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A National Security Science & Engineering Laboratory
=  “Exceptional service in the national inter~~+”

= Nuclear Weapons
= Defense Systems & Assessments
= Energy & Climate
= |nternational, Homeland, & Nuclear S

: :.‘;\‘\

W
e \



SNL’s Additive Interests

= Reduce risk, accelerate development

= simplify assembly & processing

= prototypes, test hardware, tooling & fixturing
= Add value

= design & optimize for performance, not mfg

= complex freeforms, internal structures, integration
= engineered materials

= gradient compositions

* microstructure optimization & control

= multi-material integration
— “print everything inside the box, not just the box”

- ceramic-

1ermopla

printing of
alumina

printed battery
lattice implementation

w/TO solutions from
PLATO




AM Qualification Elements

uiremen
= Development ReQ———"Nis

= same phase gate process

= develop & evaluate “new” materials Process
. L. . Feedstock handling
establish property distributions - Machine

parameters

w/probabilities & worst case Post processing

= requirements, requirements, Process Data

requirements
Qualification/Acceptance

Inspection
Data

. et Dt
= Production est bata

= product acceptance is major challenge De;igrtndfc;_r ?M [Waézgigsltsock
© a efrinition
destructive sampling +  Final properties

test artifacts (tensile, Charpy, density,
composition, powder, ...)

inspection (CT, dimensional, powder, NDE)

= design labs & plants working together on
requirements, specifications & methods

Sandia qualification / product acceptance paradigm for AM.




AM Qualification Elements

Component requirements
mechanical envelope, environments (mechanical, thermal, electrical, environmental)

Design for AM Part Definition

Derived from Design requirements
mechanical, thermal, electrical, corrosion, compatibility, surface finish

Feedstock Part Properties

PROCESS Derived from Design & Material requirements

ACCEPTANCE Quality policy to ensure that all requirements are met

MATERIAL




Qualification Tomorrow

=  “Changing the Engineering Design & Qualification Paradigm”

= Jeverage AM, in-process metrology & HPC to revolutionize product realization

AM
Process
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stress-strain response (below)
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Material formation concurrent w/geometry
= want to predict part/material performance

= how to ID a bad part?
complexity isn’t “free”

requires significant design margins and/or
rigorous post-process inspection / validation

= Quantify critical material defects & useful
“signatures”
= D-tests, NDE, process monitoring, mod-sim, ?

= Understand mechanistic impacts on
properties
=  build process-structure-property relationships
to predict margins & reliability

= characterize stochastic response to design for
uncertainties

= provide scientific basis for qualification of AM
metals for high consequence applications
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17-4PH Study

= Exploring as alternate to 304L
= higher strength w/multiple strengthening
mechanisms
=  Monolithic build w/110 dogbones
= custom design per ASTM
= external vendor w/constant process _
) high throughput test sample w/120 dogbones,
=  SHT + H900 HT @ Sandia 1x1mm gage x-section
= High-throughput testing |
= digital image correlation (DIC)
= necessary to rapidly capture material distributions
= applicable for the lab & production

SSEBTANS
391 @S2 ALIYdY)
@SZ-WS 13001

H30NASNYH1 30404

tensile test w/DIC strain field overlay

Salzbrenner, B., Journal of Materials Processing Technology, 2017; Boyce, B., Advanced Engineering Materials, 2017



Stochastic Response

1400
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= NDE before testing
= detect defects, performance correlations
= density (Archimedes)
= resonant ultrasound spectroscopy (RUS)
= optical surface measurements
= computed tomography (CT)

=  Post mortem after testing

= inform performance & failure mechanisms ~ ~
17-4PH dogbone porosity

= fractography
= metallography
= composition

= XRD

[ mm]

7
£

= Do reasonable defect signatures exist which tie
to performance tests?

fracture surface



Implicit Part Correlations
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Explicit Porosity Measurements

= Computed tomography (CT)
= NDE “gold standard” for porosity measurement
= gage sections imaged w/resolution of 7 or 10 um voxel edge length

= What can we see? Does it inform material behavior predictions?
= justifiable for qualification and/or production?
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= Total Volume of Defects ( V,,, )

= Pore Volume Fraction ( V)

= Spatial Location of Pores (x, y, z)
= Total Number of Defects (N)

= Total Defects/Length (N/L)

= Average Defect Volume (V,,, )*

= Average Cross-Sectional Area ( CSA,,, )*

= Average Nearest Neighbor Distance ( NND

avg. )

g. : Q Q
(X21y2122) " O
%

How do we best represent the
X3, Y323 defect populations present?




