SAND2017-9362C

Performance & Performance Portability of the Albany/F
Finite Element Land-Ice Solver
|. Tezaur?, J. Watkins?, R. Tuminarol, |. Demeshko?

1 Sandia National Laboratories, Albuquerque, NM and Livermore, CA, USA.
2 Los Alamos National Laboratory, Los Alamos, NM, USA.

SIAM GS 2017 Erlangen, Germany September 11-14, 2017

,r e . R '.vb Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
LN ENERGY !_,‘.A__n__! owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-?7?7?7?

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via
Kokkos.

3. Linear Solve.
 AMG preconditioning.

4. Summary & future work.

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via
Kokkos.

3. Linear Solve.
 AMG preconditioning.

4. Summary & future work.

7| Netorw

Motivation

e Scientific models (e.g. climate models) need more computational
power to achieve higher resolutions.

e High performance computing (HPC) architectures are becoming
increasingly more heterogeneous in a move towards exascale.

e Climate models need to adapt to execute correctly & efficiently on
new HPC architectures with drastically different memory models.

7| Netorw

MPI+X Programming Model

e HPC architectures are rapidly changing, but trends remain the same.

e Computations are cheap, memory transfer is expensive.
e Single core cycle time has improved but stagnated.

e Increased computational power achieved through manycore
architectures.

— MPI-only is not enough to exploit emerging massively parallel
architectures.

Year Memory Single Core
Access Time Cycle Time

1980s ~100 ns ~100 ns

Today | ~50-100 ns ~1ns

e MPI: inter-node parallelism.

e X:intra-node parallelism.
—> Examples: X = OpenMP, CUDA, Pthreads, etc.

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via
Kokkos.

3. Linear Solve.
 AMG preconditioning.

4. Summary & future work.

L

“PISCEES” = Predicting Ice Sheet Climate Evolution at Extreme Scales
SciDAC &

S ney 5 year SciDAC3 project currently coming to an end; follow-up 5 year
Advincol Compusio continuation project funded under SciDAC4 and starting now*!

PISCEES Project for Land-Ice Modeling)

Sandia’s Role in the PISCEES Project: to develop and support a robust and scalable land
ice solver based on the “First-Order” (FO) Stokes equations — Albany/FELIX**

Requirements for Albany/FELIX:

e Unstructured grid meshes.

* Scalable, fast and robust.

* Verified and validated.

* Portable to new architecture machines.

* Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

As part of ACME DOE Earth System
Model, solver will provide actionable
predictions of 215 century sea-level
change (including uncertainty bounds).

. /
-
-
»
\ Accelerated
7’\ Climate Mdlf‘E ergy

* See talk by Steve Price in this MS. ** Finite Elements for Land Ice eXperiments

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via
Kokkos.

3. Linear Solve.
 AMG preconditioning.

4. Summary & future work.

First-Order (FO) Stokes Model

* Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

—V-(2pé) = —pg - L1

X 1 1/1 . 2n 2
ds :UZEA “(Ezfij)

—V - (2p€;y) = ~PIG;

* T - - - . .

€7 = (261, + €55, €15, €13)
- T _ * ® * 3
€, — (2512, €11 1 265, E23)

. 1fow; Oy
Eij B E ﬂxj + @xi

First-Order (FO) Stokes Model G

* |Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

ds €,7 = (2€,,+ €45, €15, €13)
—V-(2ue) = —pg— 1 1 1 ST S22 F12, 13
(21€,) Py dx 1A_1 (1 2) ﬁ_z) €7 = (2€,,, €, + 2€6,,,€,3)
X ds H==An _Z éij) 1 /0u; auj
7 G = —pag, S «=3(+ 7)
] L

Algorithmic choices for Albany/FELIX:

First-Order (FO) Stokes Model G

* |Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

ds €,7 = (2€,,+ €45, €15, €13)
—V-(2ue) = —pg— 1 1 1 ST S22 F12, 13
(21€,) Py dx 1A1(1 , ﬁ_z) €7 = (2€,,,€,, + 2€,,,€,3)
X ds H==An _Z éij)) 1 /0u; auj
7 ue) = ~pog, © S =37+ 50)
] L

Algorithmic choices for Albany/FELIX:

e 3D unstructured grid FEM discretization.

Ic:jheet

First-Order (FO) Stokes Model G

* |Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

ds €,7 = (2€,,+ €45, €15, €13)
—V-(2ue) = —pg— 1 1 1 ST S22 F12, 13
(21€,) Py dx 1A1(1 , ﬁ_z) €7 = (2€,,,€,, + 2€,,,€,3)
X ds H==An _Z éij)) 1 /0u; auj
7 ue) = ~pog, © S =37+ 50)
] L

Algorithmic choices for Albany/FELIX:

e 3D unstructured grid FEM discretization.

e Newton method nonlinear solver with
automatic differentiation Jacobians.

Iciheet

First-Order (FO) Stokes Model

* |Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

—V-(2pé) = —pg -

) ds
—V-(2uéy) = —pga

Algorithmic choices for Albany/FELIX:

e 3D unstructured grid FEM discretization.

e Newton method nonlinear solver with
automatic differentiation Jacobians.

e Algebraic-multigrid preconditioned Krylov

linear solvers.

* T —_ . . - .

