in Eq. (A27) with the V(R) in
Eq. (20). The probability density for sampling this point is
p = (Gpp(R},Ry,7) + Gpp(R}, Rz, 7)) /2, since picking either
walker can result in a move to Rj. The weight multiplier
for the two walkers is Go(R{,Ry,7)/p and G2(R{,Ry,7)/p,
respectively. Now that they are at the same point, if their
contributions have opposite sign, the portion of the weight
equal to the lesser of the two absolute weights can be cancelled.
Note that even though we start the move with two opposite
contribution walkers, they can end the move with contributions
of the same sign. In that case the contributions add, and if the
sum is negative we pair this walker with a different walker that
has positive contribution, to enable cancellation for the next
move.

4. Correlated dynamics for multi-step cancellations

If the starting positions of the two walkers are not close
compared to the extent of the projector, the cancellation will
not be effective because even if they begin a move with similar
absolute weights, they can acquire very different absolute
weights during the move. Hence, instead of forcing a pair of
opposite-sign walkers to move to the same position in a single
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step, alter the pair dynamics such that they get closer together
on average over several steps and eventually cancel.*>>> The
basic idea is to change the pair dynamics while leaving the
individual dynamics unchanged. The first walker in the pair
diffuses just as it does in the usual algorithm. The diffusion of
the second walker in the pair is correlated to the diffusion of
the first walker in the following way. The diffusion is resolved
into a component parallel to the line joining the two walkers
and a perpendicular component. The perpendicular component
for the second walker is the same as for the first walker. The
parallel component for the second walker is opposite that of
the first walker. In other words, the diffusion of the second
walker is the reflection of the diffusion of the first walker in the
plane perpendicular to the line joining them in 3N-dimensional
space. So, the distance between the walkers undergoes a 1-
dimensional random walk. If the starting distance is R, one
can expect that the walkers will meet in O(R?/t) Monte Carlo
steps, since the expected diffusion is O (y/7) in one step and
O (VNycT) in Nyc steps. Note that the drift step does not
alter this analysis because the drift of two walkers that start
off reasonably close is strongly correlated anyway. Note also
that this paired dynamics does not introduce any bias, as seen
from the following argument. Each walker contributes to the
expectation value, independently of all other walkers. So, all
that is required is that the correlated dynamics of pairs of
walkers does not alter the stochastic dynamics of individual
walkers. This is in fact the case as seen from the following
argument. Consider a large number of identical replicas of the
system that are propagated one step using different random
numbers for each replica. If one just looked at the dynamics
of just one of the paired walkers in each replica, there is no
way to tell that one is performing this paired dynamics and
not the usual dynamics. Just to make the point more clearly,
note that if we were to modify the dynamics so that the second
walker in the pair reflected the parallel component of the move
only when doing so would make the distance between them
shorter, then that would introduce a bias since observing just
the second walker we would see that it tends to move in a
certain direction (the a priori unknown direction of the first
walker) in all replicas.

B. Effectiveness of cancellations

As the number of electrons, N, increases, the relative
importance of internal cancellations to inter-walker cancella-
tions increases. The reason is that the average distance between
two 2nd-quantized walkers increases with increasing N. On the
other hand, the effectiveness of internal cancellations depends
on the distance between the two closest electrons within a
walker and this distance goes down with increasing N. Hence,
the use of 2nd-quantized walkers and internal cancellations,
which have not been taken advantage of in earlier work, are an
important ingredient for the success of the method.

V. APPROXIMATE PMC METHODS BEYOND
THE FIXED-NODE APPROXIMATION

Since the exact algorithm is likely to work only for small
systems, we now discuss using the projector presented in
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Section IV in two approximate methods that have smaller
errors than the FN approximation and are applicable to larger
systems.

A. Release-node method

In fixed-node calculations, the projection is performed
subject to the boundary condition that the projected state
vanish at the nodes of Wr. Since Wt > 0 and W1 < O regions
map onto each other, the walk can be constrained to Wt
> 0 regions. In the release-node method,?3132 walkers can
cross into Wt < 0 regions but are killed if they have been in
the W1 < 0 region for M consecutive generations. As M is
increased, the energy drops from the fixed-node energy to the
energy of the fermionic ground state. However, the statistical
error increases with increasing M since the bosonic ground
state is the dominant state in the absence of a fixed-node
constraint. Hence, release-node energies that are significant
improvements upon fixed-node energies have been obtained
for only a few systems, most notably the homogeneous electron
gas.?!31:32 For molecular systems, the boson-fermion energy
gap increases with atomic number as Z>, so the method is
feasible for very low Z systems only.®?

