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Abstract Manymultidecadal atmospheric reanalysis products are available now, but their consistencies and
reliability are far from perfect. In this study, atmospheric precipitable water (PW) from the National Centers
for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), NCEP/Department of
Energy (DOE), Modern Era Retrospective-Analysis for Research and Applications (MERRA), Japanese 55 year
Reanalysis (JRA-55), JRA-25, ERA-Interim, ERA-40, Climate Forecast System Reanalysis (CFSR), and 20th Century
Reanalysis version 2 is evaluated against homogenized radiosonde observations over China during 1979–2012
(1979–2001 for ERA-40). Results suggest that the PW biases in the reanalyses are within ∼20% for most of
northern and eastern China, but the reanalyses underestimate the observed PW by 20%–40% over western
China and by ∼60% over the southwestern Tibetan Plateau. The newer-generation reanalyses (e.g., JRA25,
JRA55, CFSR, and ERA-Interim) have smaller root-mean-square error than the older-generation ones (NCEP/NCAR,
NCEP/DOE, and ERA-40). Most of the reanalyses reproduce well the observed PW climatology and interannual
variations over China. However, few reanalyses capture the observed long-term PW changes, primarily because
they show spurious wet biases before about 2002. This deficiency results mainly from the discontinuities
contained in reanalysis relative humidity fields in the middle-lower troposphere due to the wet bias in older
radiosonde records that are assimilated into the reanalyses. An empirical orthogonal function (EOF) analysis
revealed two leadingmodes that represent the long-term PW changes and El Niño–Southern Oscillation-related
interannual variations with robust spatial patterns. The reanalysis products, especially the MERRA and JRA-25,
roughly capture these EOF modes, which account for over 50% of the total variance. The results show that
even during the post-1979 satellite era, discontinuities in radiosonde data can still induce large spurious
long-term changes in reanalysis PW and other related fields. Thus, more efforts are needed to remove spurious
changes in input data for future long-term reanalyses.

1. Introduction

Water vapor is the single most important greenhouse gas in the atmosphere. It plays a crucial role in Earth’s
energy and water cycle; thus, it has large impacts on weather and climate [Held and Soden, 2000; Zhao et al.,
2012;Wang et al., 2013]. Because saturation vapor pressure increases with air temperature (T) and atmospheric
relative humidity (RH) is relatively stable [Dai, 2006; Dai et al., 2011; Zhao et al., 2012], water vapor is expected to
increase as air temperature rises, thus providing a strong positive feedback for CO2 and other greenhouse
gas-induced global warming [Held and Soden, 2000]. Therefore, how water vapor changes in the real world
and climate models in response to rising temperatures is of great concern.

Traditionally, global radiosonde data represent an important resource for monitoring and understanding the
long-term changes in atmospheric water vapor, and they have been used to quantify its long-term trends
[e.g., Ross and Elliott, 2001; Wang et al., 2003; Rowe et al., 2008; Zhao et al., 2012; Wang et al., 2013]. Radiosonde
observations have also been assimilated into weather forecasting models to produce reanalysis products,
often without homogenization [e.g., Kalnay et al., 1996; Uppala et al., 2005]. However, the accuracy of the
radiosonde-derived water vapor content is limited by the sensor characteristics that vary in space and time
[Wang and Zhang, 2008]. In particular, the response time and sensitivity to low humidity of radiosonde sensors
have been improved over the years. This has induced spurious long-term trends in radiosonde humidity records
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[Dai et al., 2011]. These problems, especially the temporal inhomogeneities, have severely hampered the
application of the radiosonde humidity data in climate research [Dai et al., 2011].

Atmospheric reanalyses are constrained mainly by atmospheric radiosonde observations before the satellite
era (before about 1979); thereafter, satellite observations, which have their own inhomogeneity problems,
have become increasingly important for reanalysis products. Since biases and inhomogeneities in radiosonde
data have not been corrected before their assimilation into reanalysis products (except for ERA-Interim,
which used homogenized air temperature from radiosondes but unhomogenized data for other variables
[Dee et al., 2011]). The errors in these input data induce systematic dry/wet biases and spurious long-term
changes in reanalysis water vapor and other related fields (e.g., precipitation and cloudiness). The spurious
changes often make the reanalysis data unsuitable for trend analyses [Bengtsson et al., 2004; Trenberth et al.,
2005; Qian et al., 2006; Dai et al., 2011, 2013].

Some previous studies have analyzed and evaluated humidity and water vapor trends in reanalysis products.
For example, Paltridge et al. [2009] found that specific humidity in the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis declined between 1973 and
2007, particularly in the tropical middle and upper troposphere. Dessler and Davis [2010] examined this issue
for five reanalyses (the NCEP/NCAR, the European Centre for Medium-Range Weather Forecasts (ECMWF)
40 Year reanalysis and the more modern Japanese Reanalysis (JRA), Modern Era Retrospective-Analysis for
Research and Applications (MERRA), and European Centre for Medium-Range Weather Forecasts (ECMWF)
Interim reanalyses. They found that the NCEP/NCAR reanalysis contains a large bias associated with a decrease
in tropical upper tropospheric specific humidity mainly due to inhomogeneities in the radiosonde humidity
measurements. Serreze et al. [2012] compared three of the recent reanalyses (i.e., MERRA, NCEP Climate
Forecast System Reanalysis (CFSR), and ERA-Interim) against radiosonde measurements at nine sites north of
70°N. They found that the reanalyses havemoist andwarm biases at and near the surface from autumn through
spring, with smaller biases in summer, and none of the reanalyses correctly capture the cold season humidity
and temperature inversions seen in the radiosonde data, with the MERRA in particular showing evidence of
artifacts likely introduced by changes in assimilation data streams. Dai et al. [2011] showed that trend patterns
over land in 700hPa specific humidity from 1973 to 2008 from the ERA-40 and ERA-Interim are similar to those
in the raw radiosonde data with noisy patterns and negative trends over Africa that are due to spurious discon-
tinuities in the humidity records. Since all the reanalyses assimilated the same (or similar) radiosonde data,
common spurious changes, such as a tropospheric cooling trend over central Asia since the early 1960s [Dai
et al., 2013], may exist in multiple reanalysis products. Such a common feature should not be interpreted as a
robust real climate change signal; rather, it could result from the errors in the common input data.