€, = (2611 + €35, €12,€413)
- T _ * " - "
€,7 = (265 €,y + 26,55, €,53)

. 1fdu; dy;
“=2\ox " ox

chheet

First-Order (FO) Stokes Model G

* |Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

ds €,7 = (2€,,+ €45, €15, €13)
V- (2UED) = —pg — 1 1 ©1 11T €22 €12 €13
(Zuey) P9 9% 1A_1 1 , 7 2) €7 = (26, €,, + 2€,,,€,5)

. ds H=z54an _Zéi' 1/0u; Odu;

j i

Algorithmic choices for Albany/FELIX:

e 3D unstructured grid FEM discretization.

e Newton method nonlinear solver with
automatic differentiation Jacobians.

e Algebraic-multigrid preconditioned Krylov
linear solvers.

e Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

chheet

First-Order (FO) Stokes Model

* |ce velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

—V-(2pé) = —pg -

) ds
—V-(2uéy) = —pg$

Algorithmic choices for Albany/FELIX:

e 3D unstructured grid FEM discretization.

e Newton method nonlinear solver with

automatic differentiation Jacobians.

e Algebraic-multigrid preconditioned Krylov

linear solvers.

e Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

Albany/FELIX implemented in open-source*

multi-physics FE Trilinos-based code: /=5

- T - . - 3 .

€7 = (261, + €55, €15, €13)
- T _ * ' * ®
€, — (2612, €11 1 265, LC23)

. 1fdu; dy;
= 2\0x; "oy,

Itheet
* https://github.com/gahansen/Albany.

First-Order (FO) Stokes Model

* |ce velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

ds €,7 = (2€,,+ €45, €15, €13)
V.) — o —— 1 1 1 11 22 €12, €13
V- (2ne) = —pa5 PEVL I (2 €7 = (2¢ €1y + 265, €5)
. ds H=sAaAn _Zéu 1/0u; Odu;
j i

Algorithmic choices for Albany/FELIX:

Implicit solver:
e 3D unstructured grid FEM discretization. FEA** =50%
: : CPU-time
e Newton method nonlinear solver with

automatic differentiation Jacobians. Linear solve =
50% CPU-time

e Algebraic-multigrid preconditioned Krylov
linear solvers.

e Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

Albany/FELIX implemented in open-source* 'theet
multi-physics FE Trilinos-based code: /=5

* https://github.com/gahansen/Albany. **Finite Element Assembly

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via

Kokkos. E———

_ CPU-time
3. Linear Solve.

 AMG preconditioning.

4. Summary & future work.

Albany/FELIX Finite Element Assembly (FEA) (@) &x.

e Gather operation extracts solution values

) _ Gather Solution (Seed) _ _
out of global solution vector. Generic Template
< ' / C::Evaluatiun'!’ype::)
e Physics evaluator functions operate on (Gather Coordinates {SEed,j) Template Specializations
workset of elements, store evaluated v K Residual)
quantities in local field arrays. Finite Element Basis sBcobian
Funr:t'ions Transformations
e FEArelies on template based generic Series Expansion
programming + automatic differentiation SOUFCE Jemms D'ﬁ”ﬂt‘" Terms) |(Hessian)
for Jacobians, tangents, etc. Convecnon Terms) (_shape Optimization)
e Scatter operation adds local residual, Element Resn:iual =3 Global, Linear Algebra Storage

— Local, Elemental Storage

Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

Albany/FELIX Finite Element Assembly (FEA) (@) &x.

e Gather operation extracts solution values

__Gather Solution (Seed)

out of global solution vector. Generic Template
= : / C:Evaluatiunl’ypen
e Physics evaluator functions operate on (Gather Coordinates {SEed,j) Template Specializations
workset of elements, store evaluated v K Residual)
quantities in local field arrays. (Finite Element Basis) s
Functions, Transformations
e FEA relies on template based generic Series Expansion
programming + automatic differentiation Source Terms _Diffusion Terms) ((Hessian)
for Jacobians, tangents, etc. \cﬂnvecﬁon Terms) (Shape Optimization)
e Scatter operation adds local residual, (Elementtesi{iual — Global, Linear Algebra Storage

— Local, Elemental Storage

Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

Problem Type | % CPU time for FEA
Implicit 50%
Explicit 99%

Albany/FELIX Finite Element Assembly (FEA)

Gather operation extracts solution values
out of global solution vector.

Physics evaluator functions operate on
workset of elements, store evaluated
quantities in local field arrays.

FEA relies on template based generic
programming + automatic differentiation
for Jacobians, tangents, etc.

Scatter operation adds local residual,
Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

MPI-only FEA:

Each MPI process has workset of cells &
computes nested parallel for loops.

(" Gather Solution (Seed)

b

(

Source Terms

et

(Gather Coordinates (Seed) b

v K

Finite Element Basis

Functions, Transformation

)

th

Generic Template

| <EvaluationType>

Template Specializations
Residual)
Jacobian

Series Expansion

 Diffusion Terms)

\Convecﬁon Terms)
v

Element Residual

(__scatter (Extract)

(.)

(Shape Uptimlzaticn-)

Hessian

=== Global, Linear Algebra Storage
— Local, Elemental Storage

Problem Type | % CPU time for FEA
Implicit 50%
Explicit 99%

Albany/FELIX Finite Element Assembly (FEA) (@) &x.

e Gather operation extracts solution values
out of global solution vector.