So far the release-node method has been used with
the usual drift-diffusion-reweighting projector and a nodeless
guiding function of the form,>!

e st |
n12k¢k(rl)) ’ (23)

(Det(¢r(r:)))?

where ¢, are the orbitals in the determinantal part of Pr.
One problem with this is that the local kinetic energy is very
negative in the region near the nodes of ¥r, so the walkers
in that region acquire very large absolute weights, resulting
in a large increase in the statistical error. Instead, we use the
projector specified in Egs. (15), (16), (18), and (19) which does
not have this problem and has the advantage of having internal
cancellations.

lI"G = |lPT|(1 + €

B. Stochastic reconfiguration

The idea behind the stochastic reconfiguration method®3-%*
is that rather than cancelling walkers that are on the same
state, which is hard to arrange for large systems, instead cancel
walkers such that the contributions to certain expectation
values are unchanged. At each MC generation, there are three
sets of weights: (a) w;, resulting from propagation by the true
projector, (b) w{ , which are a set of reference weights that are
chosen to be non sign-violating (defined below), and (¢) w;,
the reconfigured weights, which are deduced from the other
two sets of weights and are close to the reference weights
and therefore mostly non sign-violating. The index i is for the
walker number. The original method assumed that importance
sampling is used with Wg = Wr, but we consider the more
general case when Wg # Wr. In that case, it is useful to define,

U~)i = wit—l, U~)f = U){t—l, lI)lr =
8i 8i
A weight w; is said to be sign-violating if @; < 0.

The reference weights can be chosen to be the fixed-

node weights. With this choice, in DMC, the weights, w; and

1
wi—. (24)
8i
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w{ can be computed as follows. First pick which probability

density, exact or FN, to sample with equal probability. If the
exact one is chosen, sample a point from Gpp(R/,R,7) in
Eq. (A27) with the V(R) in Eq. (20). If the FN one is chosen,
sample a point from Gpp(R’, R, 7) in Eq. (A27) with the V(R)
in Eq. (A26). Evaluate each of the probability densities at
the sampled point and call these pexact and ppn. The cho-
sen point has now been sampled with probability density p
= (Pexact + PEN)/2. The exact weight multiplier is Go(R’,R, T)
in Egs. (19) and (20) divided by p, and the FN weight multiplier
is G(R",R,7) in Egs. (A25) and (A26) divided by p. The new
ingredient proposed here is the use of G»(R’,R,7) in Egs. (19)
and (20). The internal cancellations in G,(R’,R,7) make the
stochastic reconfiguration algorithm more accurate and effi-
cient.

The reconfigured weights, w!, are computed imposing
the condition that for this MC generation the overlap of the
projected wavefunction and ¥t is unchanged by reconfigura-
tion, i.e., 3} ] = ] @; and that generation averages of a cho-
sen set of operators are also unchanged. These conditions are
imposed by solving a set of linear equations,®*%* the number of
equations being the number of operator constraints. Although
the generation average of the operators is unchanged by re-
configuration, a bias is introduced when one propagates the
population to the next generation. This bias goes down but the
sign problem reappears with increasing number of operators.
As usual, there is a trade-off between reducing the systematic
bias and the statistical error. Of course, it is necessary to
have a walker population that is larger than the number of
operator constraints. Reasonable choices for the operators are
components of the energy and the 1- and 2-body densities.

