SANDIA REPORT

SAND2018-9700
Unlimited Release
August 2018

Bloodhound 0.8: A Python package for
infrasound data analysis

Stephen Arrowsmith, Sam Tarin, Sarah Albert

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: http://www.ntis.gov/search

SAND2018-9700
August 2018
Unlimited Release

Bloodhound 0.8: A Python package for
infrasound data analysis

Stephen Arrowsmith
6752
Sandia National Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87185-MS0404

Abstract

This report provides details of the algorithms in the Bloodhound package for
infrasound data analysis. The report provides a detailed description of the algorithms,
general instructions on tuning Bloodhound for different signal types, and a complete
listing of all input parameters and the complete output schema. Several Jupyter
notebooks are provided with the distribution for illustrating how to use Bloodhound
for different workflows.

I, OVETVICW ...ttt eeiieeeetee ettt e ettt e e tteeeateeesaaeeesaaaeeaseeeassaeaassseesssaeessaeanssaeessaeerssaeenssaennsseennnes 5
Lads, DERAING A DO im0 nmsomisnions . s s i 8 . 5050565 5 5 A T A 5
2. Pipeline data processing AIZOTItRIMSoovvuiiiiiiiiiiiiciie e 7
2.1, Station-1eVel PrOCESSINEGc..eevveriiriiriiiieriiee ettt st 7
2.1.1. Processing modalities for station-level processingcccecvveeveveenneenn. 7
212, Proeedurs 15 Dats, Ve Tiims: o mssssossaussos s 56 1ssmmsmmne masi 8
2:.1:3. Procedure 2: Secondary transform, KDE estimation, multivariate
fusION, aNd dEtECHIONceieuriieieeiieee et e e e e enanes 11
2.2, Network-1eVel PrOCESSINGcccuvieiiiieiiieeiiie et eiie et sre e eree e e e e e sreeesaneeens 18
2.2.1. Stage 1: ASSOCIALION ...c..eeiuiiriiiiiriieieeieee ettt 19
2.2.2. Stage 2: LOCAION .ovveieiiieeiiie ettt eree s e e esareeennaeeen 20
2.3, Near-roal-tinng PIEOCEBSIIND s mousssisisssssnsstsseaesm s i i ms s s o 24
2.3.1. MALD Procedure 1: Data transformscccceeeeeveeneeieeneeneniencenens 24
2.3.2. MALD Procedure 2: Secondary transform, KDE estimation,
multivariate fusion, and dETECIONuuveiieeeeeieeeeeeeeee e e eeeeeeeee e e e e e e e e eeaeeeeeeees 25
2.3.3. NEtWOTK PrOCESSING......viiuiieiiieiieiieeieeiie ettt 25
3. Useredtiven ATDOTITNING s oovmmmes s s s s s /s 15 s 5 15 5 s smiss 26
3.1, Data analysis tOOLS ..ccccuiiiiiieeiiieecie et e anae e 26
3.1.1. Yield eStMAtION c...ovueevieiiriieiiiiecieeeeeee et 26
3.1.2. Alternative processing funCtions..........ccccveeereeeerieeeiieeniieesiee e 27
3.1.3. SYNTRETIC TESS ..eevvieiiieiieiie ettt ettt st 27
3.1.4. Plotting TGS .. musssssssummss s s oo 29
3.2, Propagation MOAEINGccceiiiiiiiiiiiieiieeieeee ettt 29
3.2.1. Applying meteorological COTTeCtionsS.........cccveeeeuveeeivereniiieeeieeeeiee e 31
3.2.2. Running Tau-Pcooiiiiiiiiiiiie e 32
3.2.3. RUNNING GEOAC......ii ittt et e s 33
3.2.4. RN P AP B a0 sumsnsnwansussn sssumsesmmennssiontsn s emisson s ammss s s i 33
4. ACKNOWIEAZEMENLS......c.ueiiiieiiieeiieiiie ettt ettt e st sae e ssaeeteesabeebeeesseensaennseenne 33
5. RETEIEIICES ...ttt st e 34
Appendix A: Input Parameters........coouiiiiiiiiiiiiiieeeeeee e 35
Appendix By Qutput Database SCREITAL ..csuussusssusss isvssnnsnsswssss swsiavunssssssns vossonsa s sousens s sonssass 36

1. OVERVIEW

Bloodhound contains a large set of algorithms for reading and processing infrasound data to
detect events. It contains various functions to display input and output data. It also contains
algorithms for propagation modeling, and an interface to external propagation modeling tools.

Hellhound implements a subset of the algorithms and functions in Bloodhound 0.8. A set of
companion Jupyter notebooks are provided to illustrate how to run Bloodhound as an alternative
to using Hellhound, and how to implement algorithms that are not currently implemented in
Hellhound.

A key design feature in Bloodhound is the use of a profile that contains all the user-defined
parameters for a given run (Note: the same profiles are used in Hellhound). The profile defines
the data and all the station and network level parameters used to run Bloodhound/Hellhound.

Bloodhound »Results

Y

Data

Profile

Figure 1-1 A high-level flowchart illustrating the inputs and outputs for a
typical Bloodhound run for detecting signals and/or events.

1.1. Defining a profile

The profile is specified as a TOML file, a standard configuration file format that is designed to
be flexible and easy-to-use.

A profile consists of the following tables: [data], [time], [[filter]], [[station-datall,
[[station-detection]], [network]. Tables denoted with a single pair of square brackets, [7],
indicate that each parameter is specified only once (e.g., only one time-period is specified in a
profile via [time]). Tables denoted with a double pair of square brackets, [[]], indicate that
multiple values of each parameter can be provided (e.g., unique detection parameters can be
defined for each station via [[station-detection]]). The complete list of parameters for each
table are provided in Appendix A. An example of a profile to process data from two stations (a

single component station and an array), using two different frequency bands for both arrays, and

[data]

type = "pickle"

file = "utah data.p"
[time]

start = 2007-08-01T19:30:00+00:00
end = 2007-08-01T20:30:00+00:00

[[filter]]

low = 1.0

high = 5.0
window_length = 15.0
[[filter]]

low = 0.2

high = 1.0

window_length = 30.0

[[station-data]]
lat = 40.6528335

lon = -112.1194165

channels = "*"

elements = ["NOQ3", "NOQ4", "NOQ5", "NOQ6"]
name = "NOQ"

[[station-data]]

lat = 39.455

lon = -114.0156
channels = "*"
elements = ["P13Al1l"]
name = "P13A1"

[[station-detection]]
name = "NOQ"

minimum duration = 5.0
p_thres = 0.05

lta = 60.0

signal type = "regional"
sta = 3.0

[[station-detection]]

name = "P13A1"

minimum duration = 5.0
p_thres = 0.01

lta = 60.0

signal type = "regional"
sta = 3.0

[network]

lon min = -115.0

lon max = -109.0

lat min = 36.0

lat max = 42.0

azimuth dev = 8.0
confidence value = 0.95

a different p-value detection threshold at each array, is provided below.

More examples of TOML files for different scenarios can be generated using the Jupyter
notebooks provided with the distribution. Bloodhound contains some convenience functions for
generating TOML files from Oracle databases or ObsPy Stream objects.