(" Gather Solution (Seed)

Generic Template

/ C:Evaluatiun'!’ype:-)
e Physics evaluator functions operate on (Gather cﬂmdinates{SEed,j) Template Specializations
workset of elements, store evaluated v K Residual)
quantities in local field arrays. Finite Element Basis scohian
Functions, Transformations ity
e FEA relies on template based generic Series Expansion
programming + automatic differentiation Source Terms _Diffusion Terms) ((Hessian)
for Jacobians, tangents, etc. \COnvecﬁon Termsy (_shape Optimization)
. | v
e Scatter operation adds local residual, (' Element Residual) — Global, Linear Algebra Storage
Jacobian to global residual, Jacobian. L — Local, Elemental Storage

(" scatter (Extract)

Performance-portability: focus on FEA.

e MPI-only FEA:

e Each MPI process has workset of cells & Problem Type | % CPU time for FEA
computes nested parallel for loops. Implicit 50%
* MPHXFEA: Explicit 99%

e Each MPI process has workset of cells.
e Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops.

7| Netorw

Performance-portability via Kokkos

We need to be able to run climate models on new architecture machines (hybrid
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

e In Albany/FELIX, we achieve performance-portability via Kokkos.

* Kokkos: C++ library and programming model that provides
performance portability across multiple computing architectures.

—> Examples: Multicore CPU, NVIDIA GPU, Intel Xeon Phi, and more.

e Provides automatic access to OpenMP, CUDA, Pthreads, etc.

e Designed to work with the MPI+X programming model.

e Abstracts data layouts for optimal performance (“array of strucs” vs.
struct of arrays”, locality).

With Kokkos, you write an algorithm once, and just change a template
parameter to get the optimal data layout for your hardware.

— Allows researcher to focus on application development for large
heterogeneous architectures.

MPI+X FEA via Kokkos) i,

e MPI-only nested for loop:

for (int cell=0; cellknumCells; ++cell)
for (int node=0; node<numNodes; ++node)
for (int gp=0; qp<numQPs; ++qp)
compute A; MPI process n

MP|+X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

for (int cell=0; cellknumCells; ++cell)
for (int node=0; node<numNodes; ++node)

for (int gp=0; qp<numQPs; ++qp) Thread N computes A for
(cell,node,qp)=(numCells,numNodes,numQpPs)

y

compute A; MPI process n

Single Threading

MP|+X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,qp)=(numCells,numNodes,numQpPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

Single Threading

* Unified Virtual Memory.

MPI+X FEA via Kokkos

Thread 1 computes A for
(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested
for loops via Kokkos:

Thread 2 computes A for
(cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,qp)=(numCells,numNodes,numQpPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g.
typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPI-only

Single Threading

MPI+X FEA via Kokkos

Thread 1 computes A for
(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested
for loops via Kokkos:

Thread 2 computes A for
(cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,qp)=(numCells,numNodes,numQpPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g.
typedef Kokkos::OpenMP ExecutionSpace; //MPIl+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPI-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch_add

Single Threading

MP|+X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,qp)=(numCells,numNodes,numQpPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g. Sl TRneAcing

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPI-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch_add

e For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

* Unified Virtual Memory.

MPH_X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

: . (cell,node,qp)=(0,0,1)
for loops via Kokkos. Kokkos parallelization in

FELIX is only over cells.

Thread N computes A for
(cell,node,qp)=(numCells,numNodes,numQpPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g. Sl TRneAcing

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPI-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch_add

e For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

* Unified Virtual Memory.

Computer Architectures

Performance-portability of FEA in Albany has been tested
across multiple architectures: Intel Sandy Bridge, IBM
Power8, Keplar/Pascal GPUs, KNL Xeon Phi

* Ride (SNL) used for verification, performance tests
12 nodes (dual-Power8 (16 cores) + P100 quad-GPU)

« Bowman (SNL) used for verification
10 nodes (Intel Xeon Phi KNL (68 cores))

e Cori (NERSC) used for verification, performance tests
9688 nodes (Intel Xeon Phi KNL (68 cores))

e Summit (ORLCF) is ultimate GPU target
4600 nodes (dual-Power9 + 6 NVIDIA Volta)

Computer Architectures

Performance-portability of FEA in Albany has been tested
across multiple architectures: Intel Sandy Bridge, IBM
Power8, Keplar/Pascal GPUs, KNL Xeon Phi

* Ride (SNL) used for verification, performance tests
12 nodes (dual-Power8 (16 cores) + P100 quad-GPU)

 Bowman (SNL) used for verification Platforms
10 nodes (Intel Xeon Phi KNL (68 cores)) utilized here.

e Cori (NERSC) used for verification, performance tests
9688 nodes (Intel Xeon Phi KNL (68 cores))

e Summit (ORLCF) is ultimate GPU target
4600 nodes (dual-Power9 + 6 NVIDIA Volta)

GIS Kokkos Execution Space Comparison

I cvaluateFields
MPI+GPU [1 GlobalAssembly

MPI MPI MPI+40MP

(@)
1

Wall-clock time (s)
N

(N)
1

Ride Cori

Clusters

A single node comparison: 16 MPI vs. 4(MPI+GPU) [Left], 68 MPI vs. 68(MPI+40MP) [Right]
(GIS 4km-20km unstructured mesh with 1.51M tet elements)

Blue (evaluateFields): mostly Residual/Jacobian computation + Gather/Scatter;
Yellow (GlobalAssembly): mostly communication + Trilinos operations.