The reference weights were chosen to be an extension of
the fixed-node weights in Refs. 63 and 64, but it is simpler
to choose w{ = w; if w; is non sign-violating and w'if =0
otherwise. If there is little or no cancellation, and the trial
wavefunction is good, as is typically the case in real space
methods, then the former choice is a good one. On the other
hand, when there is considerable cancellation and the trial
wavefunction is not very good, as is typically the case in orbital
space methods, then the latter choice may be preferable since
the w; are mostly non sign-violating and the former choice
results in more reconfiguration than is necessary. In orbital
space methods, there is often the complication that the trial
wavefunction is zero on most states. Hence, it is not clear which
weights are sign-violating. Further, the local energy is +co for
states that are connected to W but not in W, and it is undefined
on states that are not connected to Wt. However, the SR method
can still be used, even when the energy is the only quantity
that is constrained, with the following simple modifications.
Weights, w;, are deemed to be sign-violating either if w;t;/g;
<0 orif #; =0 and wi(3; H;jt;)/gi > 0. Set w! to zero if
w; is sign violating and set w; = w; otherwise. Note w{ = w;
for states not connected to Wt. Further, to avoid numerical
problems, for states not connected to P, }’; H;;t; is set to a
completely negligible constant and the local energy of states
that are not in Wy is set to a finite constant. In the S-FCIQMC
method, the local energy is the variational energy for all states
within W'r. Hence, when only the energy is constrained by the
reconfiguration, the ratio, w;/w;, takes only two values for
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non sign-violating weights at each MC step: one for the states
within Wt and another for the states outside . Typically, the
former is only slightly less than 1. A slight modification of the
above results in three values of w!/w; for non sign-violating
weights, one for states in P, another for states connected to Pt
but not in Y, and a third for states not connected to ¥r. Using
SR allows one to use a smaller value for the initiator threshold
in S-FCIQMC. However, since SR introduces a bias, it is not
a priori clear whether the overall bias in reduced or increased
by adding SR to the S-FCIQMC algorithm, in those situations

where the initiator bias is not negligible. Preliminary studies
indicate it is sometimes reduced.

VI. DISCUSSION

In this paper, we have presented a unified description of
VMC and various PMC methods, both those that work in a
finite discrete Hilbert space and those that work in an infinite
continuous Hilbert space. Some of the points made are known
but possibly not widely appreciated. The main new contribu-
tions are as follows.

(a) A method for performing FN-DMC calculations efficiently
using a nodeless Wg (WG # Wr), which is helpful for con-
structing finite-variance estimators for some observables
and

(b) a DMC method for doing exact calculations for fermions,
which can use either a nodeless ¥ or ¥g = Y.

At present, the S-FCIQMC method has been much more
successful than methods based on DMC for computing almost
exact energies of small systems and systems where the sign
problem is not severe, e.g., the homogeneous electron gas at
small ry. However, each method has significant advantages and
disadvantages relative to the other, so it is not clear whether the
ideas presented in this paper will change this situation. Here is
a comparison.

1. The S-FCIQMC works with 2nd-quantized walkers.
Although current implementations of DMC work with 1st-
quantized walkers, which is a significant disadvantage, in
this paper we have proposed a way to work with 2nd-
quantized walkers without changing the computational
scaling.

2. The S-FCIQMC method has the obvious advantage, since
it works in a discrete space, that cancellations can occur of
their own accord. The DMC method allows one to perform
correlated walks that enable cancellations.

3. The wavefunction in the S-FCIQMC method is typically
concentrated in a small part of Hilbert space. This is crucial
for the success of the method as it greatly enhances the
cancellation probabilities. The wavefunction in DMC is
much more spread out. This disadvantage is somewhat
ameliorated by being able to use a larger time step and by
being able to do correlated walks that end in cancellation.

4. The S-FCIQMC method has no time step error. The DMC
method has a time step error but can typically use larger
time steps than S-FCIQMC while still having a sufficiently
small error.

5. The cost per 2-electron move in the S-FCIQMC method
scales as O(1) for approximate uniform moves and as O(N)
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for approximate heat-bath moves (which are nevertheless
more efficient). Both 1- and 2-electron moves are possible;
most are 2-electron. In addition, there is an O(N?) cost for
calculating the diagonal matrix element for newly occupied
determinants. The cost per move in the DMC method scales
as O(N?) for moving all N electrons regardless of whether
the accept/reject step is done after 1-electron moves or after
moving all electrons.

6. The trial wavefunction W1 in S-FCIQMC is limited to being
a sum of determinants. The trial wavefunction W1 in DMC
is much more flexible, e.g., it has a Jastrow part and some-
times also backflow terms in the determinants.

7. The S-FCIQMC method has finite-basis errors that are
greatly reduced by using the F12 approach. Also, some of
the finite-basis errors cancel out when computing energy
differences. The DMC method works directly with an
infinite basis.