2. PIPELINE DATA PROCESSING ALGORITHMS

This section provides the details of how Bloodhound performs pipeline data processing. As
illustrated in Figure 1-1, Bloodhound 0.8 is designed to process data given a profile that defines
the complete set of parameters for processing a certain signal type.

2.1. Station-level processing

Station-level processing is based on the Multivariate Adaptive Learning Detector (MALD)
algorithm. MALD is designed to detect very low SNR signals, and to provide preliminary signal
categorization, by combining multiple signal features as a function of both time and frequency.

The MALD algorithm has the following features:

e Multiple signal properties are combined to produce ensemble detection statistics for
different source types as a function of time and frequency.

e The detection threshold is dynamic and adapts to a changing background.

e No assumptions of background distributions are made.

MALD is comprised of two main procedures, which are outlined below.

Procedure 1: The waveform data (either single-station or array data) are processed in time
windows, or time-frequency bins, with a series of data transforms (refer to Figure 2-1).

Procedure 2: The data transforms are converted to p-values using Kernel Density Estimation, and
combined with Fisher's combined probability test (refer to Figure 2-4). Detections are obtained
from the ensemble detection statistics.

2.1.1. Processing modalities for station-level processing

As shown in Figure 2-1, Bloodhound 0.8 includes two processing modalities for station-level
processing: broadband processing and narrowband processing. A third method that supports
frequency-domain processing will be added in a future version.

e For broadband processing, Bloodhound can process data in multiple frequency bands as
defined by the user. Detections are built separately in each frequency band. Prior to
network processing, duplicate detections of the same signal (in different frequency
bands) are associated by defining master detections (only master detections are used in
association processing).

e For narrowband processing, Bloodhound can process data in multiple frequency bands as
defined by the user (utility functions exist to define 1/3 Octave bands, and to define the
default PMCC logarithmic bands). For narrowband processing, detections are
constructed by clustering and aggregating processing results across multiple frequency
bands.

(@) Data block (b) Data block

%*‘rww W;¢,r¢:.#4p+

v
Data Transforms (Broadband processing) Data Transforms (Narrowband processing)
g g '
Time Time

Figure 2-1 Schematic of processing modalities supported by the MALD
algorithm in Bloodhound v0.8. A data block is either processed using
broadband (left) or narrowband (right) processing. (left) Broadband
processing may consist of one or multiple filter bands, which may
overlap, where detections are built in each filter band separately.
Detections are associated where they overlap in time and contain
additional properties (e.g., backazimuth), with each set of associated
detections comprising one master detection (shown by the solid black
rectangle in a) and one or more associated detections (e.g., the solid red
rectangle in a).

We note that Figure 2-1 is a schematic and there are three important features that it does not
represent:

1) While the time windows in Figure 2-1 are depicted to be the same for each transform),
this is not necessarily the case in practice. In fact, different time windows are
recommended for different frequency bands.

2) Time bins will typically overlap. It is recommended that time windows overlap by a
minimum of 50% to adequately capture the time evolution of waveform properties.

3) Frequency bins may overlap when performing broadband processing. For narrowband
processing, they must be adjacent and cannot overlap.

2.1.2. Procedure 1: Data transforms

Bloodhound 0.8 uses three primary data transforms, depending on whether the user is processing
single-component data, three-component data, or array data. Additional data transforms
(secondary transforms) are applied as further constraints on the primary transforms. The primary
data transforms are, for the most part, standard signal processing tasks used in seismic (and
infrasound) data processing, and subsequently are only discussed at a high level, with references

provided to supporting literature.

Single-component data

The primary data transform for single-component data is either the STA/LTA transform
(Withers, et al. 1998) or the STA transform. The STA/LTA transform takes the difference
between the mean square value of a filtered time series in a short-time window, and the mean

square value of a filtered time series in a preceding long-time window. Thus, the STA/LTA ratio
can be written as:

Ng

Nisz @

STALTA=—'~"
Ny
1 Z 2
—) a;(®)
N, L

where @ is the acoustic pressure (or the seismic displacement/velocity/acceleration), Ns is the
number of samples in the short-time window, and Ny is the number of samples in the long-time
window. The STA transform is simply:

g
1
STA= —2 a(t)
N,
=1

The STA transform is not commonly used by itself, because the units are not normalized, but can
be directly used in the MALD framework because the KDE mapping to p-values (described
below) provides normalization. By using STA instead of STA/LTA, Bloodhound can properly
capture long-duration signals as well as impulsive onsets.

As with all the data transforms, the STA/LTA or STA transforms can be applied in a series of
discrete frequency bands. The output of STA/LTA processing is stored in the sta lIta table, and
STA processing is stored in the sta table (Appendix B).

Three-component data

Three-component data are further processed with polarization processing (Jurkevics, 1988). If
we denote the bandpass filtered three-component data in a time window of length NAt as:

€ Ny z;
x=|: =
ey Ny Zy

(where €, and Z denote the east, north, and vertical components) then the covariance matrix can
be calculated and represented as:

See Sne SZE
§= Sen Snn Szn
Sez STLZ SZZ
1 N
L. == XX+
e =y 2 o | | |
where i=1 . The eigenvalues (A12243) of the covariance matrix, where A2 X for j < k,

allow us to calculate the rectilinearity in the time window from:

Ay + 45
r=1-
)

The eigenvector corresponding to the largest eigenvalue (W1et1wU12) allows us to calculate an
unambiguous backazimuth from:

6 = atan2(u, sign(uy,)u,sign(uy,))

Note that the sign convention in Bloodhound assumes that the signal is a ground-coupled
infrasound arrival (which has the opposite sign to an upcoming p-wave). For example, an
infrasound signal arriving from due west with downward inclination angle of 45° to the
horizontal will result in a particle motion where +E corresponds to -Z (positive infrasound
overpressure causes downward vertical motion and positive motion to the east). In contrast, a p-
wave arriving from due west with upward inclination angle of 45° will result in a particle motion
where +E corresponds to +Z. For waves traveling purely horizontally, there is a 180° ambiguity
in backazimuth. It should be noted that many ground-coupled infrasound signals can stimulate
surface waves where the polarity is reversed, thus the sign should be treated with caution.

When computing polarizations for broadband processing, Bloodhound computes a wide-band
estimate (Jurkevics, 1988) such that each estimate of the polarization is obtained by computing
separate covariance matrices in third Octave bands, then normalizing and averaging. If an
individual covariance matrix for the k’th band is denoted as §k, then the wide-band estimate is
obtained from:

K gk
S: Z;
kzltrace(gk)

where K is the number of third Octave bands between the minimum and maximum frequency of
the broadband filter. It has been found that wide-band estimates provide improved estimates of
azimuth than estimates made using broadband filtered data. The output of polarization
processing is stored in the polarization table (Appendix B).

Arrays

The primary data transform for arrays is the sliding window FK method (Rost and Thomas
2002). The sliding-window FK method provides estimates of the power as a function of time and
slowness vector (equivalent to trace velocity and backazimuth), through a grid search method.
Bloodhound 0.8 provides two different implementations of sliding-window FK: a frequency-
domain implementation, and a time-domain implementation. The time-domain implementation is
slower, but can be used for incoherent array processing, which is particularly useful for
processing high-frequency observations where the array aperture is too large for coherent
processing.

