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Horizontal gene transfer (HGT) among bacteria, archaea, and
viruses is widespread, but the extent of transfers from these lineages
into eukaryotic organisms is contentious. Here we systematically
identify hundreds of genes that were likely acquired horizontally
from a variety of sources by the early-diverging fungal phyla
Microsporidia and Cryptomycota. Interestingly, the Microsporidia
have acquired via HGT several genes involved in nucleic acid
synthesis and salvage, such as those encoding thymidine kinase (TK),
cytidylate kinase, and purine nucleotide phosphorylase. We show
that these HGT-derived nucleic acid synthesis genes tend to function
at the interface between the metabolic networks of the host and
pathogen. Thus, these genes likely play vital roles in diversifying
the useable nucleic acid components available to the intracellular
parasite, often through the direct capture of resources from the host.
Using an in vivo viability assay, we also demonstrate that one of
these genes, TK, encodes an enzyme that is capable of activating
known prodrugs to their active form, which suggests a possible treat-
ment route for microsporidiosis. We further argue that interfacial
genes with well-understood activities, especially those horizontally
transferred from bacteria or viruses, could provide medical treat-
ments for microsporidian infections.
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Horizontal gene transfer (HGT), or the nonvertical trans-
mission of genetic information between distantly related

organisms, is common in bacteria, archaea, and viruses (1–3).
The importance and scale of HGT in eukaryotes, however, is a
matter of debate (4–7). In particular, HGT into fungi was
thought to be rare, but several examples from bacteria into fungi
or between fungi have recently been described (5, 8, 9). For
example, one phylum of early-diverging fungi, the Microsporidia,
has had a handful of HGT events documented (5, 10–12), but
these fungi are thought to have acquired relatively few genes
through HGT (13).
Microsporidia are obligate intracellular parasites of animals.

Their genomes are highly compact, and they have eliminated
many core metabolic processes in favor of relying on their host
for the synthesis of essential molecules (14). They are opportu-
nistic pathogens that primarily infect immunocompromised in-
dividuals, such as AIDS patients and organ-transplant recipients
(15). They also infect a number of economically important ani-
mals as potent zoonotic pathogens (16). Members of a related
early-diverging fungal phylum, Cryptomycota, are also obligate
intracellular parasites that infect algae (17), amoeboids (18), and
other fungi (19), highlighting the similarity between their life-
styles and their evolutionary affinity.
Prior analysis of microsporidian genomes demonstrated that,

like other microbial eukaryotes, this phylum of fungi has obtained
multiple genes through HGT (20), which may have provided a
portion of the raw material required for adaptation, as seen in
other organisms (21). Known HGT events into Microsporidia

include the following: (i) the ADP/ATP translocase gene family,
originating from an HGT event that transferred the founding gene
from a member of the bacterial phylum Chlamydia (10), which are
known to steal energy-bearing molecules from their host; (ii) a six-
gene folate synthesis pathway transferred into Encephalitozoon
hellem from multiple donors, a transfer hypothesized to reduce
host metabolic stress (11); and (iii) the acquisition of a glutamate-
ammonia ligase from an unknown prokaryotic source by Spraguea
lophii, which is thought to provide spores a mechanism for defense
against the ammonia generated by the decomposing flesh in which
they are embedded (12). These case studies, the first of which is
shared with the Cryptomycota (19), suggest a role for HGT in the
evolution of their unusual pathogenic metabolisms and indicate
the need for a thorough, systematic analysis of HGT events in
these early-diverging fungi.