GIS Kokkos 16 MPI vs. 4(MPI+GPU) Results E=.

B cvaluateFields GlobalAssembly (yellow): mostly

87— 1 ClobalAssembly] communication + Trilinos operations
= * 8x slow-down is not reasonable.
E 0 MPI4+-GPU * Most slow-downs are in Trilinos (Tpetra)
E MPI _ % — Trilinos packages are currently being
< 4 »fc% o reworked using CUDA-aware MPI.
ﬁ } i’;s(gfue;' £ § Summary: speed-ups on GPU are not yet
=,_; 9. . > as expected but may be improved by
= introducing padding, removing CudaUVM

and unnecessary data movement,
(- switching to CUDA-aware MPI.

Ride
evaluateFields (blue): mostly residual/Jacobian computation + Gather/Scatter

» 2xspeedup not much considering 4 GPUs (desirable speedup: 10x or more).

» evaluateFields<Jacobian> much faster than evaluateFields<Residual> b/c there is
more work in computing Jacobian.

* Data movement is lagging speedup — can be improved by removing CudaUVM,
data padding to prevent data misalignment.

* Afew kernels still for boundary conditions still need to be ported to Kokkos.

GIS Kokkos 68MPI vs. 68(MPI1+40MP) Results

8

B cvaluateFields GlobalAssembly (yellow): mostly

communication + Trilinos operations
[1 GlobalAssembly

wd

-

* 1.5x slowdown is in Jacobian assembly
MPI MPI+40OMP not Residual assembly — Trilinos team is
investigating this now.

Summary: besides the global Jacobian
assembly, results are promising. More
studies are need once we profile
nonlinear solver.

(moj2A) umop
MO|S XG'T

rJ

Wall-clock time (s)
"

0 -

Cori

evaluateFields (blue): mostly residual/Jacobian computation + Gather/Scatter

* 1.2x speedup from hardware threads is reasonable (2x speedup expected; most likely
limited by cache size in core)
* Speedup may be improved once we move towards using more OpenMP threads in
nonlinear/linear solver (e.g. 4(MPI+680MP)).
* More OpenMP threads on cores in FEA reduces performance because it takes away
from coarser grain MPI parallelism

GIS MPI+Device Scalability Study) i,

Strong Scalability ; Weak Scalability
8 107 4
—a= P100] —a=— P100
—a= KNL =] -a= [KNL
6 o
=) Ideal =
E: 0! =
O%-‘il:_ —8 — — -
P e
¥ okl o rpe— y— _1'.:'?:.7;..--. ?5'
7 _,..-'F-""'""'"" = =
2_) - e e ———— R L |
/--.'-" v
2 10" —
2 4 6 8 I i

Devices)
Devices

e Scalability of GlobalAssembly is studied.

» Strong Scalability is for GIS 4km-20km tet mesh (1.51M elements).

* Weak Scalability is for GIS 4km-20km and 1km-7km (14.4M and 1.51M elements) tet meshes.
* KNL performs better in terms of scaling because of heavy use of MPI.

* KNL strong scaling likely hampered by Jacobian assembly slow-downs.

* P100 results hindered by communication cost (worse when scaling b/c no CUDA-aware MPI)
* Scalability can likely be improved by removing CudaUVM.

* Weak scaling is comparable for P100 and KNL.

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via
Kokkos.

Linear Solve =

. 50% CPU-time
3. Linear Solve.

 AMG preconditioning.

4. Summary & future work.

Initial Weak Scalability Study Using ILU @ i

Greenland Ice Sheet e Antarctic Ice Sheet
10 i
T g
20t | =10 Total Time - i H
g E Limear Solve Time
- ——FEA Time
—=— Total Time H]D I Timell ter, H
—=— Total Lin Solve Tima
—*—FE Assembly Time
1 1 1
10 0 I‘ IE ””I3 ""4 3 mi'ﬂ' 10 10 10
10 10 10 10 10 10

B TIEs
cores

Initial Weak Scalability Study Using LU

time (sec)

Greenland Ice Sheet

Antarctic Ice Sheet

10 [
=)
2 I Total Time - 16
10 F 210 atar time - I
i E Linesr Solve Tirme
— FEA Time
—=— Total Time H]D I Timell ter, H
—=— Total Lin Solve Tima
—*—FE Assembly Time
1 10-2] 1 | T T | 1 1 [|
R o iy) o)
10 10 10 10 10 10

B TIEs
cores

Scalability results are not acceptable!

Initial Weak Scalability Study Using ILU @ Sk

Greenland Ice Sheet Antarctic Ice Sheet

10
T i
o ='____'-=-"’"-Hﬂ-
° 2
2,2 | St Total Tima- b0 |
i
£ E Linear Solve Tirme
- ——FEA Time
—=— Total Time H]D I Timell ter, H
—=— Total Lin Solve Tima
—*—FE Assembly Time
! T
O T T T T o iy) o)
10 10 10 10 10 10
B TIEs
cores

Scalability results are not acceptable!

Why is scalability so bad for out-of-the-box preconditioners?
1. Ice sheet geometries have bad aspect ratios (dx > dz).