Over China, previous validation studies have focusedmainly on surface air temperature, precipitation, surface
humidity, surface winds, and radiation from reanalysis products using surface observations [e.g., Xu et al.,
2001; Shi et al., 2006; Ma et al., 2008, 2009; Zhao et al., 2004; Zhao and Fu, 2006a, 2006b; Zhao et al.,
2008; Mao et al., 2010; Jia et al., 2013; Lin et al., 2013]. For example, Bao and Zhang [2013] evaluated the
NCEP/NCAR, CFSR, ERA-40, and ERA-Interim reanalysis products using radiosonde observations from 11 stations
over the Tibetan Plateau of China from 10 May to 9 August 1998 and found that each of the reanalysis can
produce the mean values consistent with the verifying soundings for temperature and horizontal winds
but with large biases for relative humidity. Recently, Lu et al. [2015] compared the precipitable water (PW)
from JRA-55, ERA-40, ERA-Interim, MERRA, NCEP/Department of Energy (DOE), and International Satellite
Cloud Climatology Project with the analysis data constructed from station observations and Moderate
Resolution Imaging Spectroradiometer estimates over the Tibetan Plateau, and they found that none of the
reanalyses are able to show the observed long-term trends and variability in PW over the Tibetan Plateau.
Besides these, few studies have examined the reliability of atmospheric water vapor and its long-term trends
from reanalysis products over China.

Atmospheric reanalysis products have been increasingly used to evaluate climate models [e.g., Dai et al., 2001]
and study climate variability and change [e.g., Trenberth et al., 2005]. Therefore, validation of the reanalysis pro-
ducts is crucial for their proper applications. The goal of this paper is to examine how well reanalysis products
capture observed variations and long-term changes in atmospheric water vapor and humidity over China since
1979 utilizing the recently homogenized radiosonde humidity data produced by Dai et al. [2011] and used
by Zhao et al. [2012]. Since water vapor affects many other fields such as precipitation and clouds, the issues
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found here with the PW are also relevant to the other fields in the reanalysis products. Results of this study
can help us better understand the strength and weakness of the commonly used reanalysis products and
thus facilitate their applications.

This paper is organized as follows. Section 2 describes the observational and reanalysis products used in this
study. Section 3 presents the analysis method. In section 4, we compare atmospheric water vapor contents
from nine reanalysis products with the observations in terms of the biases or errors in long-term mean,
variations, and long-term changes and discuss the possible causes for the water vapor biases. A summary and
concluding remarks are given in section 5.

2. Data Sets
2.1. Observational Data

Dai et al. [2011] developed a new approach and applied it to homogenize twice-daily radiosonde humidity
records from the global radiosonde network, including about 160 Chinese stations. After this homogeniza-
tion, atmospheric humidity variables exhibited spatially more coherent long-term trends and compare more
favorably with GPS PW than those without homogenization [Dai et al., 2011; Zhao et al., 2012; Wang et al.,
2013]. Zhao et al. [2012] used this homogenized data set to study the long-term trends of tropospheric water
vapor and humidity during 1970–2008 over China and found that the homogenized humidity not only
correlates better with other independent measurements but also shows spatially more coherent long-term
trends than the raw data over China. The homogenized data over China are now updated to 2012, with
around 100 stations with humidity records that are more than 80% complete since 1970. In this paper, we
used the homogenized sounding data from 89 Chinese stations that have valid records over 85% of the time
during 1970–2012. Figure 1a shows the distribution of these radiosonde stations, which cover most of China
except the western Tibetan Plateau. We realize that the homogenized PW data used in this analysis likely still
contain some small discontinuities [Dai et al., 2011] and mean biases associated with, for example, the dry
bias of the current Vaisala RS92 radiosondes [Wang et al., 2013]. However, it is difficult to quantify these error
bars, and any mean biases in the most recent radiosonde records (used by Dai et al. [2011] as the reference)
would exist in both our homogenized data and the reanalyses products; thus, they unlikely have a large
impact on the differences examined here.

In this study, we focus on the differences (referred to as the biases) in the long-term mean, variations, and
changes in column-integrated precipitable water (PW) between reanalysis products and the homogenized
radiosonde observations, although specific and relative humidity at some individual levels is also examined
for diagnostic purpose. An advantage of PW is that it reflects the total water vapor content for the entire
tropospheric column (albeit it is dominated by the lower troposphere), thereby avoiding comparisons at
individual pressure levels. The PW in this study was calculated by integrating specific humidity from radiosonde

observations or reanalysis data from the surface to 300 hPa using PW ¼ 0:1
g ∫

ps
300 q dp , where PW is mm,

g= 9.8m s�2 is the acceleration of gravity, ps is surface pressure in hPa, q is specific humidity in g kg�1,
and p is air pressure in hPa.

In addition, the monthly precipitation from the Global Precipitation Climatology Centre (GPCC) full data
reanalysis (V6; http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html) [Schneider et al., 2013] and the
Climatic Research Unit Time Series 3.22 (CRU TS3.22; http://browse.ceda.ac.uk/browse/badc/cru/data/cru_ts/
cru_ts_3.22) [Harris et al., 2013], and the total cloud cover from the CRU TS3.22, are used to diagnose whether
the spurious changes in the reanalysis PW series are apparent in the precipitation and cloudiness.