Results
To quantify the number of HGT-derived genes in these intracel-
lular parasites, we deployed a high-throughput analytical pipeline
to analyze the mode of inheritance of 14,914 genes (Table 1) from
sequenced genomes of Encephalitozoon cuniculi (22, 23), E. hellem
(11), Nosema ceranae (24, 25), Nematocida parisii (26), and Rozella
allomycis (19), the latter being the sole Cryptomycota genome
available (Table S1). Specifically, for each gene, we first generated
Alien Index (AI) scores (27) that compared the similarity of the
gene between specified ingroup and outgroup taxa (e.g., fungi and
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bacteria, respectively; Fig. S1). We chose a more relaxed AI score
cutoff than the original study because the relatively small number
of genes in these organisms made manual curation of gene trees
feasible. Using this AI cutoff, we were able to recover 8 of the 10
previously noted HGT events that fell within the scope of the
species surveyed (5, 10, 11, 13, 22, 26, 28, 29); even using our
relaxed AI threshold, two previously described HGTs were not
identified, in one case narrowly (Table S2).
Detection of most, but not all, known HGT events suggests that

our methodology is sensitive but conservative. Between 44 and 64
microsporidian genes per genome and 327 R. allomycis genes were
designated as high-positive AI genes (genes with AI ≥ 20 or with
10 ≤ AI < 20 and no significant BLAST hit to other fungi; Dataset
S1). The high-positive AI genes were cross-referenced with
Eukaryotic Orthologous Group (KOG), Kyoto Encyclopedia of
Genes and Genomes (KEGG), Gene Ontology (GO), and
InterPro annotations provided by the Joint Genome Institute
MycoCosm Portal (30). Between 39 and 56 microsporidian genes
per genome and 268 R. allomycis genes had at least one functional
annotation and were designated as genes of interest. These genes
of interest were analyzed phylogenetically, and 10–22 micro-
sporidian genes per genome and 57 R. allomycis genes had strong
phylogenetic support for HGT (Table 1, Fig. 1, and Dataset S2).
In addition, the majority of these likely transferred genes were
nested within well-established higher-order taxa, which further
supports their HGT origin. Depending on the stringency of cri-
teria applied, the range of HGT events varied between 0.34% and
2.11% of the total genes present in a genome.
Many of the putatively HGT-derived genes identified in this

screen are annotated as aminoacyl-tRNA synthetases, DNA repair
enzymes, and nucleic acid anabolic enzymes (Dataset S2). The
latter group of genes is particularly interesting because it includes
previously characterized HGTs. For example, purine nucleotide
phosphorylases (PNPs) and phosphoribosyltransferases (PRTs)
are hypothesized to play roles in guanine metabolism in E. hellem
(11), whereas ADP:ATP translocases transferred from Chlamydia
are found in all Microsporidia (10). In addition, cytidylate kinase
(CK) was previously noted as a possible HGT (5, 26), but its role
in Microsporidian biology and its connection to other HGTs is
uncharacterized. These, together with the newly identified nucleic
acid salvage gene thymidine kinase (TK), may enable the harvest
of host nucleosides and nucleotides.
Closer examination of the nucleic acid subpathway in the Micro-

sporidia E. hellem revealed it to be completely disconnected
from the core metabolic network, an observation conserved in
the other microsporidians examined (Fig. 2). Thus, many, if not
all, Microsporidia are unable to synthesize nucleic acid compo-
nents de novo and must rely on scavenging free nucleic acid
components from the host. Remarkably, each of the HGT-derived
genes in the E. hellem metabolic subpathway lies on or near the
perimeter. The only HGT-derived gene (PNP) that is removed by
one step coexists with an HGT-derived gene (PRT) that directly
connects it to the perimeter of the subpathway (11, 29). Thus, each