2. Ice shelves give rise to severely ill-conditioned matrices.
3. Islands and hinged peninsulas lead to solver failures.

Initial Weak Scalability Study Using ILU

Greenland Ice Sheet Antarctic Ice Sheet

10 1
o __ﬁﬁ
3 i
20 el 110 Total Time - 10
£ E Linezr Solve Time
" ——FEA Time
—= Total Time H]D i Timeller,
—® Total Lin Solve Time
—*—FE Assembly Time
i -2
R " iy) o)
10 10 10 10 10 10
e
cores
Scalability results are not acceptable! We mitigate these difficulties

through the development of:
Why is scalability so bad for out-of-the-box preconditioners?

New AMG* preconditioner
1. Ice sheet geometries have bad aspect ratios (dx > dz). based on semi-coarsening.

2. Ice shelves give rise to severely ill-conditioned matrices. « [sland/hinge removal
3. Islands and hinged peninsulas lead to solver failures. algorithm.

* Algebraic Multi-Grid.

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via

Kokkos. E———

] CPU-time
3. Linear Solve.

 AMG preconditioning.

4. Summary & future work.

Scalability via Algebraic Multi-Grid
Preconditioning with Semi-Coarsening

Bad aspect ratios (dx > dz) ruin

classical AMG convergence rates!

* relatively small horizontal
coupling terms, hard to
smooth horizontal errors

= Solvers (AMG and ILU) must

take aspect ratios into account

We developed a new AMG
solver based on aggressive
semi-coarsening (available in
ML/Muelu packages of Trilinos)

Algebraic
Structured MG

Algebraic
Structured MG

Unstructured
AMG

See (Tezaur et al., 2015),
(Tuminaro et al., 2016).

Scaling studies (next slides):
New AMG preconditioner vs. ILU

Greenland Controlled Weak Scalability Stuggz.

3
10

—& Total Time - Mesh Impaort

—=— Total Linear Solve Time

—*— Finite Element Assembly Time 1

4 cores
334K dofs
8 km Greenland,
5 vertical layers

2 I IH”HS I IIII”I4 I III””5
10 10 10 10

cores

16,384 cores
1.12B dofs(!)

% 84 0.5 km Greenland,

scale up 80 vertical layers

Weak scaling study with fixed
dataset, 4 mesh bisections.

~70-80K dofs/core.

Conjugate Gradient (CG)
iterative method for linear solves

(faster convergence than
GMRES).

New AMG preconditioner
developed by R. Tuminaro based
on semi-coarsening (coarsening
in z-direction only).

Significant improvement in
scalability with new AMG

preconditioner over ILU
preconditioner!

Greenland Controlled Weak Scalability Stuggz.

New AMG preconditioner

preconditioner ILU preconditioner
1.:.3_ ———r—— T ———
_ M)
% 2 / 8 5
S 10E /\9_/_4/ 1 247 1
E E |
—& Total Time - Mesh Import = Total Time
—*—Total Linear Soke Time —=—Total Lin Solve Time
—&— Finite Element Assembly Time = FE Assembly Time
1
10 |:| I1 II“IE * III””IS * IIIIII4 : : III”IS 101 1 111l 1 11 anl 1 Ll 1l 1
10 10 10 10 10 10 ™ 10 10 ™ 10 ™
cores # cores
e Significant improvement in
4 cores 16,384 cores scalability with new AMG
334K dofs 1.12B dofs(!) preconditioner over ILU
8 km Greenland, % 84 0.5 km Greenland, preconditioner!
5 vertical layers scale up 80 vertical layers

Moderate Resolution Antarctica Weak M.
Scaling Study

Antarctica is fundamentally different than Greenland:
AIS contains large ice shelves (floating extensions of land ice).

* Along ice shelf front: open-ocean BC (Neumann).
* Along ice shelf base: zero traction BC (Neumann).

= For vertical grid lines that lie within ice shelves, top and
bottom BCs resemble Neumann BCs so sub-matrix
associated with one of these lines is almost* singular.

(vertical > horizontal coupling)

+
e
Neumann BCs Il:ateral boundary
l

o~ Basal boundary T'p

nearly singular submatrix associated with vertical lines

= Ice shelves give rise to severe ill- *Completely singular in the presence
conditioning of linear systems! ofislands and some ice tongues.

Moderate Resolution Antarctica Weak
Scaling Study

* Weak scaling study on Antarctic problem (8km w/ 5 layers — 2km w/ 20 layers).

* Initialized with realistic basal friction (from deterministic inversion) and
temperature field from BEDMAP2.

* [terative linear solver: GMRES.

* Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening.

preconditioner

W ILU Severe ill-conditioning AMG
caused by ice shelves! Total Time - IfQ
Linear Soke Time
104 I _\4 — FE& Time
/ I Timeter.
g = ———
by 11 Total Tirme - 10) "
.—% Linesr Salve Time E
——FEA Time =
0 .
10 Timell =, mu i
16 N . 1024 16 ” ”
cores 10 10 cores cores i i
s # COres
cores # cores

AMG preconditioner less sensitive than ILU to ill-conditioning (ice shelves
— Green’s function with modest horizontal decay — ILU is less effective).

(vertical > horizontal
coupling)
+
Neumann BCs

nearly singular
submatrix associated
with vertical lines

Towards Linear Solver Performance-) =,
Portability

e Jerry: please fill in info on Siva’s available preconditioners.

Outline) S,

1. Background.
* Motivation.
* PISCEES project for land-ice
modeling.
* Albany/FELIX “First-Order
Stokes” land-ice model.