8. Heavy atom systems can be treated with the frozen-core
approximation in S-FCIQMC. Efficient calculations of
heavy atom systems require the use of a pseudopotential
in DMC which typically introduces a larger error than the
frozen-core approximation error.

9. The density matrix version of the S-FCIQMC method pro-
vides access to a range of observables. The calculation of
expectation values of operators that do not commute with
the Hamiltonian requires additional computational effort in
DMC.

If no approximations are made, both methods suffer from
an exponential cost with increasing N. Hence, we have also
presented ideas for two approximate DMC methods, appli-
cable to larger systems, that have smaller errors than those of
the commonly used fixed-node approximation.
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APPENDIX: OPTIMAL IMPORTANCE SAMPLING

We discuss possible choices for the distribution sampled
in VMC and DMC. For some observables, the usual choice, ‘I’%
in VMC and Wgy YWt in DMC, results in large or even infinite
variance.

We will be rather cavalier about distinguishing between
quantum mechanical expectation values and MC estimates of
these expectation values, using at times the same notation for
them. However, the intended meaning should be clear from the
context.

If we wish to compute an integral

I'=(f).

using Monte Carlo methods, the statistical error can be reduced
by using importance sampling, i.e., by sampling from a

(AD)
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distribution £ that mimics the integrand, f, and whose integral
is known. It is well known that the optimal distribution to sam-
ple fromis % , since the sampled distribution must be nonneg-
ative. If f is entirely of one sign, then this optimal sampling
distribution gives a zero-variance estimator. Of course in most
cases, we do not know (| f|). So, in practice we use a function f
which approximates the optimal function and whose integral,

( f) is known. Then

(A2)

g0

where (x)7 denotes a MC average of x using points sampled

from é—>
Instead, in quantum mechanics, one frequently wishes to

compute ratios of expectation values,

0!

(2)
Then, one possibility is to separately importance sample the
numerator and the denominator. The problem is that it is often
difficult to find two functions, one of which is close to the
absolute value of the numerator and the other to the abso-
lute value of the denominator and whose integrals are known.
Further, one would like to avoid the computational expense of
doing two separate Monte Carlo runs for the numerator and the
denominator.

Instead, one can use the same probability distribution, p,
to sample the numerator and the denominator. In that case, it
is not necessary to know the integral of the function because it
cancels out. We get

(A3)

(f1p),
E= . Ad
(8/p)p (A9
A common choice for p is p = g in which case
(fl8),
E= . A5
), (AS5)

Although this is a zero-variance estimator for the denominator,
it does not minimize the statistical error of the quantity of

interest. In fact, the optimal distribution to sample from is®>-68
2

Popt = |f — 78| (A6)
o ’ (g)

One may wonder why this pgp reduces to | f — ( f) | rather than
|f]when g = 1. The reason is that | f| is the optimal distribution
if (| f|) is known and | f — (f) | is the optimal distribution that
does not require knowing (| f|). Note that in Eq. (A6), the quan-
tity we want to compute (o) appears in pope. However, this is not
a serious problem, since one usually has a reasonable estimate,
E.q with an estimated error €. The optimal distribution then is®’

Popt = \/(f - Eestg)2 + 2g262'

Egs. (A6) and (A7) are obtained assuming the autocorrelation
time, T.or, due to the sequential correlations in the Markov
chain does not depend on the sampled distribution. This is
reasonable since p and T, are independent in the sense that
a given p can be sampled by various algorithms that may have
very different values of T,

(AT)
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One problem with the above pop is that although one can
sample from pop using the Metropolis-Hastings algorithm'®!1°
when f and g are explicitly known as in the case of VMC,
it may be hard to come up with a sufficiently good proposal
matrix to have a short autocorrelation time that can be sampled
sufficiently quickly. Hence, it may be better to use a sampling
distribution that is suboptimal but can be sampled more effi-
ciently. Further, one is typically interested in calculating more
than one expectation value in a MC run, and each expectation
value has a different optimal sampling distribution, so one is
really interested in a good compromise distribution. In PMC,
weighted random walks of a population of walkers are needed,
and minimizing the weight fluctuations is an important ingre-
dient for an efficient algorithm.

1. VMC
The VMC energy is

g (A (YiE)
(Wr|¥1) (v2)

(A8)

The distribution that is usually sampled is ‘I’% and the expres-
sion for the energy is

oo B TN (R )
< 1 >\y% Nmc .