10

We define a slowness vector, %= (%) that uniquely defines the direction-of-arrival of a plane

_ 2 2\-1

wave arriving at an array. The trace velocity is Yt~ (\/ Uy ¥ uJ') and the backazimuth is

u
6=tan"! (—x)

Yy, The time shift for the i’th array element, for a given slowness vector, is computed
as:
Aty =xu, +yu,=r;"u
For the frequency domain FK, the time delays for different elements are handled through phase
shifts for the different harmonic components of the waveform. The power is computed from:

/2

1
P(ux,uy) = F Z

f=f1

M
1 - i27tfri ‘u
12Kl

i=1

where Xif) is the short-time Fourier transform of the time series of the i’th array element, (1) in
a time window that contains N samples (note that the N ? is the proper normalization, and follows
from the discrete implementation of the fast Fourier transform). After applying frequency
domain processing, the actual value stored by Bloodhound is the semblance — computed by
normalizing the power by the total power in the seismograms. Only the semblance for the
slowness direction with the maximum power is stored, along with the corresponding direction-
of-arrival information.

The time-domain FK implementation is designed to operate in a pairwise strategy. This approach
1s more robust to noisy or corrupted channels affecting the result, and is implemented in the time
domain version to complement the approach used in the frequency domain version, which uses
all sensors simultaneously in an estimate of the power. The time-domain FK implementation is
based on the normalized cross-correlation between each pair of traces as a function of slowness
vector. For two array elements, 7 and j:

in(t 1y g)xj(t iy u)
Tij(ux'uy) =
X o5 (3405)

For a given slowness value, the mean value of 7 across all pairs of elements is computed. The
value stored by Bloodhound in a given time window is then the maximum of the mean values,
with the corresponding direction-of-arrival. For processing data with the time-domain FK
implementation, the data can be first converted to an analytic envelope to remove the phase
information.

Sliding-window FK transforms are applied, either in time or frequency domain, in any number of
frequency bands and stored separately for each band. For each frequency band the user must
specify the low and high pass corner frequencies, as well as the processing time window and
overlap. For each time window, Bloodhound finds the value of the semblance, or mean

11

normalized cross-correlation, corresponding to the peak power across all backazimuths and trace
velocities, and stores the corresponding direction-of-arrival (see the fk table in Appendix B).

2.1.3. Procedure 2: Secondary transform, KDE estimation, multivariate fusion,
and detection

The processing of the data transform data in Bloodhound is quite different from conventional
seismic data processing packages. The following narrative describes how data transform results
are processed to detect signals for a single frequency band. The extension to detection of signals
when performing processing with multiple frequency bands is discussed in Section 2.1.3.5.

2.1.3.1. Secondary transform

To enhance the detection of signals on arrays, a secondary transform is applied to the output of
the FK transform. The secondary transform enhances the detection of signals with low signal-to-
noise, or with low correlation between array elements. When considering the direction-of-arrival
(DOA) of a signal as a function of time, a static source will typically exhibit a roughly constant
backazimuth as a function of time. A moving source will show a shift in backazimuth as a
function of time (following the shape of a sigmoid function if moving in a straight line and
constant velocity). Given an estimate of the DOA as a function of time from FK processing, both
types of signal can be represented by the following logistic function:

a
f(t,a,bc)=c+———, a€{0,360},ce{0,360}
14 —b(t—t)
e

0
In this equation, @ defines the amplitude, b controls the steepness of the function, and ¢ controls
the intercept. Note that by setting b = 0, the function becomes a horizontal straight line. In a

moving time window of duration Ty the best fit to the function is evaluated using nonlinear least
squares. The resultant variance between the best fitting function and the observed data,

2 2
7= Zri/ N, where i is the residual between the i’th predicted and observed backazimuth, is
calculated in each window. As described below in Section 2.1.3.4, when forming detections, the
relative fit of a logistic function versus a horizontal straight line is used to distinguish between
likely static and moving sources.

12

350 4 —— a=120,b=0.2,c=50

a=120,b=1,c=50
a=200,b=0.2,c=50
a=0,b=0,c=200
a=120,b=-0.2,c=50

300 A

250 A

200 A ‘

150 1

Backazimuth (deg.)

100 +

50 4

0

01:00:02 01:00:07 01:00:12

Figure 2-2 Plots of different logistic functions illustrating the effects of ¢, b, and ¢ on the resultant
curve.

2
To enhance the detection of static and moving sources, ?f is saved in memory as an additional
data transform (which is converted to p-values and combined with semblance as described
below). Note that, based on the users choice of signal type (Appendix A), Bloodhound either

2
computes ?f using the logistic function above, or using a simple horizontal straight-line function.
The latter option detects fewer signals, as it is more restrictive, but allows for the detection of
weak static sources.

The derivation of the secondary transforms from the backazimuth time series obtained from the
primary FK transform is illustrated schematically in Figure 2-3.

Backazimuth

time

Figure 2-3 Schematic illustration of the derivation of secondary
transforms from the backazimuth time series obtained from FK
processing.

2.1.3.2. KDE estimation

13

Test statistics associated with the output of each data transform (both primary and secondary) are
converted to p-values using the Kernel Density Estimation (KDE) method. The process is
outlined graphically in Figure 2-4. If we denote a set of realizations of a specific transform (e.g.,

rectilinearity) in a time interval of duration equal to one hour as (51525 n), then the KDE is:

N s-sl.)

N 1
RO =gk

where K(-) is the kernel (typically a Gaussian kernel) and >0 is a smoothing operator.

Given this mapping, a given value of the transform can be converted to a p-value, where the p-
value is defined as:

p= _T Fr(S)ds

Sobs
2

where Sobs is an individual value of the transform. Intuitively the p-value is the probability of
obtaining a result that is equal to, or more extreme than, that actually observed given the
empirical PDF.

2.1.3.3. Multivariate fusion

Given multiple transforms, which exploit different signal properties, we combine the p-values
associated with all k transforms for a given signal type using Fisher’s method to produce
ensemble p-values (Figure 2-4):

k
a2 Inp;
i=1

The resultant value of the test statistic is distributed as a Chi-squared distribution with 2k degrees
of freedom. A signal detector is applied to this combined distribution for a given p-value
threshold.

For processing array data, Bloodhound 0.8 combines p-values computed from semblance, S, with

p-values computed from “sz (i.e., from the secondary transform). For processing three component
data, Bloodhound 0.8 combines p-values computed from STA_LTA or STA with p-values
computed from 7 (rectilinearity). For processing single component data, Bloodhound 0.8 only
uses p-values computed from STA_LTA or STA,

2.1.3.4. Detection

14

To build detections for a single frequency band, Bloodhound starts with a set of ensemble p-
values as a function of time (Figure 2-5). First, processing time blocks with successive p-values
below the threshold are merged together to form candidate detections (in some cases, a candidate
detection may comprise a single time block). Next, for each candidate detection, the duration,
median estimates of backazimuth and trace velocity (if applicable), estimates of the backazimuth
at the start and end of the detection (if applicable), and maximum estimates of relevant data
transforms (semblance, rectilinearity, STA/LTA, STA etc.) are computed. Optional constraints
can be applied to filter out detections that do not meet certain characteristics (these include a
minimum duration, a minimum STA/LTA threshold, and a minimum semblance threshold).