HGT provides a new interface that connects the pathogen’s
nucleic acid subpathway to the host metabolic network. To test the
hypothesis that HGT-derived metabolic nodes tend to lie at the
host–pathogen interface, we permuted the E. hellem nucleic acid
metabolic subpathway, independently evaluating enzymatic steps
and genes for the number of steps remaining to the perimeter. We
found that the observed subnetwork was among the most extreme
permutations (P = 0.0027 and P = 0.019, respectively; Dataset S3),
leading us to focus on the genes at the perimeter of this network.
The transfer of TK into microsporidians would enable the

direct phosphorylation of thymidine from the host into dTMP for
further synthesis by the pathogen, relieving shortages that might
be encountered at various stages of the host’s cell cycle. In
particular, TK reduces the need for folate by microsporidians,
the ultimate source of which is the diet of the animal host. Folate
donates a methyl group to convert dUMP to dTMP, and this
particular stress has been invoked previously to explain the
horizontal transfer of several genes encoding folate synthesis
enzymes into E. hellem (11). Interestingly, not all microsporidians
possess the bacterial TK, such as Vavraia culicis and Trachipleis-
tophora hominis. Instead, these organisms have retained an ancestral
gene encoding a deoxycytidine monophosphate deaminase, which

Table 1. HGT events among early-diverging fungi

Category E. cuniculi E. hellem No. ceranae N. parisii R. allomycis

Total genes 1,996 1,847 2,060 2,661 6,350
Genes with AI Score 1,296 1,313 1,004 1,241 4,406
Positive AI genes 594 610 390 576 1,240
High-positive AI genes 55 64 44 58 327
Genes of interest 50 56 39 39 268
Ambiguous HGT events 15 17 11 13 73
Likely HGT events 16 22 16 10 57
Likely HGTs with nested topologies 8 12 9 9 41
Range of HGT event proportion, % 0.40–1.55 0.65–2.11 0.44–1.31 0.34–0.86 0.65–2.04
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Fig. 1. Plots of the AI for five early-diverging fungal eukaryotes. (A) AI
scores were calculated for every gene in the five genomes analyzed, and
they were ordered by decreasing AI score. (B) Genes with an AI score ≥ 10
were plotted with colors corresponding to whether they passed or failed the
AI score or phylogenetic filters (see main text).
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produces dUMP and, ultimately, dTMP from dCMP (Fig. 2).
Thus, microsporidians have evolved three distinct, but sometimes
overlapping, strategies for the production of dTMP, suggesting
that production of this nucleotide is central to their intracellular
parasitic lifestyle.
Of the three strategies for making dTMP, the HGT of TK

stands out because the gene is thought to have been lost in the
fungal lineage shortly after it diverged from animals (31). The
phylogeny of TK sequences supports two independent horizontal
transfers of bacterial TK genes into several Microsporidia taxa and
into R. allomycis (Fig. 3). Likelihood ratio tests rejected alternate
tree topologies where the Microsporidia TKs were sister to either
Animalia or Eukarya TKs; likewise, alternate topologies in which
the R. allomycis TK was sister to either Animalia or Eukarya TKs
were rejected. Finally, an alternate topology in which R. allomycis
and the Microsporidia TKs were grouped together was also rejec-
ted, further supporting the independent transfer of TK into these
phyla (Table 2). In addition to these two HGT events, we found
an independent HGT of a putative, viral-like TK into N. parisii
(Fig. 4 and Fig. S2), documenting a third parallel transfer of TK
into these fungal intracellular parasites.
The absolute dependence of microsporidians on their hosts for

nucleic acid components suggests that this subpathway could be a
viable target for antimicrosporidian drugs. TK is an especially
promising target for disruption because of the apparent impor-
tance placed on dTMP synthesis during evolution and the wide
range of TK-activated prodrugs currently used as antiviral thera-
pies. First, we confirmed that TK is expressed by analyzing a
previously published E. cuniculi transcriptome dataset (32); TK
was in the top quartile of expressed genes at all three postinfection
time points (Table S3 and Dataset S4). We then evaluated the
predicted TK proteins of E. cuniculi, N. parisii, and R. allomycis in
an assay in which the nucleoside kinase activity of TK would ac-
tivate the prodrug 5-fluoro-2-deoxyuridine (FUdR), converting it
into the toxic compound fluorodeoxyuridine monophosphate and
killing the tester strain of Saccharomyces cerevisiae (31). The