On the other hand, the optimal distribution, pop, from Eq. (A6)
is

(A9)

popt(R) = PE(R) = lP%(R)\/ (ELR) — Ecq)* + 262, (A10)
and the energy can be computed as
E = e — . (A11)

=1 \ELR )-Eeq?+262

As an aside, we note that this estimate has a bias that
disappears in the NMyc — oo limit, and the bias can be reduced
by computing the covariance of the summands in the numer-
ator and the denominator. A simpler method for doing the
same is described in the Appendix of Ref. 69. Since pop
in Eq. (A10) is a known function, it can be sampled using
the Metropolis-Hastings algorithm.'®!° The usual distribution
sampled in VMC is ‘I’% and a good proposal matrix is ob-
tained using VWr. Since V>¥r is needed for computing the
local energy for the VMC energy estimate, it requires minimal
extra computational effort to compute also V¥r1. On the other
hand, constructing a good proposal matrix for the optimal
sampling distribution requires computing V Er, which requires
additional computational effort. Hence, it is worth employing
simpler sampling distributions that are functions of Wt only.
This, plus the consideration that other expectation values than
the energy may be of interest, is the reason that the usual
distribution sampled in VMC is ‘I’% However, since Ep(R)
oc 1/P1(R) near nodes, we see from Eq. (A10) that sampling a
function that goes as || near the nodes is better than the usual
choice, | P/
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If the sampled probability distribution goes as V7 near the nodes of ‘W1 and the integrand of the expectation value of interest
goes as P! near the nodes of Wr, then the contribution to the variance from the region up to a distance € from the node is

€ o E2m—n+1
[ awn {1n<e>—1n<0>~1n<NMc),

From this, we see that the region near the node makes no
contribution to the variance if n < 2m + 1, but it makes a
contribution such that the error of the MC average converges
as +/In(Nyvic)/Nuc rather than 1/4/Nyc if n = 2m + 1.

Hence, if m = 0, it is desirable to sample from a p that is
finite at the nodes of ¥r1. So, consider p of the form,

_ JS(@¥r(R)l, d(R) <,
(R)_{I‘I’T(R)I, iRy ze AP
and
_ [(F(@¥(R))?, d(R) <,
p(R) = {\11% R). dR) > e (A14)
where
_ “rR)VY(R)
N L (A1

is the vector to the estimated nearest point on the nearest
nodal surface and d = |d|. If we impose the conditions that
p be continuous and have continuous first derivative at d = €
(though these conditions are not necessary), f(d) must satisfy

f(d) =1, when d = e,
D o, whend =€, (Al6)
d X f(d) = const X €, when d = 0.
A reasonable choice for f(d) is
1({e d
=—|=+-]. Al
=3 (5+9) A1)

These ideas were tested on a toy example (particle in a
box). Two ratios of expectation values, which are of interest
in VMC calculations, were studied in Table II. The first is the
variational energy, E = (W1|H|¥r)/ (¥1|¥1) and the second is

TABLEIL. Values of VNyco g and VNmco E,, using various choices of the
sampling distribution p for a particle in a box and with an approximate ¥t
=sin(z(x +(x2=bx?))/2), with b = 1 and €=0.1. When p = ‘{’% or p =|¥1l,
VNwmco g, is infinite for an infinite sample. For a finite sample, the estimated
value of VNyco g, increases with sample size, as shown. A logarithmic
divergence is acceptable since o~ ; converges as /In(Nyc)/ Nmc.

Sampled Fn. P NMCo'E maEi
1 1.832 4.252

|| 1.740 6.645
|“PT| 1.817 OON\(IH(NMc)
|¥r|? 2.641 oo~V Nmc
1+ P 1.774 4.701
Eq. (A13) 1.815 7.860
Eq. (A14) 2.401 20.049
Optimal Eq. (A6) 1.530 3.341

~ NEZZEL i < 2m+ 1,
Me (A12)

ifn=2m+1.

(

its derivative, E; = (Wr,;|(H — E)|¥1)/ (¥1|¥r), with respect
to a variational parameter, p;. Wr ; is the derivative of Wt with
respect to p;. For approximate Wr, Ey typically diverges as the
inverse of the distance to the nodes of Wr. The parameter was
chosen (as detailed in the caption of Table II) to be such that
the nodes of Wt depend on the value of the parameter. In that
case, ¥;/Wr also diverges as the inverse of the distance to the
nodes of Wt. So, m in Eq. (A12) is 1 for E and it is O for E;.

