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Modeling Workflow for Additive Manufacturing
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SNL Modeling Capabilities )

Part Scale Thermal & Solid Mechanics
Kyle Johnson, Kurtis Ford & Joe Bishop
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LAMMPS, SPPARKS,
Sierra/Aria Mesoscale Selective Laser Melting
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Powder Spreading
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3.0002+02 Part Scale Microstructure
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Powder Behavior
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Mesoscale Texture/Solid Mechanics/CX
Judy Brown, Theron Rodgers and Kurtis Ford
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Powder Dynamics: Background and Motivation () s,

Layer-by-layer powder bed fusion processes (e.g. SLM/SLS):

Laser/electron
beam to melt/sinter
particles

Powder delivery Selective laser melting Powder delivery Selective laser melting

= First step in AM powder bed process

= Powder bed surface can affect laser interaction; power bed packing can affect void formation, surface
finish, thermal properties

= Informs downstream process models
= Variability in powder properties due to vendor supply, powder recycling
= Several key process length scales are comparable to individual particles:

» *““““;V et Typical particle diameter: 10-100 um

. A

AR L Powder layer thickness 30-150 ym

ll JLE Laser beam spot size 70-200 um (ref. 1)
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From Ref. 1 From Ref. 2
1. Vandenbroucke, B. and Kruth, J.P. Rapid Prototyping Journal 13 (2007): 196 4
2. Yadroitsev, |., et al. Journal of Laser Applications 25 (2013): 052003




Modeling powder dynamics () e
using DEM

= Discrete Element Modeling: molecular dynamics-like method
= Each particle modeled explicitly (position, velocity, angular velocity)
= Forces/torques computed at contact using reduced order models

= Dynamics integrated in time for large collection of interacting particles

Free, open-source LAMMPS: htips://lammps.sandia.gov




Large resulting data: () A

Powder bed surface properties:
X, spreader direction

S,: surface roughness

) Height autocorrelation
=« Height profile: height function:
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Relevant Sandia Thermal/Fluid Applications s,
to Burn and Melt using Enriched FEM -

Numerous problems with moving or
topologically complex interfaces with
discontinuous physics and fields
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Conformal Decomposition Finite Element .
Method (CDFEM)

= Simple Concept (Noble, et al. 2010)
= Use one or more level set fields to define materials or phases

= Decompose non-conformal elements into conformal ones
= Obtain solutions on conformal elements
= Related Work
= Lietal.(2003) FEM on Cartesian Grid with Added Nodes
= |linca and Hetu (2010) Finite Element Immersed Boundary

= S.Soghrati and P.H. Geubelle (2012) Interface Enriched Finite
Element

= Properties

= Supports wide variety of interfacial conditions (identical to boundary
fitted mesh)

= Avoids manual generation of boundary fitted mesh

= Supports general topological evolution (subject to mesh resolution)
= Similar to finite element adaptivity

= Uses standard finite element assembly including data structures,
interpolation, quadrature




Finite Element Methods for Moving Interfaces in
Fluid/Thermal Applications Tested at Sandia

S

liquid phases

« Static discretization
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Enriched Finite Element Methods
ALE Diffuse LS XFEM CDFEM
 Separate, static « Single block with « Single block with
blocks for gas and

sharply enriched
elements (weak or
strong) spanning
gas and liquid
phases

* Interfacial
elements are
dynamically
enriched to
describe phases

» Separate, dynamic
blocks for gas and
liquid phases

* Interfacial elements
are dynamically
decomposed into
elements that
conform to phases
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Formulation: Interface ="
Dynamics
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Models: Liquid-Air Interface

= Capillary Force
= Same model used in ALE simulations AV AVAYAVAVAVAVAVAVAVAVAVAVAVAV (WATAY..8
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= Radiation
= Simple radiation boundary condition
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= Enclosure radiation
= Enclosure temperature 2000K
= Repeat viewfactor calculation every time step




Powder Bed Physics Model =

Goal: Link AM mesoscale processes &« .Tﬂ -

to macroscale performance

Method: Conformal level-set
technology includes melt and
ambient (or assist) gas dynamics

= Laser energy coupling to particle
paCkS Free-Surface Motion «Curvature & Maragoni Stress
=  Melt/solidification, capillary- -ALE
) - CDFEM
driven flow, buoyant gas
convection, solutal segregation

= |mpact of laser setting: power,
spot size, scan rate, hatch
spacing, ...