growth of strains expressing Homo sapiens, E. cuniculi, and
N. parisii TK were completely inhibited when FUdR was present,
whereas strains expressing either predicted version of the
R. allomycis TK behaved identically to the blank vector control
strain, perhaps due to genome annotation or heterologous ex-
pression issues. Indeed, we also noted that the N. parisii TK
strain did not grow as robustly as the other four TK-expressing
strains or the blank vector control strain in any media tested,
suggesting that N. parisii TK is detrimental to S. cerevisiae growth
(Table 3). Thus, we conclude that at least two of the three TK
proteins that underwent HGT—one from viruses and one from
bacteria—are active and capable of activating known prodrugs.

Discussion
We have shown that members of the early-diverging fungal phyla
Microsporidia and Cryptomycota have acquired dozens of genes
by HGT, the vast majority of which are, to our knowledge,
reported here for the first time. These findings are inconsistent
with the hypothesis that intracellular parasites possess few HGT-
derived genes (13). Despite their prevalence, the mechanism by
which these genes are transferred into early-diverging fungi is
still unclear, and previously proposed eukaryotic HGT mecha-
nisms, such as through viral intermediates (7, 33), seem unlikely
for intracellular parasites. One possible mechanism is that phago-
cytosis of spores by host cells into intracellular vesicles (34) may
bring nucleic acids from lysed environmental bacteria into contact
with receptive spores. Because microsporidians reside in the host
cytoplasm, another possibility is that host mRNA molecules are
reverse-transcribed and incorporated into microsporidian genomes.
Whatever the molecular mechanism of the HGTs, their impact on
the microsporidian genome and metabolism has been widespread.
Nucleic acid anabolic genes, in particular, have been trans-

ferred multiple times into the Cryptomycota and Microsporidia.
These HGTs provide the intracellular parasites with novel
sources of nucleosides and nucleotides, while simultaneously
reducing metabolic stress on their hosts. This evolutionary strategy
has been described in the intracellular Apicomplexan parasite
Cryptosporidium parvum (35), which, like many microsporidians,
has acquired a bacterial TK to diversify its nucleotide sources.
Herpes viruses also rely on TK to increase dTMP levels, and TK
strongly affects its pathogenicity (36).
Previous work has shown that N. parisii replication can be

slowed by FUdR treatment, although whether this effect was a
function of host or parasite metabolism was unclear (37). Here
we show that some Microsporidia TK genes, including N. parisii
TK, indeed encode active nucleoside kinases, providing a likely
drug target with a known mechanism of action (38, 39). Thus,
antiviral prodrugs that are activated by TK, such as FUdR or
acyclovir, may offer a path to a viable treatment option for
microsporidiosis. These drugs are already used to treat diseases,
such as herpes simplex virus (40), HIV (41), and certain types of
cancers (42). In the latter cases, cancer cells are preferentially
targeted because a viral exogenous TK has been inserted into the
cell that has lower specificity than the endogenous TK (38), or
native human TK expression has been increased due to un-
controlled cellular division (43). Although we did not detect any
activity for R. allomycis TK, a negative result in a heterologous
gene expression assay is not definitive. R. allomycis TK may re-
quire a chaperone that S. cerevisiae does not have; it may require
a posttranslational modification that S. cerevisiae is unable to
perform; it may function in a narrow range of cellular conditions;
or the intron–exon boundaries may have been misannotated.
The treatment of fungal pathogens of animals has traditionally

proven challenging due to the shared physiological traits of these
sister kingdoms. Because of its inability to synthesize nucleic acid
components, nucleotide analogs that are activated by the existing
microsporidian nucleic acid subnetwork could provide new treatments
for microsporidiosis in humans and livestock. For example,
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bacterial CK prefers CMP or dCMP as a substrate, whereas the
UMP/CMP kinase found in animals and fungi prefers CMP or
UMP as a substrate (44, 45). Because Microsporidia possess the
bacterial CK, they may be much more susceptible to dCMP an-
alogs than their host cells, a treatment strategy that has been
used against HIV (46). Many other pathogenic fungi that infect
animals, such as Aspergillus fumigatus, have also acquired an ap-
preciable number of genes through HGT (47), including entire
secondary metabolism gene clusters (48). Using HGT events to
identify novel candidate drug targets may thus prove a promising
general strategy across diverse clades of pathogenic fungi and other
recalcitrant pathogens whose physiology is similar to humans.