In Table II we give, for various choices of p, values of
v Numco, where o is the estimated root mean square error of
the mean. For a finite-variance estimator, v Nyico tends to
a finite value with increasing Nyc, whereas for an infinite-
variance estimator v Nyico- — oo as shown in the table. The
value of € in Egs. (A13) and (A14) can be tuned to minimize
the variance, but the results in Table II were obtained simply
by setting € = 0.1. The MC estimate of E; has finite variance
forp=lorp=1+ ‘P%, but these choices of p are feasible
only when the integration domain is finite. The optimal p of
Eq. (A6) of course gives the smallest value of v/ Nyco. For this
example, of the choices of p that were studied, the usual choice
in VMC calculations, p = y2 gives the largest error. However,
in typical VMC calculations of fermionic many-body systems,
the values of Wr at the sampled points have a range of many
orders of magnitude and the fluctuations of Ey do not correlate
strongly with the value of Wt except very close to the nodes of
Yr,50 p = ‘I’% is a reasonable choice for computing the energy.
A better choice for computing the energy would be p ~ |1
near the nodes and p ~ ‘P% away from the nodes and a good
choice for the energy derivatives would have a finite p near
the nodes and p ~ ‘I’% away from the nodes, such as the p in
Eq. (A14).

2. Fixed-node DMC

For computing the DMC energy, the optimal sampling
distribution of Eq. (A6) becomes

Pop(R) = [Prn (R)P6(R)]

= [en (R)P1(R)|y (EL(R) — Eey)? +2€%

(A18)

It is feasible to sample this distribution by similarity trans-
forming the projector with a diagonal matrix with diagonal
components Wt+/(EL — Eeg)? + 2€2. However, as in VMC, the
computational effort of constructing a good proposal matrix
is sufficiently large that it is useful to consider simpler alter-
natives. The usual choice, p(R) = |Ygn(R)Pr(R)| (i.e., YG(R)
= ¥r(R)), is an adequate choice for some observables and
efficient algorithms for sampling it are well known.?>?* How-
ever, since E, diverges at the nodes of ¥r, a nodeless ¥ that
approximates || far from the nodes of Wr is preferable to Yg
= Wy for calculating the energy. For the parameter derivatives
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of the energy, choosing W = Wr results in infinite variance
estimators so it is even more important to use a nodeless V.
Since there does not exist an efficient algorithm in the liter-

ature for sampling YgWgy when Wg # W1 we present one here.
A special case is Wg = 1. First, note that the usual projector,

’ 2 ’
1 _R'-R) +T( Ep- YELV®) )

GR',R,7) = &
(27rT)3TN

) (A19)

has free boundary conditions rather than fixed-node boundary
conditions and therefore cannot be used in fixed-node calcula-
tions without modifications. In addition, as is well known, it is
not practical to use this form of G(R’,R, 1) since the potential
energy V can diverge to +oo.

Instead, WG(R)¥en(R) can be sampled efficiently as fol-
lows. Note that f(R) = Yg(R)¥1(R) satisfies

VSR 4T (VRRY =0, (A20)
where
1 (VW(R)  V¥i(R)
VRO =3 m® *m® ) (A2

Yen(R) is the ground state solution of the time independent
Schrddinger equation with the boundary condition that it has
the same nodes as Wt. Multiplying it by Wg(R) we see that
f(R) = Y6(R)¥rn(R) is a solution of

SVFR) + V- (VIR)F(R)) ~ S(R)S(R) =0, (A22)

in the limit ¥1(R) = Wgn(R), where

S(R) = Er - E(R), (A23)
which is defined in terms of the local energy
HYr(R V2¥1(R
EL(R) = R) __VHR) V[R). (A24)

Pr(R) 2¥1(R)

Hence, it is plausible that an approximate projector is

2
G(Rl R T) - ;e*(RL(R;TV(R))T) +T(S(R,)2+S(R))

5 (A25)
(2777)%

where V(R) and S(R) are estimates of the average V and S over
the time step?’ with initial position R. This is exactly the same
as the usual FN-DMC projector except that V(R) is given by
Eq. (A21) rather than

V¥7(R)

YR =T ®

(A26)

