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Abstract

Due to the weight of overburden and tectonic forces, the solid earth is subject to an ambient
stress state. This stress state is quasi-static in that it is generally in a state of equilibrium.
Typically, seismology assumes this ambient stress field has a negligible effect on wave
propagation. However, two basic theories have been put forward to describe the effects of
ambient stress on wave propagation. Dahlen and Tromp (2002) expound a theory based on
perturbation analysis that largely supports the traditional seismological view that ambient stress
is negligible for wave propagation. The second theory, espoused by Korneev and Glubokovskikh
(2013) and supported by some experimental work, states that perturbation analysis is
inappropriate since the elastic modulus is very sensitive to the ambient stress states. This brief
report reformulates the equations given by Korneev and Glubokovskikh (2013) into a more
compact form that makes it amenable to statement in terms of a pre-stress form of Hooke's Law.
Furthermore, this report demonstrates the symmetries of the pre-stress modulus tensor and
discusses the reciprocity relationship implied by the symmetry conditions.
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NOMENCLATURE

Abbreviation Definition

KG Korneev and Glubokovskikh

DT Dahlen and Tromp
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1. INTRODUCTION

The rocks within the solid earth are subject to ambient stress fields due to the weight
of overburden and tectonic forces. It is commonly assumed in seismology that the
effects of this ambient stress state are negligible for typical seismological
observations. However, ambient stress does to at least some extent affect wave
propagation and two main theories have been advanced to describe these effects.
These two theories, Dahlen and Tromp (2002) and Korneev and Glubokovskikh
(2013), view the problem from two different aspects and come to two very different
conclusions. Dahlen and Tromp take a linearized expansion theory approach to derive
their pre-stress equations, while Korneev and Glubokovskikh make the case that
expansion theory is inappropriate since the higher order terms relating the change in
the elastic modulus tensor to a change in ambient stress state are actually larger in
magnitude than the elastic modulus tensor itself. They retain the higher order terms,
which in turn retains second order products of strains, making for a more complex
theory.

In this report, the theory developed by Korneev and Glubokovskikh is expressed in
simpler terms that makes it more amenable for future forward modeling in the
presence of ambient stress and perhaps inversion of ambient stress from seismic data.
The symmetries of the pre-stress elastic modulus tensor from their theory are derived
and shown to match those of the standard elastic modulus tensor and on that basis an
argument that the same reciprocity relationships apply in a pre-stressed media as in the
assumed stress-less state.
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2. AMBIENT STRESS EQUATIONS

2.1. Korneev and Glubokovskikh Equations

One of the two formulations of seismic wave propagation in the presence of static (or
ambient or tectonic) stress is given in Korneev and Glubokovskikh (2013) (hereafter
referred to KG). This is a nonlinear formulation as opposed to Dalen and Tromp
(2002) (hereafter referred to DT), which assume linearity throughout. Much of KG's
basic derivation is repeated here for completeness.

The total displacement (static plus transient) and total stress in the presence of ambient
stress in an isotropic elastic media is related via (KG Equation 2, revised to clarify
summation convention and verified in Gurbatov et al., 2012):

au au, auk

s k a 

x`

= A __ +
ax iax 

A j( au, aus auk au, aus au,)
±

4 axi axk axs axs axk axs

(B + A,)
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aus aus + 2 aui aus A au au 
(1)

J J 

k s
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B au, au; c. n ail atis aUs
°ik+ --Uik

2 ax; axs ax, axs axs axs

where crik is the stress (function of space and time), ui is total displacement (function

of space and time), A , ,u, A , B, and C are unstressed elastic constants for nonlinear

materials (functions of space), 8,k is the kronecker delta function, and subscripts s and

j are summation indices. For known materials A , B, and C (the second order elastic
constants) are much larger in magnitude than A , µ (Korneev and Glubokovskikh,

2013); thus, we can make the following approximation (KG Equation 3):
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The equations of motion are the same as usual:

(2)
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a2 ui k
P 2 = +fat axk (3)

where p is density (a function of space), t is time, and f is a component of a body

force vector.

We can decompose the total displacement and stress into ambient and transient terms:

u U + w

C ik a ik a ik

where U is the static displacement, dik is the static stress (both assumed here to be

independent of time), w is the transient displacement, and ei-ik is the transient stress.

Ignoring all transient terms, we find (KG Equation 7):

_ au au. au
Uik = + + kax, ax aXk 

A ati, au, +au, au, +au s au, + auk au s)
4 ax, axk axs axs axs ax, axi
B au, au au, au, au, au, au, au,

8 
+
2 --+-- 5,k +2

2 ik aXk aXs aXi aXs aXi axs
au s aus+ c 6,kaxs axs

The above equation relates static (ambient) stress to static displacements.

If we assume that for wave propagation that the transient displacements are small
relative to the static displacements, it allows us to neglect terms in the square of w .
The transient stress-displacement equations, derived by substituting Equation 4 into
Equation 2 and ignoring terms involving the square of w (KG Equation 9):

(4)

(5)
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Equations 5 and 6 form the basis from which we will derive the remaining equations.