Methods
AI Analysis of Early-Diverging Fungal Genomes. All predicted proteins from
five early-diverging fungal genomes (Table S1) were queried by using BLAST
(E-value = 0.001, max target seqs = 1,000) against a custom database consisting
of the National Center for Biotechnology Information’s (NCBI’s) nonredundant
protein database (last updated November 24, 2014), as well as additional

protein sequences from 411 fungal and plant genome assemblies (Dataset
S5). These additional genomes served to increase the representation of close
relatives to microsporidians in the database, which is critical when searching
for HGTs based on relative BLAST scores. They also allowed the taxonomic
extent of HGTs into the Microsporidia to be assessed without risking false
positives that could be caused by genomes of variable quality (e.g., bacterial
contamination). An AI approach was used to screen these genomes for
genes with significantly better BLAST hits to distantly related organisms
(e.g., metazoans or bacteria) than to closely related ones (e.g., other fungi)
and thereby identify HGT candidates. Two taxonomic lineages were first
specified: the recipient lineage into which possible HGT events may have oc-
curred (i.e., Microsporidia or Cryptomycota, depending on the query) and a
larger group of related taxa (i.e., Fungi). When parsing the BLAST output, all
hits to the recipient lineage were skipped. The AI score is given by the formula:

AI=
�
ln
�
bbhG+ 1× 10−200

�
− ln

�
bbhO+ 1× 10−200

��
,

where bbhG is the E-value of the best BLAST hit to a species within the GROUP

lineage (i.e., the best nonmicrosporidian or, in the case of R. allomycis,
noncryptomycotan fungal match) and bbhO is the E-value of the best blast
hit to a species outside of the GROUP lineage (i.e., the best nonfungal match).

Table 2. Likelihood ratio tests support two independent transfers into Microsporidia
and Cryptomycota

Description Likelihood Difference P value

Best tree from Fig. 3 −23,232.36221 n/a n/a
Rozella and Microsporidia grouped −23,276.41079 −44.048579 5.57E-07
Microsporidia sister to Animalia −23,354.81342 −122.451214 2.36E-23
Microsporidia sister to Eukarya −23,314.16858 −81.80637 5.89E-15
Rozella sister to Animalia −23,438.13523 −205.773023 1.15E-46
Rozella sister to Eukarya −23,349.71471 −117.352501 2.40E-27

n/a, not applicable.
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In cases where there were no significant BLAST hits, the corresponding bbhG
or bbhO was set to 1. AI can range from 461 to −461, and AI is greater than
zero if the gene has a better BLAST hit to a species outside of the GROUP

lineage. Contamination in the genome assembly could also result in a pos-
itive AI score; therefore, any assembly contigs containing only genes with
positive AI scores were flagged as potential contamination and eliminated
from the analysis.