2.2. Reanalysis Products

The reanalysis PW from surface to 300mb was computed using monthly q data obtained from nine reanalysis
products (see Table 1). They include the NCEP/NCAR [Kalnay et al., 1996; Kistler et al., 2001], NCEP/DOE [Kanamitsu
et al., 2002], NASA Global Modeling and Assimilation Office (GMAO) MERRA [Rienecker et al., 2011], JRA-55 [Ebita
et al., 2011], JRA-25 [Onogi et al., 2007], ERA-40 [Uppala et al., 2005], and its updated version ERA-Interim
[Dee et al., 2011], CFSR [Saha et al., 2010], and the 20th Century Reanalysis version 2 (20CR) [Compo et al.,
2011]. Monthly air temperature and relative humidity at six pressure levels (1000, 850, 700, 500, 400, and
300hPa), as well as the precipitation and total cloud cover from these reanalysis products, were also used to
diagnose the biases in the reanalysis PW.
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Figure 1. (a–j) The climatological annual mean PW (surface to 300 hPa, mm per month) from the observations and the
reanalyses during 1979–2012 (1979–2001 for the ERA-40 in hour). The red dotted circles in Figure 1a indicate the 89
radiosonde stations used in this study, and three subregions are referred to region I as “southeastern China,” region II as
“northern China,” and region III as “southwestern China” (i.e., the Tibetan Plateau with elevation over 3 km). The pattern
correlations (R) between the reanalysis and the observations (Figure 1a) is shown in Figures 1b–1j.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023906

ZHAO ET AL. EVALUATION FOR REANALYSIS PW 10,706



Although each reanalysis was developed to meet specific goals with distinct model physics and resolutions,
nearly all of the reanalyses assimilated upper air radiosonde and satellite (mainly after 1979) observations
using either a 3-D or 4-D variational assimilation techniques with a constant error covariance matrix for
the first-guess fields throughout the reanalysis period. One exception is the 20CR, which assimilated only
surface observations of sea surface temperatures (SST), sea level pressure, and sea ice coverage using an
ensemble Kalman filter system but no upper air or satellite observations were used [Compo et al., 2011].
Some reanalyses, such as the ERA-Interim, used surface observations of 2m temperature and humidity in
their post processing [Simmons et al., 2010], but most reanalyses (e.g., NCEP/NCAR and NCEP/DOE) did
not use surface synoptic observations (of air temperature, humidity, winds, precipitation, and cloudiness).
The ERA-Interim employs a 4-D -variational approach; all the others use 3-D -variational data assimilation.
All of the reanalyses are forced with observed SSTs with the notable exception of the CFSR, which is a fully
coupled land-ocean-atmosphere reanalysis. The newer reanalyses (ERA-interim, MERRA, CFSR, and 20CR)
usually include recent advances in modeling and data assimilation; thus, they are expected to be superior
to the older ones.

Table 1 summarizes the main features of the nine reanalyses. The 20CRv2 covers the longest period from
1871 to present. The NCEP/NCAR is one of the most widely used reanalyses, and it covers a relatively long
period (1948 to present). Other long reanalyses are the ERA-40 (1957–2002) and the JRA-55 (1958 to present).
The remaining five reanalyses (NCEP/DOE, JRA-25, ERA-interim, MERRA, and CFSR) all cover the so-called
satellite era from 1979 to present. The CFSR has the highest resolution with a grid size of 0.5°, followed
by MERRA (0.5° × 0.67°). The NCEP/NAR, NCEP/DOE, and JRA-25 have the lowest resolution with a grid
size of 2.5°. To ensure a consistent length of analysis for all the products, we focus on the period from
1979 to 2012 for all the reanalyses, except for ERA-40 for which the period of 1979–2001 is used because
it ends in August 2002.

3. Analysis Method
3.1. Data Processing

Following Zhao et al. [2012], we required a sampling rate of 50% or higher (i.e., at least half of the days with
observations) in deriving the monthly mean value for individual months at the 89 radiosonde stations.
Monthly anomalies for the PW and other variables relative to the 1979–2012 and 2003–2012 mean were
computed for each month. The monthly anomalies computed as deviations from the 2003–2012 mean were
used to illustrate the PW biases associated with the latest instrumental changes taken place in China since
about 2002. The reanalysis products were processed similarly, except for the ERA-40 for which the mean of
1979–2001 was used.

To facilitate the comparison, both the monthly mean and anomalies from the radiosonde stations and
reanalyses were regridded onto a common 1° × 1° latitude-longitude grid using the Cressman interpolation
[Cressman, 1959] for the station data and bilinear interpolation for the reanalysis data. We used a maximum
search radius of 1000 km in the Cressman method; a station beyond this distance was not used in deriving
the estimates for a given grid box. Such a radius represents the typical correlation distance in monthly air
temperature and humidity fields and thus is commonly used in gridding temperature and humidity monthly

Table 1. The Nine Reanalyses Used in This Study

Name Organization Horizontal resolution Vertical levels Temporal coverage Assimilation

NCEP/NCAR NCEP/NCAR 2.5° × 2.5° 28 1948 to present 3-D-VAR
NCEP/DOE NCEP/DOE 2.5° × 2.5° 28 1979 to present 3-D-VAR
MERRA NASA GMAO 0.5° × 0.67° 72 1979 to present 3-D-VAR, with

incremental update
JRA-55 JMA/CRIEPI 1.25° × 1.25° 60 1958 to present 3-D-VAR
JRA-25 JMA/CRIEPI 2.5° × 2.5° 40 1979 to present 3-D-VAR
ERA-Interim ECMWF 0.7° × 0.7° 60 1979 to present 4-D-VAR
ERA-40 ECMWF 1.125° × 1.125° 60 1957–2002 3-D-VAR
CFSR NCEP 0.5° × 0.5° 64 1979 to present 3-D-VAR
20CRv2 NOAA/ESRL PSD 2.0° × 2.0° 28 1871–2012 Ensemble Kalman filter
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anomaly data [e.g., Dai et al., 2011]. We emphasize that observations are sparse over some areas, such as the
western Tibetan Plateau (Figure 1a); thus, the interpolated PW values are less reliable over these regions.

3.2. Basic Statistics

Using the data on the 1° × 1° grid, some basic statistics were calculated to evaluate the performance of
each reanalysis product in describing the observed PW climatology, variations, and long-term changes
over China. Besides the long-term mean and linear correlations, we calculated the relative bias (RB) and
the root-mean-square error (RMSE).

The RB (in % of the observed long-term mean) is defined to assess the relative difference between a reanalysis
and the observation averaged during the analysis period at each grid box:

RB ¼
1
n

Xn

i¼1
PWR � 1

n

Xn

i¼1
PWO

1
n

Xn

i¼1
PWO

�100%; (1)

where PWR and PWo denote the monthly reanalysis and observed PW, respectively, and n is the number of
data points during the time period.