For arrays, each detection is categorized as arising from either a static or moving source by
computing an F-test over the duration of the detection:

2
where 7f is the variance of the best fitting sigmoid function to the time series of backazimuths at
2
peak semblance (over the detection), and Zstat is the variance of the best fitting horizontal line

function to the same data. Each F ratio is converted to a p-value where:

. 2 _ 2
HO' Omov = Ostat

Ha: O-m%)v < O-stzat

and Bloodhound uses the standard F distribution with N -3 degrees of freedom on the numerator
and N - 1 degrees of freedom on the denominator, where N is the number of samples of
backazimuth in the detection. Detections with p-values below a threshold are flagged as arising
from possible moving sources (Appendix B).

15

Converting a data transform to p-values
- , O e N e e S
Rectilinearity ...”.0 0.........“..

— 1. Produce histogram of

data transform

A

2. Fit histogram with Kernel
density estimate

A

3. Use KDE to convert data
transform to p-values

Time

Rectilinearity

Aggregating p-values /

i p-values [e0g®%e o®®ee%e0,0%®

Time

STALTA. ——> | p-values

Time

. =
Kurtosis ———> p“ValueS

Time

Apply Fishers method

Py = 7221111),

iEnsemble
ip-values

Figure 2-4 Schematic of the KDE estimation and multivariate fusion
procedures of the MALD algorithm. The results of a given data transform
(e.g., rectilinearity) for a specific frequency band, and in a one-hour time

window, are converted to p-values using Kernel Density Estimation. P-
values are aggregated with p-values from other data transforms (e.g.,
STA/LTA and Kurtosis) using Fishers method to produce ensemble p-

values.

16

Set of ensemble p-values for
different source types

Ensemble

.
p-values |®e®e0e _ 000%, qq0 5000

|

Identify p-values below threshold for each set of
ensemble p-values

Ensemble

p_thres ——>»
p-values

|

Apply additional optional constraints and build
detections

sta_lta_thres
s_thres —_—>
minimum_duration

Ensemble
p-values

'o“'ﬂ.oof"'oo'o'oo"‘

detection

!

If processing an array, apply F-test to determine
source type

moving source

Figure 2-5 Schematic of the detection procedures of the MALD algorithm.

2.1.3.5. Handling detections in different frequency bands

Broadband processing: Defining master detections

Prior to performing network processing, Bloodhound associates detections across multiple
frequency bands when using the broadband processing modality. Detections that overlap in time
(and where the backazimuths are consistent, if detections contain backazimuths) are associated
together. For each set of associated detections, a master arid is defined (see Appendix B). The
master arid is the arid of the detection that has the lowest p-value (i.e., the most significant
detection) of the set of associated detections. For association processing, only the detections that
are master arids are used, preventing multiple detections of the same signal from creating
multiple duplicate events.

Narrowband processing: Clustering and aggregating detections

When processing using the narrowband modality, Bloodhound aggregates detections that are
similar in time and adjacent in frequency bands. Bloodhound forms metadetections by querying
the detection table in the database. First, the user sets the time difference threshold and
Bloodhound compares the start times and end times of detections. If the start time of a later
detection falls within the specified time difference of the end time of the previous detection, the
two are merged into a metadetection. If the start time of the later detection does not fall within
the specified time difference, a new metadetection is formed (Figure 2-6). Bloodhound then

17

continues to step though the detections and do this comparison until it reaches the end. Once
metadetections are formed using the time difference threshold, Bloodhound goes back to the
beginning of the detections and compares frequency bands in the same way (Figure 2-6). The
frequency band difference is set by the user. In most cases it is useful to consider adjacent
frequency bands as part of the same detection. Large frequency band thresholds are likely
unnecessary as frequency bands that are not adjacent may be from different sources and would
require more analysis.

Step 1.
del_t thres = 2 seconds
2
S E—|
kvl
2 |
j]
2 ' —
metadetection candidate
l 1 l l l l l l l L l l 1 1 l
I 1 1 I 1 T I 1 I T 1 1
0 10 15
Time (s)
Step 2.
2
g del_f _thres = 1 (adjacent)
3| mm
cc
<5
c [
o <
= .2
§ E =
a%| L1 .
& | metadetection 1 metadetection 2
(]
& ———+—+—t+—t+—t+—t+—+—+—+
5 10

Frequency Band

Figure 2-6 lllustration of the metadetection algorithm

After metadetections are formed, Bloodhound pulls information about each metadetection from
the fk table in the database. These values are pulled based on the start times, end times, and
frequency bands of each detection within the metadetection. The fk table is queried by start time,
end time, and frequency band ID for each detection within the metadetection to get semblance,
backazimuth, and trace velocity. Each of these semblance, backazimuth, and trace velocity
values are then stored in the metadetection table with the corresponding unique metadetection ID
and frequency band ID. This allows for the user to query the metadetection table for these values
and run statistics such as mean and standard deviation of the backazimuth for a specific
metadetection.

2.1.3.6. Detection reconciliation

Bloodhound 0.8 performs all previous steps in Procedure 2 of MALD (i.e., secondary transform,
KDE estimation, multivariate fusion, detection, and multiple frequency aggregation) in a series
of time windows of duration equal to one hour (by default) that overlap by 25%. The use of
overlapping windows ensures that signals near the start or end of a given window are not missed
(either because the secondary transform does not adequately capture the signal, or because the
KDE estimation does not adequately capture the noise). As a consequence of the overlapping
windows, signals may be detected twice, therefore a detection reconciliation step is required to
reconcile duplicate detections. The detection reconciliation algorithm searches for detections in a

18

given frequency band that overlap in time, and re-runs the detector to ensure that these signals
are suitably captured.

2.2, Network-level processing

Network-level processing in Bloodhound has the following features:
e Provides formal uncertainty bounds using Bayesian inference or least-squares inversion.
e Fast and parallelized.
e Includes meteorological corrections (not currently part of pipeline processing. but
available as a post-processing function) - see Section 3 for more details.

Network-level processing is based on two stages, which are outlined in_Figure 2-7.
Stage 1: The detections are read from a Sqlite3 database and processed with a grid-based
associator to find events. The associator is designed to ensure that events are not missed by using

simple bounding constraints that define the maximum possible propagation effects on the
observed signals.

Stage 2: Events that are found in the association stage are located using one of two methods:
Bayesian inference or iterative least-squares inversion. Both methods provide formal confidence
estimates at a specified confidence level.

—
Database
Grid file
==

\

p
1. Apply backazimuth Constraints for arrays in any station pair:

™

Loop over nodes For each event: Adjust the backazimuths based on meteorological corrections

Loop over station pairs

Find associated arrivals for each node and station pair

Location processing

Association processing

To calculate locations using Bayesian /
inference

To calculate locations using iterative
least-squares inversion

3 N Calculate the likelihood function Calculate the initial location (from array measurements only) from
s s the geographic mean of intersection points

Single station

Array

2. Apply travel-time Constraints for a node & given pair of stations: Normalize the likelihood function and

Iteratively update the location using Geiger’s method
calculate the credibility contour

Model Foranode &a given pair of stations

I T S [

Cluster associations across all station pairs for the given node

=S

Reconcile associations from all nodes

Calculate the error ellipse

Figure 2-7 Schematic of the Bloodhound network-level algorithms.