Systematic Identification of Likely HGT Events. Genes with AI ≥ 20 or genes
with 20 > AI ≥ 10 and with no significant BLAST hit to other Fungi, were
classified as high-positive AI genes. These genes were cross-referenced with
KOG, KEGG, GO, and InterPro annotations provided by the Joint Genome
Institute (30), and all genes with at least one functional annotation were
classified as genes of interest and analyzed by using a phylogenetic pipeline
(Fig. S1). For each HGT candidate, a Perl script based publicly available
software (49) extracted up to 400 homologs from the custom database
(referenced above) based on BLAST similarity, allowing up to five orders of
magnitude difference between query and subject lengths, and extracting up
to five sequences per species. To reduce the number of sequences per gene
tree, highly similar sequences were collapsed with CD-HIT using default
parameters (50). Sequences were aligned with MAFFT by using the E-INS-i
strategy (51). The resulting alignment was trimmed with TRIMAL by using
the automated1 strategy (52). All genes with trimmed alignments <100
amino acids were discarded. Phylogenetic trees were constructed by using
RAxML (53) with the PROTGAMMAAUTOF amino acid model of substitution
and 100 bootstrap replicates. Trees were midpoint-rooted, and branches
with <50% bootstrap support were collapsed by using TreeCollapseCL4
(emmahodcroft.com/TreeCollapseCL.htm). The resulting phylogenies were
manually inspected to assess each gene’s mode of transmission. First, the
presence or absence of fungal BLASTP hits was determined. Second, the
nearest neighbor node to the query was identified as prokaryotic, eukary-
otic, opisthokont, and/or fungal (multiple nearest neighbors are possible
because poorly supported nodes were collapsed). Next, if the nearest node
was opisthokont, the likelihood of parallel loss to explain the topology was
assessed. Finally, we noted whether the query was nested within a well-
established alien clade. A gene’s mode of transmission was labeled as a likely
HGT event if and only if its phylogeny was inconsistent with the organismal
phylogeny (19) and any parallel-loss scenario (e.g., a protein sequence from
E. cuniculi being nested within a clade of Proteobacteria instead of sister to
the Fungi). If a phylogeny could be explained by simple parallel loss or any
mechanism other than horizontal transfer, its mode of transmission was
labeled as unlikely HGT. If the phylogeny provided no clear support for ei-
ther vertical or horizontal transmission, its mode was labeled as ambiguous.
Finally, some phylogenies were labeled as “no call” because they lacked an

interpretable topology (e.g., “star phylogeny”). All phylogenetic trees and
calls are available in Dataset S2.

Permutation Analyses of the E. hellem Nucleic Acid Subpathway. The enzymatic
steps at the periphery of the complete E. hellem nucleic acid subpathway
interface directly with the metabolism of the host (Fig. 2). These steps had a
distance to the host of zero, whereas other steps were assigned a distance
corresponding to the smallest number of steps from their nearest peripheral
metabolites. The observed average distance to the host for enzymatic steps
was 0.167 for steps experiencing HGTs, whereas the average for the com-
plete subpathway was 1.394. Because CK (and some non-HGT enzymes) can
perform multiple steps, we also considered genes in a separate analysis by
averaging the values of each step they encode, yielding an observed average
distance of 0.2 for genes experiencing HGTs vs. an average of 1.163 for the
complete subpathway. To assess significance, 1 million random permutations
were simulated, and the proportion of permuted networks that were at
least as extreme as the observed network was determined. Complete doc-
umentation is provided in Dataset S3.

Phylogenetic Analysis of TK. The E. cuniculi and R. allomycis TK sequences
were used as BLASTP queries via the NCBI BLAST website (www.ncbi.nlm.nih.
gov/BLAST), and the top hits were downloaded along with the TK sequences
of representatives from eukaryotic and prokaryotic clades. These protein
sequences were aligned in MUSCLE (54) by using default settings, and
maximum-likelihood analysis was performed by using the PROTGAMMALG
model of evolution in multithreaded RAxML (53). To evaluate alternative
possibilities for the source of these sequences, five different alternate trees
were drawn, also by using the PROTGAMMALG model in RAxML, and the
likelihood ratio was calculated for each tree compared with the best tree
(55). P values were calculated from this ratio in the Python Scipy library χ2

probability module (56).