J

Grpmir(R, R, 7) = {0

Grp(R",R,7) — Gpp(R’,R + 2d,7),
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Hence as usual, walkers are propagated by first sampling from
the drift-diffusion part of the projector
1 (R-mevaye)’
GDD(R/, R, T) = —3N€ 27 s
Q2rt) 7

(A27)

and then reweighted with exp [T(

Mg] As usual, a
2 : ’

Metropolis-Hastings accept/reject step can be inserted, but

with the modified acceptance probability,
AR, R,7)
_ {1 [¥6(R)¥(R")|Gpp(R,R’, 7)
" [¥6(R)¥1(R)|Gpp(R", R, 7)

} , (A298)

between the drift-diffusion step and the reweighting step to
reduce the time step error,?>?* in which case an effective time
step, Tefr, 1S used in the reweighting to take into account that
some moves are rejected. Also as usual, the accept-reject step
can be done either after each one-electron move or after all
electrons have been moved, the former usually being more
efficient.
There are several things to note.

1. ¥ enters only in V(R) and not in S. So, although we can
use the same g as is used in release-node calculations,’!
we do not have the problem of large weight fluctuations near
the nodes of Y.

2. Just as in the usual FN-DMC algorithm, since the velocity
diverges at the nodes of Wr, there is no flux of walkers
through the nodes per unit time in the T — 0 limit.

3. The method reduces to the usual FN-DMC if ¥ = Y.

4. Unlike the usual FN-DMC method, the distribution ¥V,
is obtained only in the Wt = W, limit rather than in the
limit that the nodes of Wt are the same as those of ¥. In
this respect, the method is similar to the discrete-space FN
method.’

5. Finally, note that we have provided a plausible argument
that rests on Eq. (A22) rather than a proof which would
require that f(R,7) = Yg(R)Y(R, ) satisfy

SR + V- (VRFRD) - SRR,

_OfR1)
== (A29)

So, Y6(R)¥en(R) is a solution of Eq. (A29), but we have not
proven that it is the dominant eigenstate of the projector in
Eq. (A25), though it seems likely that it is. We have however
successfully tested the method on a toy problem, a particle
in a box.

Another possibility for sampling Wg(R)Wen(R) is to sam-
ple points from Gpp(R’,R,7) of Eq. (A27) and reweight with
the ratio Gpp,mi(R’,R, 7)/Gpp(R’, R, 7), where

if >0,

. (A30)
otherwise,

and Gpp(R’,R, ) is the pair-product projector used in path-integral Monte Carlo calculations,’ importance sampled with .
Gpp’mir(R’, R, 7) has the required property that Gpp,mir(R + d,R,7) = 0 to be an approximate fixed-node projector.
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3. S-FCIQMC

The analysis of what constitutes good importance sampl-
ing is more difficult in S-FCIQMC for at least three reasons.
Using the notation of Sec. 11, the optimal sampling distribution
is

PP = leigt™| = leiti|y (ELi — E)* + 2€

2

= |€i| ZHijtj_Eti +262t?.
J

(A31)

The first issue is that this formula says that states that are
not connected to Pr need not be sampled at all. This ignores
the fact that states that are not connected to W1 change the
distribution on states that are connected to Wt and therefore
must be sampled in order to get the correct expectation value.
One could get around this by sampling these states with some
small nonzero probability, o,

g = |ti] (EL; — E) +2€2, ifiis connected to ¥r,
=

0, otherwise.
(A32)

The second issue is that even for a given choice of the
sampling distribution, the efficiency depends on the fluctua-
tions of the walker weights. To minimize the weight fluctua-
tions (for a given time step) it is desirable to have a fast algo-
rithm to propose moves with probabilities that are proportional
to the projector matrix elements. Recently, two algorithms have
been devised that achieve a good approximation to this in the
absence of importance sampling, one of which employs the
Cauchy-Schwartz inequality applied to two-body integrals,**
and another that does not.*> At present, no algorithm exists
for sampling the importance sampling projector, P; j»inEq. (7)
sufficiently efficiently.

The third issue is that the cancellation of opposite-sign
walkers is an essential part of the algorithm, and this is more
effective if importance sampling is used since the walkers are
then concentrated on a smaller number of states. This consider-
ation is absent in the derivation of p°". This is the likely reason
that importance sampling was found to be helpful in Ref. 70.
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