2. Finite Element Assembly.
* Performance-portability via
Kokkos.

3. Linear Solve.
 AMG preconditioning.

4. Summary & future work.

Summary & Conclusions Ll

* A performance portable implementation of the FEA in the FELIX land-ice model
was created using Kokkos within the Albany code base.
- With this implementation, the same code can run on devices with drastically
different memory models (many-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.).

- Performance studies show that further optimization is needed to fully utilize all
resources.

More on performance-portability of Albany using Kokkos can be
found here: https://github.com/gahansen/Albany/wiki/Albany-
performance-on-next-generation-platforms

Summary & Conclusions Ll

* A performance portable implementation of the FEA in the FELIX land-ice model
was created using Kokkos within the Albany code base.
- With this implementation, the same code can run on devices with drastically
different memory models (many-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.).

- Performance studies show that further optimization is needed to fully utilize all
resources.

More on performance-portability of Albany using Kokkos can be
found here: https://github.com/gahansen/Albany/wiki/Albany-
performance-on-next-generation-platforms

» Scalable, fast and robust linear solve is achieved via algebraic multigrid (AMG)
preconditioner that takes advantage of layered nature of meshes.

- Performance portability of linear solve is work in progress.

Summary & Conclusions

* A performance portable implementation of the FEA in the FELIX land-ice model

was created using Kokkos within the Albany code base.

th

- With this implementation, the same code can run on devices with drastically
different memory models (many-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.).

- Performance studies show that further optimization is needed to fully utilize all

resources.

More on performance-portability of Albany using Kokkos can be
found here: https://github.com/gahansen/Albany/wiki/Albany-
performance-on-next-generation-platforms

» Scalable, fast and robust linear solve is achieved via algebraic multigrid (AMG)

preconditioner that takes advantage of layered nature of meshes.

- Performance portability of linear solve is work in progress.

Heterogeneous HPC architectures can now be
utilized for land-ice research using Albany/FELIX.

Ongoing/Future Work

Finite Element Assembly (FEA):

* Profiling using TAU and nvprof.

* Methods for improving performance:
Reduce excess memory usage.

Utilize shared memory.

Replace CUDA UVM with manual memory transfer.

Improve performance of other sections of code besides FEA.
Parallelize over nodes and quadrature points in addition to cells for FELIX.

e Large-scale runs on Cori and Summit.

Linear Solve:

* Performance-portability of preconditioned iterative linear solve using
Kokkos for implicit problems in Albany (e.g., FELIX).

- Finish converting MueLu/Ifpack2 to use Kokkos.

- Algorithm redesign may be necessary for GPUs.

- Considering other solvers, e.g., hierarchical solvers, Shylu (FAST-ILU, multi-
threaded GS).

Funding/Acknowledgements

Support for this work was provided through Scientific Discovery through Advanced

Computing (SciDAC) projects funded by the U.S. Department of Energy, Office of Science

n (OSCR), Advanced Scientific Computing Research and Biological and Environmental
/\l -’ﬁ| Research (BER) — PISCEES SciDAC Application Partnership.

BERKELEY LAB

OA_K Sa“dia THE UNIVERSITY OF \\V?
RIDGE National aﬁ; Alamos TEX A S =% BRIGIEL @1 SOUTH CAROLINA

National Laboratory i I_aborat[]"es NATIONAL LABORATORY AT AUSTI
Nto al Laboratory

FASTMATH DL 4 :Up—,.;

I gl
Advanced Computing

EHEHGF i RE ILIEHEE

PISCEES team members: K. Evans, M. Gunzburger, M. Hoffman, C. Jackson, P. Jones, W.
Lipscomb, M. Perego, S. Price, A. Salinger, I. Tezaur, R. Tuminaro, P. Worley.

Trilinos/DAKOTA collaborators: M. Eldred, J. Jakeman, E. Phipps, L. Swiler.
Computing resources: NERSC, OLCF.

References)

Laboratories

[1] M.A. Heroux et al. “An overview of the Trilinos project.” ACM Trans. Math. Softw. 31(3) (2005).

[2] A. Salinger, et al. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics
Analysis Code", Int. J. Multiscale Comput. Engng. 14(4) (2016) 415-438.

[3] I. Tezaur, M. Perego, A. Salinger, R. Tuminaro, S. Price. "Albany/FELIX: A Parallel, Scalable and Robust
Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", Geosci. Model Develop.
8 (2015) 1-24.

[4] C. Edwards, C. Trott, D. Sunderland. “Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns”, J. Par. & Distr. Comput. 74 (12) (2014) 3202-3216.

[5] R. Tuminaro, M. Perego, I. Tezaur, A. Salinger, S. Price. "A matrix dependent/algebraic multigrid
approach for extruded meshes with applications to ice sheet modeling", SIAM J. Sci. Comput. 38(5)
(2016) C504-C532.

[6] I. Tezaur, R. Tuminaro, M. Perego, A. Salinger, S. Price. "On the scalability of the Albany/FELIX first-
order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice
sheets", Procedia Computer Science, 51 (2015) 2026-2035.

[7] I. Demeshko, J. Watkins, I. Tezaur, O. Guba, W. Spotz, A. Salinger, R. Pawlowski, M. Heroux. "Towards
performance-portability of the Albany finite element analysis code using the Kokkos library", submitted
to J. HPC Appl.