The RMSE measures the average magnitude of the error with a focus on extreme values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i�1
PWR � PWOð Þ2:

r
(2)

To minimize the influence of autocorrelation and outliers in data series on long-term trend estimation, the
PW trend was estimated using the Sen’s nonparametric method [Sen, 1968] as

b ¼ median
xj � xi
j � i

� �
; (3)

where b is an estimate of the slope of a trend and xi and xj are the data values at time i and j (j> i), respec-
tively. For a relatively small sample (N< 50), this approach provides a more robust slope estimate than the
least squares method because it is insensitive to outliers or extreme values and competes well against simple
least squares even for normally distributed data [Fan and Yao, 2003].

The statistical significance of a trend formonthly or annual series at each gridwas tested using theMann-Kendall
Tau nonparametric technique [Mann, 1945; Kendall, 1975]. The Mann-Kendall statistic (S) was calculated as

S ¼
Xn�1

i�1

Xn

j¼iþ1
sgn xj � xi

� ��
(4)

where n is the number of data points and sgn(xj� xi) is the sign function:

sgn xj � xi
� � ¼

1; if xj � xi > 0

0; if xj � xi ¼ 0

�1; if xj � xi < 0

8><
>: : (5)

The S has a variance as

V Sð Þ ¼
n n� 1ð Þ 2nþ 5ð Þ �

Xm

k¼1
tk tk � 1ð Þ 2tk þ 5ð Þ

18
(6)

In equation (6),m is the number of tied groups and tk denotes the number of ties for group k. A tied group is a
set of sample data having the same value. In cases where the sample size n> 10, the standard normal test
statistic ZS is computed using equation (6):

ZS ¼

S� 1ffiffiffiffiffiffiffiffiffi
V sð Þp ; if S > 0

0; if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffi
V sð Þp ; if S < 0

8>>>>><
>>>>>:

: (7)

Positive and negative values of ZS indicate increasing trends and decreasing trends, respectively. At the 5% and
1% significance level, the null hypothesis of no trend is rejected if |ZS |> 1.96 and |ZS|> 2.576, respectively.
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4. Results
4.1. Bias and Error Assessments

Figure 1 shows the spatial distribution of the climatological annual mean PW from the radiosonde observations
and the reanalyses during 1979–2012 (1979–2001 for the ERA-40 case) over China. It can be seen that most
reanalyses reproduce well the observed mean PW and its spatial variations over China, especially over eastern
China. The pattern correlation between the reanalyses and the observations is 0.96 or higher. The RB (relative
bias) of the reanalysis PW compared with the radiosonde PW during 1979–2012 (1979–2001 for the ERA-40)
is shown in Figure 2. For most of the reanalyses, the RB is within ~10% over most northern and eastern
China, but many of the reanalyses underestimate the observed PW by ∼20–60% over most western China. In
particular, the RB reaches �40 to �60% over the western Tibetan Plateau, where the large negative RB results
partly from the fact that the radiosonde PWwas interpolated from the surrounding stations with lower elevations
(thus with a deeper atmosphere and higher PW). This suggests that the elevation difference between the

Figure 2. (a–h) The relative bias (in% of the observedmean PW) of themonthly PW from the reanalyses comparedwith the radiosonde observations during 1979–2012
(1979–2001 for the ERA-40 case in Figure 2g).
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reanalyses and the radiosonde stations can induce a large RB in the long-term mean PW. The 20CR PW is
about 5%–20% higher than the radiosonde PW over most of China except the western and eastern parts of
the Tibetan Plateau (Figure 3i), while the CFSR overestimates the PW by 20%–60% over Xinjiang province (the
Northwest) of China (Figure 3h). The ERA-40 also shows positive RB (5–20%) over many areas outside the
Tibetan Plateau (Figure 3g). Although the CFSR, MERRA, and ERA-Interim have higher spatial resolution than
the others (Table 1), their PW shows RBs with spatial patterns and magnitude similar to the other products.
Although the large dry biases over the Tibetan Plateaumay partly result from the elevation differencementioned
above, the relative biases over the rest of the country are likely due to systematic errors inducedmainly bymodel
and observational biases in the reanalysis products. Figure 2 suggests that despite of using improved assimilation
systems the newer-generation reanalyses do not clearly show reduced biases in their mean PW over China.

The RMSE (Figure 3) of the reanalysis PW with respect to the radiosonde observations is about 1–3mm for
most of northern China (north of ~35°N), but it is over 3mm in most northwestern and southwestern China,

Figure 3. (a–h) The root-mean-square error (RMSE) of reanalysis monthly PW (mm) relative to the PW derived from radiosonde observations over China during
1979–2012 (1979–2001 for Figure 3g).

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023906

ZHAO ET AL. EVALUATION FOR REANALYSIS PW 10,710



where the radiosonde PW is less reliable due to sparse observations there. In particular, the RMSE reaches 6mm
or more over the Sichuan Basin and southwestern part of the Tibetan Plateau. The NCEP/NCAR and NCEP/DOE,
two earlier-generation reanalyses, and the JRA-55 show larger RMSE (>2mm) over most southeastern China
than the other products, while the 20CR (Figure 3i) exhibits a RMSE over 2.5mm over eastern China (east of
100°E.) and northwestern part of the Tibetan Plateau. The large RMSE in the 20CR PW is likely because of
no humidity, and other upper air observations were assimilated into this product [Compo et al., 2011]. The
newer reanalysis products (ERA-interim, MERRA, and CFSR) generally show smaller RMSE than the other products
(Figures 3c, 3f, and 3h).