19

2.2.1. Stage 1: Association

Association is performed using a grid-search method that checks for consistency between pairs
of arrivals and then aggregates pairs of arrivals together using breadth-first search. The basic
check for consistency between a pair of arrivals at a given vertex in the grid is based on the
following:

|Ai_Aj|SdtS|Ai_Aj|
v, v_

¢~ 80 <6,<p,+ 36
$;-00<0,< ¢+ 56

where ¢ and J represent two arrays, dt is the time delay between the detections at each array, 0,
and) are the observed backazimuths at each array, A is the great-circle distance from an array to
a given vertex, ¢ is the corresponding azimuth of the great-circle from the array to the vertex, ¥+
and Y- are maximum and minimum group velocities (or celerities), and 6 is an allowed
deviation in azimuth due to wind bias and measurement uncertainty. This simple bounding
model ensures that no events are missed as long as a sufficient range in values is defined by ¥+,
V- and 66.

The algorithm used for incorporating the constraints above in order to form events is explained
in Figure 2-8 using three example detections (represented by the identifiers 57, 894, and 1031).
The set of detection-pair associations for each vertex (e.g., Vertices 30 and 31 in Figure 2-8) can
be represented as a graph such that each arrival represents a node (represented by circles in
Figure 2-8) and each association represents an edge (represented by dashed lines in Figure 2-8).
Using breadth-first search we find subgraphs representing connected components of the graph
that constitute seed events for each vertex. For example, in Figure 2-8(b), the two-array
association between arrivals 1031 and 57 is linked to the two array association between arrivals
57 and 894 because both associations have arrival 57 in common. Each seed event now contains
a set of N arrivals (nodes) connected by M associations (edges). In many cases a single set of
arrivals, or subsets of those arrivals, may be associated across multiple vertices (e.g., in Figure
2-8, arrivals 894 and 57 are linked at both Vertices 30 and 31). Seed events across multiple
vertices that contain the same arrivals (or subsets) are reconciled by retaining only the
association at the vertex that contains the largest number of arrivals (e.g., for the example in
Figure 2-8, the association between arrivals 57 and 894 on Vertex 31 is rejected, because it is the
subset of a larger event formed on Vertex 30). In some cases, multiple vertices may be associated
with a single association of arrivals. The output of this procedure is a set of associations of
arrivals for input to the location algorithm.

20

(a) Array 1

/s

Array 2
= e Vertex 31
894 ®
Vertex 30
&031
Array 3

Vertex 30

Vertex 31

Figure 2-8 An illustration of the association algorithm used in
Bloodhound. The cartoon map in (a) represents an example
configuration of arrays with three hypothetical detections from a single
event (detections are represented by lines pointing out from each array
at the detection backazimuths, and have example arrival ID’s of 57, 894,
and 1031). Also shown are two hypothetical vertices (30 and 31). In (b),
an example association, represented as a graph, is shown for Vertex 30.
In this case, there are two two-array associations: (1) the association of
arrival 1031 at Array 3 with arrival 57 at Array 1, and (2) the association
of arrival 57 at Array 1 with arrival 894 at Array 2. These associations are
merged to form a single event that comprises all three arrivals, on the
basis of having Arrival 57 in common. In (c), an example association is
shown for Vertex 31. In this case, the association is rejected because it

2.2.2. Stage 2: Location

is the subset of a larger event formed on Vertex 30.

Bloodhound contains two location algorithms. The preferred algorithm is the Bayesian
infrasound location method. However, since the Bayesian method is slow for global distances,
the second method (iterative least-squares inversion) is provided as another option.

Bayesian Location

Location using backazimuths only

If using backazimuths only, the location is based on the construction of a Likelihood function as

follows:

21

N
P(qub"lj) = Hg(bild)j' Aj)

i=1

where 2 = [P1b272by] contains the observed backazimuths at each station, ?; is the latitude of the

j'th event hypothesis, and 4 is the longitude of the j'th event hypothesis), and the individual
likelihood components due to each station are either:

1[0
1 22
0(b,|b;1,) = e
|20y
or,
KCOS 51‘
G)(b.|¢./1.) -¢
W 2ml o (k)
depending on whether one chooses either a Gaussian or Von Mises distribution (i.e., the
Gaussian distribution on a circle) to describe the azimuthal dependence of the likelihood
distribution. For both distributions, 8 is the residual between the observed and predicted
: : : — pobs _ grre) .] ’
backazimuth at a given station (61' =85 -8) given a specific choice of model parameters. For

the Gaussian distribution, %6 is the a-priori estimate of the standard deviation in backazimuth
(which includes both measurement and model error). For the Von Mises distribution, 1/x is

2
analogous to %6 and 1o(9) is the modified Bessel function of order 0. The Von Mises distribution
is more applicable than the Gaussian distribution for location over large regions (where the
Earths curvature becomes important).

With a prior, P(#;4)), defined as a uniform distribution over some bounded region (i.e., a regional
area of study), the posterior distribution is evaluated by numerical integration of the likelihood
function:

N
[Te(do;4)pc;

i=1

0(6,|p,A)P(p,2) dop dA

Hﬁw@:f

Credibility contours are obtained directly from the posterior distribution, since the total volume
enclosed by the distribution, after normalization, is unity. Contours are obtained from a grid
search over trial values of the posterior distribution to find the value that most closely encloses a
volume equal to the credibility value chosen (e.g., 0.95).

If using backazimuths, the origin time is estimated after calculating a maximum likelihood
location by assuming an average celerity (or group velocity) to all stations given the maximum
and minimum possible celerities. The mean origin time given all the observed arrival times is
taken as the estimated origin time.

22

Location using arrival times only

If using arrival times only, and without performing propagation modeling, a uniform distribution
on celerity is used. The uniform distribution is bounded by the minimum and maximum celerities
that are possible (e.g., Ymin = 0.22, Ymax= 0.35 km/s would capture the slowest thermospheric
returns through to direct propagation along the ground).

For arrival times, the equation for the likelihood is:

N
P(Eld)j'lj'rj) = H(D(til(Pj’Aj’ j)

i=1

where = [t1t2tn] contains the observed arrival times at each station, 9 is the latitude of the
j'th event hypothesis, 4 is the longitude of the j'th event hypothesis, and % is the origin time of
the j'th event hypothesis. The individual likelihood components due to each station are:

1
q)(tild)j’lj"[j) = (Aij/vmin + At) - (Aij/vmax - At)
0

if (Aij/vmax) +At < t;-7; < (Aij/vmin) - At

otherwise
where 24 is the great-circle distance from the ;'th event hypocenter to the i'th station and At is a
term that accounts for both measurement uncertainty and the spatial and temporal resolution of
the grid of event hypotheses. In this case, the posterior distribution has three dimensions and one

must marginalize the posterior distribution to plot the marginal distribution over either location
or origin time.