Plasmid and Strain Construction. The protein sequence for soluble TK of
H. sapiens was downloaded from NCBI (BAG70082.1), and the TK protein se-
quences for E. cuniculi (ECU01_0740im.01) (22), N. parisii (Nempa11372) (26),
and R. allomycis (Rozal12947) (19) were downloaded from JGI; note that the
R. allomycis constructs were designed twice, once without and once with
predicted intron sequences present, resulting in R. allomycis TK versions A
and B, respectively. These protein sequences were codon-optimized for ex-
pression in S. cerevisiae by using the Integrated DNA Technologies (IDT)
webtool (www.idtdna.com/CodonOpt). Although critical to ensuring proper
heterologous protein expression (57), this approach necessarily eliminates
any RNA regulation that may occur in E. cuniculi, N. parisii, and R. allomycis.
gBlocks for the H. sapiens and E. cuniculi sequences, as well as plasmids
containing synthesized sequence for the N. parisii and both versions of
R. allomycis, were ordered from IDT. Primers (Table S4) were designed to
amplify each gBlock or synthesized gene, while adding ∼40 bp of sequence
on both ends to enable homology repair (58) of the gBlock sequence into
the plasmid pRS426-HygMX under the control of the TDH3 promoter and
the CYC1 terminator. This cloning was performed in the wild diploid strain
M22 of S. cerevisiae (59) by transforming it using linearized pRS426-HygMX
and PCR product via the lithium acetate/PEG method (60). Plasmid repair and
yeast transformation was selected for on yeast extract/peptone/dextrose
(YPD) +Hyg (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose, 18 g/L agar,
and 200 mg/L hygromycin B) after 3 h of recovery in liquid YPD. Resulting
yeast colonies had their total DNA extracted, which was used to transform
Escherichia coli by electroporation, and the recovered plasmids had their
insertions Sanger-sequenced. Once the gene-insertion sequences were con-
firmed, plasmids were again transformed into M22 by selection on YPD +Hyg
plates as described above.

Functional Assay of TK. Single colonies of the six plasmid-bearing strains of
S. cerevisiae (Table S5) were grown overnight in SC-MSG +Hyg (1.72 g/L
yeast nitrogen base, 2 g/L Complete Drop-Out Mix, 1 g/L monosodium
glutamate, 20 g/L glucose, and 200 mg/L hygromycin B) liquid medium.

Encephalitozoon cuniculi
Encephalitozoon hellem

Nosema ceranae
Nosema bombycis
Vittaforma corneae
Enterocytozoon bieneusi
Vavraia culicis
Trachipleistophora hominis
Nematocida parisii
Rozella allomycis
Saccharomyces cerevisiae

PRT & PNP 

viral TK
bacterial TK

ADP:ATP
translocase 

CK

bacterial
TK

Fig. 4. Schematic of nucleic acid metabolism HGT events in the Micro-
sporidia and Cryptomycota. A cladogram of representative members of
early-diverging fungi highlighting HGT-derived genes that function in the
nucleic acid subpathway. Green boxes denote three independent horizontal
transfers of TK, while orange boxes denote other horizontal transfers of
nucleic acid metabolism genes (10, 11, 27).

Table 3. Endpoint analysis of optical density of TK-expressing strains relative to control cultures

Media condition Blank vector H. sapiens TK E. cuniculi TK N. parisii TK* R. allomycis TK A R. allomycis TK B

SC-MSG 11.0 ± 0.21 10.6 ± 0.01 10.3 ± 0.35 2.8 ± 0.07 10.8 ± 0.21 10.6 ± 0.35
SC-MSG +FUdR 9.4 ± 0.16 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 9.2 ± 0.29 9.0 ± 0.41

*N. parisii TK expression inhibits growth; data gathered after 168 h. Other strains were evaluated after 60 h.
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A total of 30,000 cells of each strain were used to inoculate 3 mL of SC-
MSG +Hyg +100 mg/L FUdR in quadruplicate; control medium tubes con-
taining SC-MSG +Hyg without FUdR were also inoculated with 30,000 cells
for each strain in duplicate. All cultures, except for the N. parisii TK-
expressing strain, were grown for 60 h, and their optical density was mea-
sured with a 600-nm photometer (Implen GmbH). The N. parisii cultures
were measured after 168 h.
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