4.2. Correlation and Trend Analysis

Figure 4 shows the correlation maps between the observed and reanalysis monthly PW anomalies during
1979–2012 (1979–2001 for ERA-40). It can be seen that most reanalysis products, except the 20CR, are highly

Figure 4. (a–h) Spatial distributions of the correlation coefficient between the observed and reanalysis monthly PW anomalies during 1979–2012 (1979–2001 for
Figure 4g) over China. Essentially, all the areas are statistically significant at the 5% level.
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Figure 5. Time series of 9-point-moving-averaged monthly PW anomalies (mm, relative to the 2003–2012 mean, but
the 1979–2001 mean for ERA-40) averaged over (a) whole China and the (c and d) three subregions outlined in
Figure 1a from 1979 to 2012. The year label on the x axis marks the start?? of the year in this and all other time series
plots of this paper.
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correlated (r> 0.7) with the observations over most China, especially east of ∼90°E. In particular, the MERRA,
JRA-55, ERA-Interim, ERA-40, and the CFSR are more strongly correlated (r≥ 0.9) with the observations over
many areas of eastern China than the other products. Again, the 20CR shows noticeably lower correlations as
its humidity fields over land are not directly constrained by observations.

To examine the interannual variations and long-term changes in regional PW, Figure 5 shows the time series
of monthly PW anomalies (relative to 2003–2012 mean, which is considered more reliable than older records)
from the reanalysis products and the radiosonde observations averaged over the three subregions (cf. Figure 1a)
and China as a whole. It is clear that the PW interannual variations in most reanalyses are highly consistent
(r= 0.63–0.94; Table 2) with the observed PW series over China. The NCEP/NCAR, NCEP/DOE, and 20CR show
lower performances than the other reanalyses in depicting the observed PW variations over northern and
southwestern China (Table 2). Consistent with Figure 4, relatively low correlations between the reanalyses
and the observations are seen over the Tibetan Plateau (i.e., region III; Table 2). For long-term changes, however,
there are clear discrepancies between the reanalyses and the observations before around 2003 due to wet
biases in the reanalyses in the earlier period. This is especially true over southeastern and northern China
(Figures 5b and 5c). This wet bias in monthly mean PW results from the fact that the reanalyses assimilated
the unhomogenized radiosonde records that contain a wet sampling bias before around 2003 due to a lack of
sampling of dry conditions by and a slow response time of older humidity sensors [Dai et al., 2011]. These
biases have been corrected in the homogenized data used here. Some studies [e.g., Wang and Zhang, 2008;
Bian et al., 2010] also confirmed that systematic replacement of older Shang-M (slow response with wet biases)
by newer Shang-E humidity sensors has taken place in Chinese radiosonde network around the year of 2002,
which can lead to a spurious downward trend in tropospheric humidity at most Chinese stations. The use of
the 2003–2012 mean as the baseline forces all the lines in Figure 5 (and Figures 7 and 8 shown below) to
have the same zero mean and thus creates an apparent better match during 2003–2012 than during earlier
years. The large spread among the lines before 2003 may also give a false impression that the variations for
individual lines are larger before 2003 than during the later period in these figures.

The spatial patterns of the long-term PW trends from the reanalyses and observations during the study
period are shown in Figure 6. It can be seen that none of the reanalyses, besides the ERA-40 and 20CR,
can reproduce the observed trend pattern, and the reanalyses themselves differ substantially among them.
In contrast to the large upward trends in the observations, spurious large downward trends over Southeast
China are seen in the NCEP/NCAR, NCEP/DOE, JRA-55, and the JRA-25. The newer-generation reanalyses
(the ERA-Interim, JRA-55, and MERRA) also perform poorly in capturing the long-term trends, even though
they do well in depicting the observed PW variations over China (Figures 4 and 5). The ERA-40 and 20CR
roughly capture the observed PW trend patterns with comparable magnitudes of upward trends over most
China (with a significant pattern correlation of 0.77), and for China as a whole and for the subregions (Table 3).
The good performance of the 20CR is partly because this reanalysis assimilated only the observations of
surface pressure and SSTs [Compo et al., 2011], and thus, it is not affected by the inhomogeneities in radio-
sonde and satellite records.

Table 2. The Correlation Coefficients of Regional-Mean PW, Temperature (T), and Relative Humidity (RH) Anomalies Between the Reanalyses and Observations
During 1979–2012 (1979–2001 for ERA-40)a

NCEP/NCAR NCEP/DOE MERRA JRA-55 JRA-25 ERA-Int. ERA-40 CFSR 20CR

Nationwide PW 0.73 0.66 0.91 0.92 0.86 0.85 0.88 0.91 0.77
T 0.96 0.95 0.98 0.98 0.97 0.97 0.95 0.93 0.88
RH 0.60 0.67 0.76 0.82 0.68 0.75 0.82 0.60 0.54

Region I (Southeast) PW 0.75 0.70 0.93 0.90 0.85 0.88 0.94 0.92 0.78
T 0.98 0.98 0.99 0.99 0.99 0.99 0.94 0.98 0.88
RH 0.58 0.58 0.79 0.80 0.60 0.78 0.88 0.77 0.70

Region II (North) PW 0.79 0.68 0.89 0.91 0.87 0.82 0.81 0.83 0.63
T 0.98 0.98 0.99 0.99 0.98 0.98 0.93 0.96 0.91
RH 0.68 0.71 0.83 0.84 0.77 0.79 0.82 0.67 0.50

Region III (Southwest) PW 0.78 0.84 0.82 0.83 0.84 0.82 0.73 0.77 0.69
T 0.88 0.83 0.94 0.91 0.90 0.92 0.91 0.80 0.71
RH 0.76 0.76 0.74 0.69 0.69 0.74 0.74 0.47 0.37

aNumbers in boldface are statistically significant at the 5% level. The T and RH were averaged from 1000 to 300mb using pressure as weighting.
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Figure 6. (a–j) Maps of linear trends (mmdecade�1) for monthly PW anomalies estimated from the observations and
the reanalyses over China during 1979–2012 (1979–2001 for the ERA-40 in Figure 6h). R in Figures 6b–6j is the pattern
correlations between the reanalyses and the observations in Figure 6a.The stippling indicates that the trend is statistically
significant at the 5% level.
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In summary, most reanalysis products can depict observed interannual PW variations over eastern and northern
China but show relatively limited performance over western China, especially over the Tibetan Plateau. Few
reanalyses besides the ERA-40 and 20CR can capture the observed long-term PW trends, and their PW trends
differ substantially from each other. This poor performance results from the spurious changes in the raw
humidity records from radiosondes and the varying role of satellite observations in individual reanalyses.
In general, the newer-generation reanalyses (e.g., ERA-40, ERA-Interim, JRA-25, JRA-55, MERRA, and CFSR)
perform relatively better than the earlier ones (e.g., the NCEP/NCAR and NCEP/DOE) in describing the observed
PW variations over China, but the 20CR and ERA-40 are the only products that broadly capture the observed
PW trends over China since the 1979.