[8] S. Price, M. Hoffman, J. Bonin, T. Neumann, |. Howat, J. Guerber, I. Tezaur, J. Saba, J. Lanaerts, D.
Chambers, W. Lipscomb, M. Perego, A. Salinger, R. Tuminaro. "An ice sheet model validation framework
for the Greenland ice sheet", Geosci. Model Dev. 10 (2017) 255-270 -

Appendix: Parallelism on Modern Hardwar(@) 2.

Memory Access Time | Single Core Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1ns

e Memory access time has remained the same.

e Single core performance has improved but stagnated.

e Computations are cheap, memory transfer is expensive.

e More performance from multicore/manycore processors.

Appendix: ol Al e MUltlthSICS Code

ol et b L

FO-Stokes model is implemented within Albany, Sandia open-source*
parallel, C++, multi-physics finite element code — Albany/FELIX**.

] . Analysis Tools Mesh Tools
e Component-based design for rapid (black-box) Mesh I/0 Input File Parser
. R Optimization Inline Meshing Parameter List
development of new physics & capabilities. UQ (sampling) Partitioning Memory Management
Parameter Studies Load Balancing I/O Management
Calibration Adaptivity Communicators
e Extensive use of libraries from the open- Releblly TR Runtime Compiler
oge . Composite Physics | SR SISV ENTOT i .
source Trilinos project: T s ol Search Depenaent Kernels
o o System UQ DOF map Multi-Core
e Automatic differentiation. , Accelerators
A?g%%‘;ﬁ:gﬁ Mesh Database | _
 Discretizations/meshes, mesh adaptivity. —\oninearsover Mesh Database Post Procseshng |
- Time Integration Geomfatry Database Verification
e Solvers, preconditioners. Sohiicn Solution Database Q0! Computation
o . Checkpoint/Restart :
Sensitivity Analysis Model Reduction
e Performance-portable kernels. Stability Analysis R R
Constrained Solves 5 Local Fill :
Optimization ; | Discretizations | ’
. - ! | Discretization Lib —
e Advanced analysis capabilities: 1 Solver [Fiold Manager | | sies il |
. . Linear Algebra S— Source Terms
e Parameter estimation. Data Structures | Derivative Tools | SCe
. . g . lterative Solvers : Material Models
e Uncertainty quantification (DAKOTA). Direct Solvers e
Eigen Solver | [e ——
imi ; Preconditioners i i
y Optlmlzatlon' Multi-Level Methods
o itivi lysis. . .
Sensitivity analysis 40+ packages; 120+ libraries

* https://github.com/gahansen/Albany. **Finite Elements for Land Ice eXperiments

Appendix: First-Order (FO) Stokes Model [z,

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

* Quasi-static model with momentum balance given by “First-Order” Stokes PDEs: “nice”
elliptic approximation* to Stokes’ flow equations.

é1T = (2é11 + é22:é121é13)

=V - (2uey) = _ng_i _ €' = (261121511 + 286221 €3)
c ds in () €. = — j + ﬁ

-V - (2ue,) = —PY5, b 2\0x; Ox;

e Viscosity u is nonlinear function given by “Glen’s law”:
Surface boundary I’

1 1

1 e, \eD) _
pu=sAT) " (EZ fij2> (n=3) Ice sheet

ij
/ <— Lateral boundary T,
=

Basal boundary I',

* Relevant boundary conditions:

* Stress-free BC: 2u€;-n = 0,onl,

* Floating ice BC: , pgzn,ifz > 0
uei.nz{o ifZ<O,onI‘l
* Basal sliding BC: 'B (J.C' y) = b_a S.al
2u€; - n + B(x,y)u; = 0, on Fﬁ sliding coefficient

*Assumption: aspect ratio § is small and normals to upper/lower surfaces are almost vertical.

Appendix: Kokkos-ification of Finite =
Element Assembly (Example)

typedef Kokkos::0penMP ExecutionSpace;

template<typename ScalarT=

vectorGrad<ScalarT>: :vectorGrad()

{

FKokkos::View<ScalarT****, ExecutionSpace> wvecGrad(”vecGrad”, numCells, numQP, numVec, numDim);

}

e o d o o W o o o e o o o o e o o e o o e o o o e o e i o o o o ol o e o o i e o o o e e
template<typename ScalarT>
void vectorGrad<ScalarT>::evaluateFields()

{

Kokkos::parallel for<ExecutionSpace> (numCells, *this);

}

e Wt v e e e e e e e e e e de e o o e o o o o o o o o o o ol o e o ok ol o o o e o ok ol e ke

template<typename ScalarT> ExecutionSpace para meter

KOKKOS_INLINE FUNCTION tailors code for device (e.g.,
void vectorGrad<ScalarT>:: operator() (const int cell) const OpenMP CUDA. etc)
4) .

{ .
for (int cell = 0: call < numCells; cellid)
for (int gp = 0; gp < numQP; gp++) {
for (int dim = 0; dim < numVec; dim++) {
for (int i = 0; i < numDim; i++) {
for (int nd = 0; nd < numNode; nd++) {
vecGrad(cell, gp, dim, i) += val(cell, nd, dim) * basisGrad(nd, gp, i);

PhrPH}

Appendix: Ice Sheet Dynamic Equations ()&=,

* Model for evolution of the boundaries (thickness
evolution equation):

0H

E=—V'(UH)+b

where u = vertically averaged velocity, b = surface mass
balance (conservation of mass).