Mathematically, the posterior distribution is defined as:

N
H¢(ti|¢> S TP, 4,T)
i=1

P(¢; 4;7|t) = =
ﬂf Ll:llq’(filfﬁr A7)P(¢, A7) dp d2 dr

with the marginal posterior distribution over location defined as:
P(g;, A1) = fP(¢j. A;Tlt) de

and the marginal posterior distribution over time defined as:
P(tj|t) = f f P(¢, A7;|t) dop dA

Location using backazimuths and arrival times

23

For arrival times, the equation for the likelihood is:

N
P(ebloyr) = [O (bl 2)0(tl9;2,7)
i=1
The posterior distribution is defined as:

N
[Tevde;, 1)@ (tlesti)P@;)

i=1

N
fffl_[@(bild)j’ lj)¢(ti|¢j,lj,‘rj)P(¢, AT)dp dAdr
i=1

P(¢, /1]-,‘[]-|§,Q) =

As before, the marginal posterior distribution over location is defined as:
P, Ale) = fP((j) i’ /1}':1-'2) dt
and the marginal posterior distribution over time defined as:

P(z,|t) = f f P(¢, A7;It) dp dA

When using the Bayesian location algorithm, Bloodhound stores the polygon of the coverage
ellipse at the user defined confidence value (Appendix A) in the origpoly table. It also stores
the parameters of the best approximating ellipse in the origerr table. The locations stored in the
origin table include the most probable location (lat, lon) and the location of the center of the
ellipse (mean_lat, mean lon).

Iterative least-squares location

The iterative least-squares inversion method is based on iterative adjustment to a starting
location and closely follows the method of Bratt and Bache (1988). The starting location is taken
as the geographic mean of the intersection points between all pairs of backazimuths, projected
back along their respective great-circle paths. Given an initial estimate of the location given by
m = [$,1], the method iteratively solves for changes to the event location. Based on the derivation
in Bratt and Bache (1988), the system of equations solved is:

cosa; sina,;

sinA; sin4; s
. . [5¢

cosa, sina,

sind, sinA,

or, in matrix form:

24

r=AAx
where, 2 is the great-circle distance between a trial location and the i'th array, % is the great-
circle azimuth from the trial location to the i'th array, 9 is the observed backazimuth at the i'th

array, 9% is the great-circle backazimuth for the trial location at the i'th array, 64 is the change in
longitude of the trial location, and 8¢ is the change in latitude of the trial location. The iterative
least squares method solves for 2% using standard least squares inversion.

To estimate the location uncertainty, an a-priori estimate of the combined model and
measurement uncertainty, 26 (the same as used for Bayesian inversion), is used to calculate the
coverage ellipse for a given probability by finding the eigenvalues and eigenvectors of the model
variance-covariance matrix:

ol =MosF[MN - M](ATA)~*

where M = 2 is the number of model parameters, N is the number of arrivals that constitute the
events, and F[M.N - M] is the value of the F-statistic with M and N - M degrees of freedom.

2.3. Near-real-time processing

This section describes the implementation of near-real-time processing using Bloodhound.

2.3.1. MALD Procedure 1: Data transforms

For processing data in near-real-time, Bloodhound applies data transforms in user-configurable
intervals. Before processing a particular station in an interval, Bloodhound queries the database
for data in that interval to see if the data at that station or array exists. If data do not exist, or if
the interval is not yet filled in with data, it sleeps for a period of time, before re-querying. The
sleep/re-query cycle is repeated no retry times (where no_retry is user-configurable) before
aborting.

Each interval overlaps by 50%. This mitigates against processing artifacts caused by (a) the
cosine taper applied to the data in each interval before filtering (the cosine taper affects the first
and last 5% of the interval), and (b) the burn-in time for STA/LTA processing (the burn-in time
equals STA+LTA). For each interval, I, Bloodhound saves raw transform results in the center
50% of the interval, as illustrated in Figure 2-9.

25

1

Figure 2-9 lllustration of the overlapping processing intervals used in
Bloodhound (/v /2 ®@ 13 represent successive intervals) and of the time
ranges where data transform results for each time window are saved
(colors denote windows associated to respective intervals).

2.3.2. MALD Procedure 2: Secondary transform, KDE estimation, multivariate
fusion, and detection

For detection processing, Bloodhound requires a sufficient time history of data transform results
in order to build empirical distributions of each detection statistic using KDE estimation. For
each processing interval, I, Bloodhound uses data transform results in the prior hour to build an
empirical distribution. If starting Bloodhound processing where the prior hour has not been
processed, Bloodhound will first process that window before it begins near-real-time processing.
This represents a burn-in time for Bloodhound near-real-time processing. However, for each
subsequent processing interval, Bloodhound will always utilize the prior history of data
transform results.

Because Bloodhound uses overlapping processing intervals for near-real-time processing,
Bloodhound implements an additional detection reconciliation step when running in this mode
(see Section 2.1.2.6).

2.3.3. Network processing

Network processing is not yet implemented for near-real-time processing. However, the user can
always run network processing on near-real-time detection results by applying the same
functions described above for archived data to the SQLite3 database containing near-real-time
detections.

26

3. USER-DRIVEN ALGORITHMS

Bloodhound contains an extensive set of additional data processing and modeling tools that are
not part of the pipeline processing workflow described in Section 2.

3.1. Data analysis tools

3.1.1. Three-component FK
Bloodhound can produce pseudo-FK plots using three-component data. The FK plots are
computed by calculating the three-component power associated with each individual slowness

vector over a grid of slowness vectors. For a given slowness vector, = (ux'uy), the three-
component power is given by:

N

1 ; Lo-1 2
P(u,u,) _NZ (rcos(ﬂ)ei + rsin(@)n; + cos(sin r)zi)
i=1
ux

6 =tan ! (—) 2 3
where Uy), 7= V% T Uy with v as the local sound speed, and ¢, 7, and Z denote the east,
north, and vertical components. For a polarized wave, the power is maximized when the
slowness vector points in the direction of polarization.

3.1.2. Yield estimation

Bloodhound currently contains two types of yield estimation algorithm: Hydrodynamic scaling
and semi-empirical overpressure methods (ANSI and BOOM) (see examples in the companion
notebook).

Hydrodynamic scaling equations

Scaling equations for the source-receiver range, 7, the pulse duration, ¢ " the peak overpressure,
Ap, and the impulse, ‘area, are given by:

R= r
wl/3

27

i

area
fdftwl/g

area —

where Po is the ambient atmospheric pressure,

pObS 1/3 tObS _ 1/3
fa=|— 3=
Pref Tref
and
f _ (pobs) 1/3(tobs)1/6
‘ Pref Tref
scale for ambient pressure and yield given reference pressure Prer=1013 mbar and temperature
Trer=15°,
Semi-empirical methods
The ANSI and BOOM equations can be reformulated into the following form:
P = A(108/106)sewPRY
where P is in Pa, 4 is a constant multiplying factor, B is a meteorological term, S is the ambient

meteorological pressure in mbar, W is the charge weight in kg, R is the range in km, and @, B, ¥
are constants defined in the table below.

Parameter ANSI BOOM

A 0.55200618 0.6630714
B 0

a 0.556 0.633

p 0.444 0.3667

y -1.333 -1.1

3.1.3. Alternative processing functions

The pipeline processing functions described in Section 2 are designed for finding events in data.
For the case where there is a known event and the user wants to see if there are any signals
observed, Bloodhound includes the event module. The function event.find_signals, searches for
signals from a ground-truth event by running the station-level processes in infra.process_data on
time-windowed data around the predicted time windows. Results are saved to a database, with
two additional tables: gtevent and gtassoc, which contain the ground-truth event information and
corresponding associations to detections.