4.3. Contributions of T and RH to PW Biases

Since specific humidity (q) is equal to saturation specific humidity (qs(T)) times RH, the long-term PW change can
be attributed to two components associated with air temperature (T) and RH changes. The qs(T) is expected to
increase at approximately 7% per 1 K rise in T following the Clausius-Clapeyron equation [Trenberth et al., 2003,
2005], while RH changes are often small [Dai, 2006; Zhao et al., 2012]. Some previous studies have examined the
relationship between tropospheric water vapor content and air temperature [Gaffen et al., 1992; Sun and Oort,
1995; Zhai and Eskridge, 1997; Wang and Gaffen, 2001; Ross et al., 2002] based on unhomogenized radiosonde
data. Zhao et al. [2012] examined the relationships between the PW and air temperature as well as RH changes
over China using the homogenized radiosonde data from Dai et al. [2011]. They found that PW variations and
changes are highly correlated with middle-lower tropospheric mean temperature, with r=0.83 and a slope of
~7.6%K�1, while tropospheric RH only shows small variations and weak trends over China. Here we compare
the PW versus T and PW versus RH relationships in the reanalyses with those in homogenized radiosonde data
to further quantify any biases existed in the reanalysis products.

Figure 7 shows the time series of tropospheric mean monthly T and RH anomalies from the reanalyses and the
radiosonde observations averaged over whole China and the three subregions. It can be seen that the variations
and long-term changes in reanalysis T are highly consistent with the observations, especially over Southeast
and North China (Figures 7c and 7e). However, the RH from the reanalyses agrees well with the observations
only after about 2003, before which most of the reanalyses show dry biases, especially over Southeast China
(Figure 7d). The RH biases are largely consistent with the PW biases shown in Figure 5, which suggests that most
of the PW biases result from the biases in RH. Table 2 summarizes the correlations of T and RH between the
reanalyses and the observations over whole China and the three subregions. It is clear that the correlations for
T are higher than those for RH for all the regions, including the Tibetan Plateau (Southwest China). This implies
that the reanalysis RH contains larger discontinuities than T records, especially since about 2003 (Figure 7).

Figure 8 shows the time series of national mean PW, T, and RH anomalies relative to the 2003–2012 mean
shown in Figure 5a and Figures 7a and 7b. It can be seen that the PW is more consistent with the T than with
the RH in the variations and long-term changes for the observations, whereas it is the opposite for most of the
reanalyses. Except for the ERA-40, CFSR, and 20CR, all other reanalyses show that the PW decline since about
2005 agrees well with the RH decrease, especially in the NCEP/NCAR and NCEP/DOE. In contrast to the observa-
tions, the PW versus RH correlations are stronger than the PW versus T correlations in the NCEP/NCAR,
NCEP/DOE, JRA-55, JRA-25, and ERA-Interim in Southeast and North China (Table 4).

Figures 9 and 10 compare the long-term trends of tropospheric mean T and RH monthly anomalies from
the reanalyses and the observations. Most of the reanalyses show significant warming trends as seen in
the observations over most China, although large differences exist in the spatial pattern and magnitude.
For example, the NCEP/DOE shows cooling over parts of the Tibetan Plateau where the observations suggest

Table 3. The PW Liner Trends (mmdecade�1) Derived From Regional-Mean Monthly Anomalies for the Reanalyses and the Observationsa

Obs. NCEP/NCAR NCEP/DOE MERRA JRA-55 JRA-25 ERA-Int. ERA-40 CFSR 20CR

Nationwide 0.33 �0.23 �0.28 0.11 0.05 0.01 �0.03 0.25 0.01 0.23
Region I (Southeast) 0.38 �0.49 �0.56 0.07 �0.15 �0.21 �0.12 0.31 �0.03 0.31
Region II (North) 0.30 �0.02 �0.10 0.15 0.25 0.20 �0.01 0.24 �0.06 0.20
Region III (Southwest) 0.27 0.04 0.04 0.16 0.19 0.20 0.13 0.24 0.20 0.18

aThe time periods are the same as Table 2. Numbers in boldface are statistically significant at the 5% level.
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large warming. The CFSR and 20CR capture the observed warming patterns and magnitude better than the
others (with the pattern correlations of 0.94 and 0.95, respectively). For RH, however, most reanalysis
products except 20CR show a significant drying trend over most eastern China and parts of northern China
(Figures 10b–10j), in contrast to the weak trends seen in the radiosonde data (Figure 10a). These RH trend
patterns from the reanalyses are broadly comparable with their PW trends shown in Figure 6, with a pattern
correlation over 0.6 for the NCEP/NCAR, NCEP/DOE, JRA-55, JRA-25, and ERA-Interim. This suggests that most

Figure 7. Same as Figure 5 but for temperature anomalies (T in °C, left column) and relative humidity anomalies (RH in %, right column) averaged from 1000
to 300mb using pressure thickness for each level as weighting. The monthly T and RH anomalies are computed as deviations from the 2003–2012 mean (the
1979–2001 mean for ERA-40).
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Figure 8. Time series of 9-point-moving-averaged PW anomalies (mm, blue line), the 1000–300mb mean T (°C, black line) and RH anomalies (%, red line) for China.
The R1 and R2 are the correlation coefficients between the T and PW, and between the RH and PW, respectively. These monthly anomalies are relative to the
2003–2012 mean (the 1979–2001 mean for ERA-40).
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of the PW changes can be explained by the RH changes in most of the reanalyses, rather than due to T changes
as in the observations and 20CR. The 20CR stands out with weak RH trends that are comparable to the observa-
tions (Figure 10j). We also examined these relationships at some individual pressure levels in the middle-lower
troposphere and found similar results.