Statistical Correlations Are Elusive
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Post Mortem Analyses
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Fractography

= Defect dominated failure observed
" |ncreasing data fidelity & integration

= overlay fracture surface w/porosity map
using DREAM.3D

= roughness inhibits registration accuracy
= fracture surface may correlate to large
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=  Compositional analysis identified no
anomalies

= XRD revealed unexpected austenite
variation in X-Y
= what about Z?

= further complication to dogbone
performance

= source = powder, atmosphere?
Blue = Austenite (FCC)

Red = Martensite/Ferrite (BCC)
Black = non-indexed

as printed, ~0 vol%
retained austenite

SHT + H900, ~22 vol%
retained austenite

EXTERN_0
Pattern quality+Phase map MAG: 200x HV:25kV WD: 14.3 mm

EXTERN_0
Pattern quality+Phase map MAG: 200x HV: 25kV WD: 14.9 mm
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=  Want to inform & predict material
variability
= Approach

= explicitly subtract spherical CT
porosity volumes from dogbones
= solve tensile loading

= ignore residual stress, surface finish
& defects w/volume below ~90um3

= continuum properties calibrated to
low porosity sample D16

= Expectations

= large defects will intensify & localize
deformation

® microscale void mechanisms will
drive failure

Material Models

. interior
exterior
explicit defect representation . - S
applied to dogbone model . :
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= Exploring intra-build variations, process o 20, Lo
sensitivities / margins / optimization 2 10 s
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= 316LSS printed on Sandia ProX 200 O o
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" parameters Ultimate Tensile Strength, MPa
= power, velocity, cross-feed, scan strategy, # UTS variation w/power, velocity & scan pattern

parts/plate
= represents ~2500 dogbones
= Gen2 HTT development

"  measurements
= top surface distortion (after EDM)
= surface finish (top, side, angles)
= Archimedes density
= CT
" resonance testing
= tensile testing

* metallography, fractography f g 5y S 00

IPFXMap: MAG: 114x" 'HV: 20kV WD: 14.0'mm, ‘ Px:"1.00 ym

representative texture map via EBSD, phase content has
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High Throughput Testing: Gen 2

316L SS dogbone array with 25 dogbones
A

»
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Single probe emits
incident wave & receives
reflected signal

= gate 1 - backwall
surface

= gate 2 — part thickness
Material density

= 17-4PH, Al10SiMg,
Ti6Al4V

N

0.8 1

Gate 1 signal

£ o " 4
08 1 12 14 16 18 2

Gate 2 signal

CT images of 98% (left), 96% (center) & 93% (right) dense Al10SiMg
dogbones (left) & attenuation of 10MHz ultrasonic backwall reflections (right)




Exploring Wave Propagation to
Measure Residual Stress Cr
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Summary

Material assurance is a challenge

= material behavior is complex

predictive inter-build correlations for 17-4PH
have not been straight-forward

contributing factors include process, feedstock,
measurement, surface finish, microstructure
= orthogonal testing pursuing multiple signatures
is invaluable (& necessary) for qualification /
product acceptance

Tools developed to interrogate & analyze
defects

= performance distributions can be captured
efficiently & used to understand material &
process

tracking intra-build population shifts may be
possible

porosity & surface roughness couple in failure
initiation
= intra-build / process change correlations
identified for 316L SS
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QUESTIONS?

Bradley Jared, PhD
bhjared@sandia.gov
505-284-5890
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Material Performance Fit to 3-Parameter

Weibull Distributions s
= Based on weakest link theory 90
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Hardness (HV0.5)

=  Microstructure

= optical, SEM, EBSD, WDS micro-

probe

=  Composition

= LECO combustion, ICP mass-spec,

XRD
= powder analysis

= Microhardness
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Vibianl
- Resonant Ultrasound Spectroscopy

dogbone re

=  Swept sine wave input from 2-point transducer
= spectrum =74.2 kHz to 1.6 MHz

= intent is to identify outliers, variations, process limits,
defects

= |dentified 19 resonance peaks

= Z-score compares peak frequency w/average & std. dev.
" no strong trends across 17-4PH dogbone population
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As-Polished Microstructures

: : o HIP (15 ksi, 1093°C, 6 hrs)
As-printed (no HIP) HIP (15 ksi, 1093°C, 6 hrs) + ambient pressure 1200°C, 2
hrs
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