28

3.1.4. Synthetic tests

Generating synthetic events using propagation modeling

To generate a synthetic event using the Tau-P method, Bloodhound (the
synthetic.make_synthetic_event taup function) calculates ray bounce points given a user-defined
event location and a corresponding met file. A plot of bounce points is displayed to the user,

allowing them to pick individual bounce points to use as synthetic receivers. For each synthetic
)

receiver, the 'observed' backazimuth is simply tak 6°° = {9, + 180°) h iis the | h
, y taken as , where Vi is the launc
azimuth and {} denotes an angle wrap operator (we can do this because the Tau-P method -
described in Appendix A - uses an effective sound speed approximation such that the ray is
horizontally translated by cross winds but the azimuth remains fixed).

To use the synthetic dataset for location, the infra.locate_event _with_met corrections function is
used to implement the met correction algorithm described in Figure 3-1. Because the wind fields
were reversed in calculating synthetic sources for each receiver (Figure 3-1b), the backazimuth
that would be observed from each synthetic source equals the launch azimuth used to calculate
that source (i.e., @ =) (these backazimuths are used to calculate the mean predicted backazimuth

in Figure 3-4).

Figure 3-1 lllustration of the creation of a synthetic dataset via two steps.
(a) A set of bounce points is calculated from a hypothetical source (red
star); selected bounce-points are chosen as synthetic stations (e.g.,
yellow circle). (b) For each station (yellow circle), rays are shot in a
random set of directions (with the wind fields reversed); bounce-points
(green circles) are synthetic sources (the backazimuth for each synthetic
source equals the launch azimuth used to predict it).

29

ﬁ/\w : -
) 3
» »
t t
3 3
! Y
— [
=] 7
AA AN

Figure 3-2 An example synthetic event location before (left) and after
(right) applying met corrections. The location of the synthetic event is
shown by the red star.

An example of applying met corrections to locate a synthetic event is shown in Figure 3-2 (the
corresponding notebook is synthetic_simulations.ipynb).

Generating synthetic events without propagation modeling

Bloodhound contains several functions to test network level functions with synthetic data. The
SyntheticEvent examples.ipynb notebook contains details on how to run such functions.

3.1.5. Plotting functions

Bloodhound contains a large set of plotting functions including standard signal processing tasks
(spectrograms, spectra, record sections) as well as more specialized tasks (PMCC plots). See the
RealEvent_examples.ipynb notebook for examples.

3.2. Propagation modeling

Bloodhound includes a native implementation of the Tau-P equations for calculating ray paths in
a moving medium. Because Tau-P is the fastest method for calculating possible source locations
given a receiver, it forms the basis of the meteorological corrections in Bloodhound. However,

Bloodhound also provides interfaces to two community propagation codes: the NCPAProp code

30

(https://github.com/chetzer-ncpa/ncpaprop) and the GeoAc code (https://github.com/LANL-
Seismoacoustics/GeoAc), making these codes more accessible and directly useful to the analyst.
A description of the equations solved in these external packages is described in the respective
distributions.

Bloodhound has a suite of functions to run Tau-P and interface with external packages. See the
bloodhound_examples.ipynb notebook for examples of running Tau-P. A short description of the
functions is provided below.

Bloodhound contains a native implementation of the Tau-P equations for calculating ray paths in
a moving medium. This is the fastest method for calculating ray bounce points given a source, or
possible source locations given a receiver, and is therefore the basis of meteorological
corrections in Bloodhound.

Tau-P uses the effective sound speed approximation. For a particular launch azimuth, the
effective sound speed profile is constructed from the temperature and wind profiles. For a given
launch angle, the ray parameter is estimated:

where K2 =S¢ is the vertical wave number derived from the launch angle, o is the static sound
speed at the receiver, and %o is the horizontal wind velocity at the ground. Tau-P solves the
following equations for the range (R), transverse offset (€) and travel-time (T) of the bounce
point:

«
Rzp) =2 | vz [ﬁp@p + u(2){(@)]dz
20

z(]

Qzp) =2 | Y(zp)S(2)v(z)dz
2y
2(

T(zp)=2 | Y(zp){(2)dz

20
with,
pZ
Y(zp) = |$(2) - —z] e
(1-u(2)p)
and,
D=5

31

To solve these equations, Tau-P finds the first root of ¥(zp) above %o, then the bounce point can
be readily calculated.

As described in these equations, Tau-P is based on a range/transverse-offset (R.Q) coordinate
system. This coordinate system is suitable because Tau-P is based on an effective sound speed
approximation (wind effects are accounted for by converting the wind vectors into along-path
and cross-path components). Bloodhound converts from R.Q to geographic coordinates (¢ 4) via
a coordinate transformation, as described in Figure 3-3.

$0.5: 05 i
' 9 :
b1, A1

®o, A0

Figure 3-3 An illustration of the coordinate transformation in
Bloodhound from R.Q to ¢. 4 coordinates.

The coordinate of the bounce point (yellow circle in Figure 3-3) is calculated by first calculating

the position of Pos Aos given the starting location (%o AO), azimuth (9), and great-circle distance
(R). Next, the location of the bounce point is calculated given a second starting position,

(%05 205), azimuth ({9 -90°} if Q is positive or { +90°} otherwise), and great-circle distance ().

The azimuthal deviation is given by:

A9 = arctan(g)
R

where AV is equal to the difference between the launch azimuth and the azimuth of the actual
bounce-point.

3.2.1. Applying meteorological corrections

Meteorological corrections are currently applied to backazimuths given an initial event location.
They are applied for a given ORID in a Sqlite3 database using ray predictions obtained from the

32

Tau-P method (see the examples in the companion notebook). The process of correcting the
observations based on an initial event location is illustrated in Figure 3-4.

First, as shown in Figure 3-4a, a maximum likelihood location is calculated using the observed
backazimuths without any meteorological corrections. A threshold distance defines a circle of
that radius centered on the maximum likelihood location. Next, as shown in Figure 3-4b, ray
predictions for each station, which are obtained by reversing the winds and shooting backwards
from the station, are collected for possible sources inside the circle defined in Figure 3-4a. The
predicted backazimuths of these hypothetical sources, as observed at a given array, are averaged
to obtain a mean predicted backazimuth at that array. Next, as shown in Figure 3-4c, the
difference between the mean predicted backazimuth (given the initial location) and the great-
circle backazimuth defines a correction to convert observed to great-circle backazimuths.
Finally, as shown in Figure 3-4d, the correction is applied to each observed backazimuth to
correct them for wind bias. The location method described in the previous section is
subsequently applied to the corrected backazimuths to obtain the likelihood function and
corresponding posterior distribution.

Possible sources predicted
at station
Maximum \ e
Likelihood
location

(a)

Threshold distance

Corrections applied
to observed backazimuths

Great-circle backazimuth

Correction

Mean predicted
backazimuth

Observed backazimuth

Figure 3-4 Cartoon illustrating the process used by Bloodhound to
correct observed backazimuths based on a meteorological model and
associated ray shooting predictions using the Tau-P method in
Bloodhound.