To further illustrate the contributions of T and RH changes to the PW differences between the reanalyses and
the observations, Figure 11 shows the difference series of PW, T, and RH anomalies between the reanalyses
and the observations averaged over China. It is clear that the long-term changes of the PW difference series
comemainly from those of the RH difference series for all the reanalyses, with a positive correlation of 0.65–0.98
between them.

4.4. EOF Analysis

To investigate how well the spatiotemporal variations of PW is captured in the reanalyses, we performed an
empirical orthogonal function (EOF) analysis of the monthly PW anomalies (normalized by local standard
deviation) to identify and compare the leading modes of variability. Figures 12 and 13 show the spatial pat-
terns and the principal components (PCs) for the two leading EOFs, which together explain nearly 50% of the
total variance for both the observations and reanalyses. Figure 12 shows that the first EOFs from the reana-
lyses agree well with EOF 1 from the observations, with a pattern correlation of 0.73–0.88 and a temporal
correlation of 0.18–0.77. This EOF represents a pattern with the same sign over whole China, with the largest
contribution from central East China. Up to around year 2005, the PCs show an upward trend for the observa-
tions and most of the reanalyses. After 2005, all the reanalyses, except the 20CR and CFSR, show decreases
(Figure 12j). As mentioned above, the recent changes in radiosonde types in the early 2000s in China induced
a dry biases (relative to previous records) in radiosonde humidity data for the recent years, and this change
appears to have had large impacts on the PW of the last 10 years in many of the reanalyses, including
NCEP/NCAR, NCEP/DOE, MERRA, JRA-25, JRA-50, and ERA-Interim (Figure 12j). The MERRA performed best
among the reanalyses in reproducing EOF 1 (a long-term change mode), with a pattern correlation of 0.88
and temporal correlation of 0.77. Seasonal analyses revealed (not shown) that most reanalyses seem to perform
better in winter than in summer in reproducing the first EOF.

The PC1 time series of the observed PW (Figure 12j) shows apparent stepwise jumps around 1986/1987 and
1997/1998. To a lesser degree, these apparent jumps are also evident in the PW time series for whole China
in Figure 5a, and also in Zhao et al. [2012, Figure 14a]. These and other PW changes are actually closely
associated with similar changes in surface (Ts) and lower tropospheric (Tm) air temperature changes, rather
than the homogenized RH from Dai et al. [2011] (Figures 7a and 7b, also see Figures 14a and 14b of Zhao
et al. [2012]). It is possible that the homogenized Tm data from Haimberger et al. [2008] (used by Dai et al.
[2011]) might still contain some discontinuities that could be propagated into the PW (which was derived
using the Tm and RH data). However, Figure 14a of Zhao et al. [2012] shows that the Tm (from radiosonde
observations) and Ts (from surface station observations) over whole China are quite consistent with each
other. This suggests that most of the Tm variations (including those around 1986/1987 and 1997/1998)
are likely to be real. Thus, we believe that the whole China PW changes shown in Figure 5a of this paper
and Figure 14a of Zhao et al. [2012] are likely to be real, and the changes around 1997/1998 is associated
with the strong El Niño at that time.

Table 4. The Correlation Coefficients of Regional-Mean Monthly Anomalies Between the T and PW and Between the RH and PW During 1979–2012 (1979–2001
for ERA-40)a

Obs. NCEP/NCAR NCEP/DOE MERRA JRA-55 JRA-25 ERA-Int. ERA-40 CFSR 20CR

Nationwide T versus PW 0.72 0.10 0.13 0.57 0.54 0.44 0.42 0.78 0.35 0.62
RH versus PW 0.61 0.75 0.80 0.36 0.44 0.61 0.53 0.21 0.32 0.53

Region I (Southeast) T versus PW 0.74 0.05 0.04 0.54 0.37 0.29 0.39 0.77 0.42 0.71
RH versus PW 0.60 0.81 0.84 0.38 0.55 0.65 0.58 0.27 0.32 0.40

Region II (North) T versus PW 0.56 0.32 0.23 0.45 0.49 0.41 0.33 0.63 0.10 0.31
RH versus PW 0.53 0.59 0.76 0.38 0.56 0.57 0.51 0.16 0.51 0.64

Region III (Southwest) T versus PW 0.59 0.66 0.48 0.68 0.64 0.58 0.64 0.61 0.44 0.60
RH versus PW 0.66 0.46 0.45 0.29 0.59 0.68 0.43 0.46 0.36 0.69

aNumbers in boldface are statistically significant at the 5% level. The T and RH were averaged from 1000 to 300mb using pressure as weighting.
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Figure 9. (a–j) Same as Figure 6, but for the linear trends of tropospheric mean T monthly anomalies (°C decade�1) averaged
from surface to 300mb. R1 in each panel is the pattern correlation of the T trend with that of the PW trend shown in Figure 6,
and R2 in Figures 9b–9j is the pattern correlation of the T trends between the reanalysis and the observations shown in (a).
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Figure 10. As in Figure 9, but for the RH linear trends (% decade�1).
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Figure 11. Difference series (9-point-moving-averaged) of PW anomalies (dPW, mm, blue line), T anomalies (dT, °C, black line), and RH anomalies (dRH, %, red line)
between the reanalyses and the observations for China. The R1 (R2) is the correlation coefficient between the dT and dPW (dRH and dPW).
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Figure 12. (a–i) The first leading EOF and (j) the corresponding 7-point-moving averaged PC time series derived from observed and reanalysis PW monthly anomalies
during 1979–2012. The monthly PW anomalies were normalized by local standard deviation and multiplied by the square root of cosine of the latitude at each
grid box before the EOF analysis. The explained percentage variance is also shown in parentheses on top of Figures 12a–12i. The pattern correlation (R) between the
reanalysis and the observations (Figure 12a) is shown in Figures 12b–12i, and the PC correlation (R1–R8) between the observation and corresponding reanalysis is also
shown in Figure 12j.
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Figure 13. (a–j) Same as in Figure 12, but for the second leading EOF and its PC time series. The black line (Obs.) in Figure 13j has a maximum correlation of ~0.3 with
the Niño3.4 SST index when the PC lags the SST index by 9months.
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The second EOF of PW in the observations shows a dipole (i.e., anticorrelated) mode between Southeast and the
rest of China, with the temporal coefficient (PC2) showing mostly multiyear variations (Figures 13a and 13j). This
observed mode is broadly comparable to the second EOF of the normalized PW anomalies (in %) shown in
Figure 15 of Zhao et al. [2012]. It has a weak correlation of 0.3 with the El Niño–Southern Oscillation (ENSO) with
a ninemonth lag by PC2. This mode suggests that during warm El Niño events, water vapor content tends to be
above normal over Southeast China and below normal over the rest of China. The EOF 2 pattern is linked to a
large-scale dipole pattern of anomaly vertical motion [Zhao et al., 2012]. The corresponding EOF 2 derived from
the reanalyses roughly captures the spatial and temporal variations represented by the EOF 2 from the obser-
vations, with significant pattern correlations of 0.72–0.96 with Figure 13a. The PC2 from the reanalyses exhibit
similar multiyear variations as seen in the PC2 of the observations with significant correlations of 0.42–0.83
(Figure 13j). Among the reanalyses, the JRA-25 performedbest in describing the spatiotemporal variations revealed
by EOF 2 from the observations, with a strong pattern correlation of 0.96 and temporal correlation of 0.83.