» Temperature equation (advection-diffusion):

oT
peor = V-(kVT)—pcu-VT + 2€0

(energy balance).

* Flow factor A in Glen’s law depends on temperature T: Ice-covered (“active”)
A= AT). cells shaded in white
(H > Hpin)

* |ce sheet grows/retreats depending on thickness H.

Appendix: MPIl+Device Scalability Study

Strong Scalability Weak Scalability

. 10

1 P100 B cvaluateFields B cvaluateFields P100
(_:‘/ [GlobalAssembly %30 1 O GlobalAssembly
= 107 P100 =
é’ —Ng 20 1
S P100 P100 G P100
i KNL =10
= KNL KNL = KNL KNL

0- 0-
2 4 8 1 10
Devices Devices

Device Comparison, P100 vs. KNL (GIS 4km-20km mesh)
1. Blue: mostly Residual/Jacobian computation, Yellow: mostly communication.

2. KNL performs better because of heavy use of MPI

3. P100 performance is hindered by communication cost
(worse when scaling because of lack of CUDA aware MPI)

Appendix: Greenland Weak Scalability on) i,
Titan

Weak scalability on Titan (16km, 8km, 4km, 2km, 1km Greenland)

Wall-clock Time:

Wall-clock Time: FEA
Total Time — Setup Time

8
F#‘.‘
3[:' a ‘\.-‘
'*n.,_&
7 -
k. TN

. 25 1 -8
f Y| =
g6 —y = $MP 1+ 20penMP E
= wld = AMPI+40penMP| "= 20
e el = IMPI4+-80penMP| 4
— sl e VGO penhl P —lc
£ 57 1] 1
- -
- A" l""."q_.-‘“ - e wml)

41 qI'“r""-l.. 1 10t D—"'“-_.-*“"—-n

- Titan: 18,688 AMD %
Opteron nodes
3 1’ ' * 16 cores per node 2 ' ' ' ' '
Number of Nodes node MNumber of Nodes
*32GB + 6GB

Appendix: Scalability with Increasing Ordel

Elements

Shallow Water Strong Scalability on Ride, GlobalResidual

(86400, 43200, 21600, 10800, 5400 Elements/Device)
T T T T T

16 T T
Device Configuration, Order
—— [deal
14 - =] = 8(MPI+80penMP), p3
weil = 8(MPI4+80penMP), pd P
8(MPI+80penMP), ps P L
12 r | =g =8(MPI+80penMP), p6 .
P -
I
P -
L S _d
1o ¢ -
s ¢ -
= F
2 8 - ’f s e
wn 4 -~ - - -
-
C o -
6 F < -
< -
2 Cd
7 ‘.
4 r 4
-~
2 b
L 1 1 | 1 1 1
2 4 6 8 10 12 14 16

Number of Devices

Efficiency (%)

Shallow Water Weak Scalability on Ride, Global Residual

%ﬂfm'mj?ﬂ. uniform_240, uniform_480)

100 =
-~
L e
. '\,\
90 \. > “‘~
r ~
L) ~
‘- \‘\
. \ S
Y
“ b\
70 +)
)
»
L\
Y
60 - W
(L)
L\
by
-~
L ~
50 ~..~:::~
':::.‘
A
40 :
1 4 16

Socket Configuration, Order

e = 2(MPI+GPU), p3
e = 2(MPI+GPU), p4

2(MPI+GPU), p5
e = 2(MPI+GPU). p6

Number of Sockets

Left: speedup plot shows benefit of using higher orders to obtain better strong scalability for
MPI+OpenMP for Aeras atmosphere dycore shallow water test case.

Right: weak scalability for MPI + GPU on the Ride for Aeras atmosphere dycore shallow
water test case. Efficiency drops significantly for lower order elements, but GPU is better
able to maintain weak scaling for higher order p6 spectral element.

Appendix: Kokkos Range vs. MDRange T
Policy

Shallow Water Policy Comparison on GPU, evaluateFields, p6
(86400, 43200, 21600, 10800, 5400, 2700 Elements/GPU)

25 r
I Range
[]MDRange
20 -
15
g
7)
10
5 b=
L e me l] ﬂ
1 2 4 8 16

Number of GPUs

* Range vs. MDRange policy for shallow water test case in Aeras
atmosphere dycore with p6 spectral element for MPI + GPU.

Appendix: Improved Linear Solver
Performance through Hinge Removal

Islands and certain hinged
peninsulas lead to solver failures

* We have developed an algorithm to detect/remove problematic
hinged peninsulas & islands based on coloring and repeated use
of connected component algorithms (Tuminaro et al., 2016).

* Solves are ~2x faster with hinges removed.

e Current implementation is MATLAB, but
working on C++ implementation
for integration into dycores.

Greenland Problem

8km/5 878 sec, 693 sec, 254 sec, 220 sec,
layers 84 iter/solve 71 iter/solve | 11 iter/solve 9 iter/solve
4km/10 1953 sec, 1969 sec, 285 sec, 245 sec,
layers 160 iter/solve 160 iter/solve | 13 iter/solve 12 iter/solve
2km/20 10942 sec, 5576 sec, 482 sec, 294 sec,
layers 710 iter/solve 426 iter/solve | 24 iter/solve 15 iter/solve
1km/40 -- 15716 sec, 668 sec, 378 sec,
layers 881 iter/solve | 34 iter/solve 20 iter/solve