= Laser schedule: edge modulation,
variable power, variable spot,

= Beam overlap, remelt, porosity

*Recoil Pressure

*Ablative, Radiative &
Convective Heat Loss

T(K)
3100

Melting/Solidification Liquidus



SNL Prox 300 Model -

Impact of power for fixed hatch spacing

SNL Prox300 Model
50W 140 cm/s
Time = 0.000000

Hatch Spacing: 150 um|

SNL Prox300 Model
25W 140 cm/s
Time = 0.000000

Stainless steel 304L Gas and melt pool dynamics
25 micron powder Time = 0.000000

Notes:
* 500 micron powder bed traversed in 357 microsec.
« Sloshing-driven gas dynamics entrains ambient gas




SNL Prox 300 Model () i
Gaussian Laser 140 cm/s

General features:

» Surface flux melts particles top to
bottom;

» Fully molten particles jump into melt
pool by capillarity, inciting sloshing

25W

« Shallow melt pool; smaller melt path

« Solidification front freezes in wave
peaks and troughs — ribbed finish

50W

* Long, deep melt pool; wider melt path

* Smooth finish (?)

» Laser power modulated at exit

Power, hatch spacing, and vertical heat
penetration can be guided/optimized
with melt dynamics models.

14




Power and recoil pressure W=

25W 100 W

SNL Prox300 Model
75W 140 cm/s
Time = 0.000000

SNL Prox300 Model
25W 140 cm/s
Time = 0.000000

SNL Prox300 Model
100W 140 cm/s
Time = 0.000267

SNL Prox300 Model
25W 140 cm/s
Time = 0.000267
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«  Small melt pool « Keyhole (small) at high power

. Freezes in surface ripples * Recoil pressure - balling effect
15




Powder porosity

50W Reff=0.6

SNL Prox300 Model
50W 140 cm/s
Time = 0.000000

Sparse powder bed
27% solid fraction

Lower porosity powder:
* requires more laser power
« Higher void probability

Time = 0.000000

Simulated powder bed
57% solid powder fraction



Sandia
Laser Scan Rate @m

Energy deposition rate ~ Q/v
50W Reff=0.6

100 cm/s

200 cm/s

50W 100 cm/s

Time = 0.000276 S50W 200 cm/s

Time = 0.000138




Energy deposition rate and defects @&

50W CW Laser

100 cm/s 200 cm/s
Time = 0.000350 000174

Time = 0.

« Energy deposition rate ~ Q/v

* Higher scan rate
« Lower energy per unit length
« Narrower track
* More void left behind

18




Part-Scale Models: = e

304L Cylinder Example
Performance
Process Structure Property e

Thermal Model ‘ Microstructure ‘ Residual Stress ‘ Behavior using as-
in Aria Model in SPPARKS in Adagio built microstructure,

(Theron Rodgers) residual stress, and
properties

» Cylinder built using LENS process

« Laser diameter =4 mm

Laser Speed = 8.46 mm/s

Layer Thickness = 0.9 mm

Laser Power = 2000 > 1750 > 1500 >
1250 W




Thermal and Residual Stress Historiegﬂ -

Time: 0.00 s

Temperature (K)
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Comparison to IR Imaging L

Temperature (K)

700

Simulation
Results

* IR camera mounted on LENS machine
« Assumes constant emissivity
« Compared to simulation

21



Final Von Mises and Axial Stress @&

LENS layer “step up”

« Images taken after cool-down




Microstructure Prediction in SPPARKS (@&,

Solidification
boundary (T=T )

Grain Mobility
growth - ]
Molten zone i (T<T,) " 075
(T>T.) e 05
I 2.5e+5 . 0.25
a) Microstructure H b) Mobility field 0

» Aria temperature history is used as material state in SPPARKS
» Captures bulk heating effects on microstructure
24




Microstructure Demonstrates Equiaxed ;e

National
Laboratories

to Columnar Grain Transition




Equiaxed to Columnar Transition )
Observed in Literature
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T=137s T=273s T=410s .

Thin wall IN718 LENS build at 900 W
Parimi et al. 2013




Effect of texture on homogenized elastic =

properties (J. Bishop)
austenite grain (FCC) cubicsymmetry ., . E .., o
E =93.8 GPa 2(1+v)
v = 0.402 G

G = 126 GP Vel ~ 3.8 anisotropy ratio
= a

/ \

ideal fiber-texture

no texture | 001
along [001] transversely isotropic

\ E11 = 143 GPa
isotropic FE2s = 143 GPa
Es3 =90.9 GPa

E =198 GPa vy = 0.114

v =10.294 Vs — 0.615

G = 76.5 GPa Vs — 0.615

a-_ G2 = 58 GPa

C2(1+v) Gz = 126 GPa

G13 =126 GP&




Summary

» Presented activities and goals for powder bed fusion, thermal-
mechanical processing and performance modeling

 Highlighted current capabilities we are leveraging for thermal-
mechanical modeling of AM

« SNL is also focusing on impact of UQ, optimization, error estimation
for AM