5. Summary and Concluding Remarks

In this study, the interannual variations and long-term changes of precipitable water (PW) derived from nine
reanalysis products (i.e., NCEP/NCAR, NCEP/DOE, MERRA, JRA-55, JRA-25, ERA-Interim, ERA-40, CFSR, and 20CR)
are evaluated against the homogenized radiosonde data over China from 1979 to 2012 (1979–2001 for ERA-40).
The possible causes for the PW biases in the reanalyses are also discussed by analyzing the tropospheric mean
air temperature (T) and relative humidity (RH). The main findings are summarized below.

Results show that most of the reanalyses reproduce well the observed PW climatology (i.e., mean values and
their spatial variations) over China, with a pattern correlation of 0.96 or higher. Their relative biases are within
~20% over most of China, but can be 20%–40% or higher over western China, such as the Tibetan Plateau, the
Taklimakan desert, and the Sichuan Basin. The largest dry bias (>60%) occurs over the northwestern part of the
Tibetan Plateau, partly due to the elevation differences between the radiosonde stations and reanalysis grid
boxes. The newer-generation reanalyses (e.g., MERRA, JRA25, JRA55, CFSR, and ERA-Interim) generally have
smaller root-mean-square-error (RMSE) than the older-generation ones (e.g., NCEP/NCAR, NCEP/DOE, and ERA-40).

Most of the reanalyses depict well the observed PW interannual variations over eastern and northern China but
show relatively limited performance over western China, especially over the Tibetan Plateau. Most of the reana-
lyses are unable to capture the observed PW upward trends since 1979 by showing spurious wet biases before
about 2003, and their PW trends differ substantially from each other. In particular, the ERA-Interim, NCEP/NCAR,
NCEP/DOE, JRA-25, and the JRA-55 show significantly downward trends (contrary to the observations) over
southeastern China during 1979–2012. Such erroneous long-term trends in reanalysis PW result mainly from
the spurious changes in the assimilated raw humidity data from radiosondes and the varying role of satellite
observations in each reanalysis. As an exception, the 20CR roughly reproduces the observed PW increases
from 1979 to 2012 over most of China, mainly because this product did not assimilate upper air radiosonde
and satellite observations and thus was not affected by inhomogeneities in these observational data.

Further analyses revealed that the wet PW bias before about 2003 in most of the reanalyses resulted mainly
from the wet bias in RH before the early 2000s, rather than due to the errors in tropospheric T. This RH wet
bias is linked to a change from the old humidity sensor Shang-M to the new Shang-E around 2002 over
China [Wang and Zhang, 2008; Bian et al., 2010]. Since the old sensor had a longer response time and lower
sensitivity to dry conditions, the monthly mean RH from the earlier record contains a wet bias relative to the
recent record. These radiosonde biases were assimilated into the reanalyses and apparently had large impacts
on reanalysis PW and humidity fields, despite the assimilation of satellite observations since 1979. Thus, most
reanalysis products, except the 20CR, should not be used for estimating long-term changes in atmospheric
water vapor over China.

An EOF analysis of the monthly PW anomalies during 1979–2012 shows that the two leading EOFs and their
corresponding PCs, which account for nearly 50% of the total variance, derived from the reanalysis are compar-
able to those from the observations, with theMERRA and JRA-25 performing best in reproducing the EOF 1 and
EOF 2, respectively. The first EOF depicts a pattern of the same signwith the largest contribution from Southeast
China that reflects primarily the national mean PW changes, while the second EOF shows a dipole pattern
between Southeast China and the rest of the country that exhibits mostly interannual variations correlated with
ENSO, with higher PW during El Niño events over Southeast China and lower PW over the rest of the country.
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Despite the uneven and sparse observations over western China, especially over the Tibetan Plateau and
the Taklimakan desert, our results strongly suggest that discontinuities in radiosonde observations can lead
to spurious changes in reanalysis products even for the post-1979 satellite era, when satellite observations
become increasingly important for constraining upper air conditions. Furthermore, because water vapor

Figure 14. Same as Figure 5 but for precipitation anomalies (mm/d, left column) and total cloud cover anomalies (%, right column). Note that the observed precipitation
is obtained by merging the CRU TS3.22 (2011–2012) into the GPCC V6 (1901–2010), and the observed total cloud cover is obtained from the CRU TS3.22.
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affects precipitation, cloudiness, and other related fields, it is possible that the errors and biases in PW may
propagate into the other fields in the reanalysis products, as is the case for precipitation and cloud amount
over China (Figure 14). Thus, the findings regarding the PW biases reported here have important implications
for other water vapor-related fields in reanalysis products. Therefore, more efforts should be devoted to
generate homogenized input data for future reanalysis products. This has become an increasingly urgent issue
as many groups have been trying to produce increasingly longer reanalysis products for use in long-term
climate change analyses. Without the input of homogenized observations, long-term reanalysis products will
likely produce spurious and misleading changes.
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