33

3.2.2. Running Tau-P

The user can directly run Tau-P for a given met file (an ASCII file that contains a 1D profile of
the atmosphere with the following parameters: Z (km), T (K), U (m/s), V (m/s), d (g/cm”3), p
(mbar). An example of running Tau-P is provided in the companion notebook file.

3.2.3. Running GeoAc

Bloodhound contains functions to run GeoAc to produce N-by-2D maps of bounce point
predictions, and to run GeoAc to compute and plot eigenrays. To use these functions, the user
must install GeoAc on their system (this is not provided with Bloodhound but is available at
https://github.com/LANL-Seismoacoustics/GeoAc).

3.24. Running NCPAProp

Bloodhound contains functions to run NCPAProp to produce N-by-2D maps of transmission loss
(and of pressure for explosions of known yield), as well as profiles of predicted transmission loss
along fixed azimuths. To use these functions, the user must install NCPAProp on their system
(this is not provided with Bloodhound but is available at https://github.com/chetzer-
ncpa/ncpaprop).

4, ACKNOWLEDGEMENTS

Several people have provided important input on this document. Useful algorithm input and
review was provided by Steven Taylor, Paul Nyffenegger, Chris Young, and Brian Young.

34

5. REFERENCES

Arrowsmith, S., C. Young, S. Ballard, M. Slinkard, and K. Pankow (2016). Pickless Event
Detection and Location: The Waveform Correlation Event-Detection System (WCEDS)
Revisited, Bull. Seism. Soc. Am. 106 2037 - 2044.

Arrowsmith, S., and D. C. Bowman (2017). Explosion yield estimation from pressure wave
template matching, J. Acoust. Soc. Am. 141 doi:10.1121/1.4984121.

Blom, P., O. Marcillo, and S. Arrowsmith (2015). Improved Bayesian Infrasonic Source
Localization for regional infrasound, Geophys. J. Int. 203 1682 - 1693.

Bratt, S. R., and T. C. Bache (1988). Locating Events with a Sparse Network of Regional Arrays,
Bull. Seism. Soc. Am. 78 780 - 798.

Douze, E. J., and S. J. Laster (1979). Statistics of semblance, Geophysics 44 1999-2003.

Jurkevics, J. (1988). Polarization analysis of three-component array data, Bull. Seism. Soc. Am.
78 1725 - 1743.

Modrak, R. T., S. Arrowsmith, and D. Anderson (2010). A Bayesian framework for infrasound
location, Geophys. J. Int. 181 399 - 405.

Rost, S., and C. Thomas (2002). Array Seismology: Methods and Applications, Rev. Geophys.
40.

Withers, M., R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore, and J. Trujillo (1998). A

Comparison of Select Trigger Algorithms for Automated Global Seismic Phase and Event
Detection, Bull. Seism. Soc. Am. 88 95 - 106.

35

APPENDIX A: INPUT PARAMETERS

The input parameters are provided as a TOML file, with the table and key
names explained below.

Table Key Description Examples (if
applicable)
[data] | type Type of data “oracle”
Ness 3
“pickle”
“obspy”
file File name of data file
(only required if type is
“css3” or “pickle”)
conn_str Connection string for
Oracle database (only
required if typs is
“oracle”)
[time] | start Start date and time of data 2007-08-
to process 01T19:30:00+00:00
end End date and time of data 2007-08-
to process Q121030 :00:£00:: 0.0
[[filter]] | low Low-pass corner frequency
(Hz)
high High-pass corner frequency
(Hz)
window length Window length for FK
processing
[[station- | name Station or array name
data]] | lat Station latitude (or
reference array latitude)
lon Station longitude (or
reference array longitude)
channels Channels to process Ww
*DF//
“BH?”
elements Elements to process (if [“"NOQ3”, "NOQ4"”, "NOQ5"]
array) or station name (if
single station)
[[station- | name Station name
detection]] | signal type Type of signal to detect “regional”
“local-static”
“local-moving”
p_thres Detection threshold (p-
value)
minimum duration Minimum signal duration
sta STA window length (s)
lta LTA window length (s)
[[network]] | lat min Minimum latitude of region
to monitor
lon min Minimum longitude of region
to monitor
lat max Maximum latitude of region
to monitor
lon max Maximum longitude of region
to monitor
azimuth dev Allowed azimuthal deviation
for association (degrees)
confidence value Confidence value for 0.95 (for 95% coverage
coverage ellipse ellipse)

36

APPENDIX B: OUTPUT DATABASE SCHEMA

The output results are stored to a SQLite3 database, with the table and

column names explained below.

Table Name Column Name Type Description
fk | array text array name
time real start of time window
semblance real semblance estimate for time
window
backazimuth real backazimuth estimate for time
window
trace velocity real trace velocity estimate for time
window
bandid integer Unique frequency band ID
sta lta | array text array name
time real time
sta_lta real STA/LTA value
bandid integer Unique frequency band ID
sta | array text array name
time real time
sta real STA value
bandid integer Unique frequency band ID
polarization | array text array name
time real Start of time window
rectilinearity real Rectilinearity estimate for time
window
azimuth real Azimuth estimate for time window
inclination real Inclination estimate for time
window
bandid integer Unique frequency band ID
detect | arid integer unique arrival ID
master arid integer Master arrival ID
array text array name
start time real start time of detection
end time real end time of detection
bandid integer Unique frequency band ID
backazimuth real average backazimuth of detection
b start float Starting backazimuth
b _end float Ending backazimuth
t vel real Trace velocity (km/s)
semblance real Peak semblance during detection
(=999 if null)
sta lta real Peak STA/LTA during detection (-
999 if null)
sta real Peak STA during detection (-999
1 null)
rectilinearity real Peak rectilinearity during
detection (-999 if null)
p_value real Minimum p-value during detection
type integer Detection type (O=static,
l=moving)
metadetection | met id integer Unique metadetection ID
start time real Start time
end time real End time
min freq real Minimum frequency (Hz)
max freq real Maximum frequency (Hz)
mean freqg real Mean frequency (Hz)
mean semblance real Mean semblance
std semblance Real Standard deviation of semblance
mean backazimuth Real Mean backazimuth (degrees)
std backazimuth Real Standard deviation of

37

backazimuth (degrees)
mean_t vel Real Mean trace velocity (km/s)
std t vel real Standard deviation of trace
velocity (km/s)
assoc | orid integer unique event ID
arid integer unique arrival ID
origin | orid integer unique event ID
lat real Maximum Posteriori latitude of
event
lon real Maximum Posteriori longitude of
event
lat mean real Mean latitude of event
lon mean real Mean longitude of event
t0 real estimated origin-time of event
origerr | orid integer unique event ID
theta real azimuth of error ellipse
maj real length of semi-major axis
min real length of semi-minor axis
origpoly | orid integer unique event ID
lat real latitude point on polygon
lon real longitude point on polygon
£ band | bandid integer Unique frequency band ID
fmin real Minimum frequency of bandpass
Butterworth filter
fmax real Maximum frequency of bandpass
Butterworth filter

38

DISTRIBUTION
US Department of Energy
Attn: Leslie A. Casey (1)
NA-222, 1000 Independence Avenue, S.W.
Washington, DC 20585

MS0899 Technical Library 9536 (electronic copy)

39

40

@ Sandia National Laboratories