2.2. Reformulated Equations

In seismology we typically have information related to the in-situ elastic constants via
seismic characterizations, instead of the unstressed constants used in the above
equations. Therefore, the first transformation is to back out the implied in-situ A, and
,• that we will call A,' and it' . To find these in-situ values, we will need to group

terms that match the forms of the unstressed A and ,u terms found in Equation 6.

Thus, for A 
aw 

we search for terms of the form oi„ . For it/ we search for terms of theax,

form
law, ±awk).
,axk ax,

A,' = A + 2C 
aU
'
axj

• = + B
au
'ax;

Doing this, we find

(7)

We can then substitute A' and ifinto Equation 6 to slightly simplify it:
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Now define the static strain as:
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Finally, using the standard definition of infinitesimal (transient) strain:

1 dwi d-tvk)
Cik

2 dx.k

(

we obtain

ik = Aiesst5ik 211'eik

+A (Eiseks + Ekseis)

+2B (EiseisSik + Eikess)

(8)

(9)

(10)

(12)

If one is attempting to estimate the ambient stress from inversion of seismic data, one
possibility would be to retrieve estimates of the Eu using Equation 12. However,

since Equation 5 is written in terms of static displacement gradients, not static strains,
the conversion to static stress is not obvious. Likewise, if one desires to perform a
forward simulation of transient signals in the presence of ambient stress, we typically
do not know the static strains or displacements directly since this would require
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knowledge of what the configuration of particles would be in the absence of any stress.
In either case we need Equation 5 expressed in terms of static strains. To do this, we
rewrite Equation 5 by using Equations 9 and 7, to obtain

,k  2µ'EikE

+ A(E,SE,,,) (13)

+ B(E;8,k)— C (E's• ik)

This forms a set of 6 coupled nonlinear equations for and dik . In the case of

inversion of seismic data for static strains in Equation 12, Equation 13 can be used
directly to easily obtain static stresses implied by those strains. For the forward
problem, since we could, in principle, obtain estimates of the static stress, we can use
Equation 13 to find the static strains implied by those stresses. Equation 13 can be
solved for the 6 independent Eu using a numerical root solver. Both means of

utilizing Equation 13 can be performed provided that , , A, B , C are known. A!

and iecan usually be estimated based on cores, tomography, or other methods. The

A , B , and C terms have been experimentally determined for some earth materials,
but these are comparatively poorly known for many materials. One possibility is that
inversions for these nonlinear material parameters could be accomplished using these
equations.

2.3. Symmetries

Hooke's Law expresses the stress-strain relationship as (e.g., Aki and Richards, 2002)

aij = Cijklekl

where Cuki is the elastic modulus tensor. We can write Equation 12 in the form of

Equation 14, where Cuki is interpreted as the pre-stress modulus tensor. First, note that

aik as defined in Equation 12 is symmetric since Eij and eij are both symmetric by

Equations 9 and 11. This means there are at most 36 unique entries in Cijkl since there

are 6 unique stress components and 6 unique strain components. We can therefore
fully write out Equation 12 and find the 36 components of the pre-stress modulus
tensor for an isotropic elastic solid as:

C1111 = A' + 2it' + 2A E11 + 4BE11

C1112 = A E12 2BE12

C1113 = A E13 2BE13

C1122 = A' + 2BE11 + 2BE22

C1123 = 2BE23

C1133 = A' + 2BE11 + 2BE33

C1211 = A E12 2BE12

(14)

14



1 1

C1212 = AE11 + 2AE22

1

C1213 = 2 A E23

C1222 = A E12 2BE12

1

C1223 = 2 A En

C1233 = 2BE12

C1311 = A E13 2BE13

1

C1312 = —2 A E23

1 1

C1313 = + -AE11 + -AE33
2 2

C1322 = 2BE13

1 
C1323 = 2 A E12

C1333 = A E13 2BE13

C2211 = À' + 2B E11 + 2B E22

C2212 = A E12 2BE12

C2213 = 2BE13

C2222 = + 211' + 2A E22 4BE22

C2223 = A E23 2BE23

C2233 = + 2BE22 + 2BE33

C2311 = 2BE23

1 
A Ei3C2312 = —

2

1 
A E12C2313 =

C2322 = AE23 + 2BE23

1 1
C2323 = + - AE22 - A E33

2 2

C2333 = A E23 2BE23

C3311 = À' + 2B E11 + 2BE33

15



C3312 = 2BE12

C3313 = AE13 + 2BE13

C3322 = 2' + 2BE22 + 2BE33

C3323 = A E23 2BE23

C3333 = 2' + + 2A E33 4BE33

Not all 36 coefficients are unique. There are 14 terms that all others can be easily
expressed with: 2', it', A Eij, and BEij, the latter two contributing 6 terms each.

However, there are actually only 12 linearly independent coefficients. We can observe
this if we express the stress-strain relationship in Equation 12 as

- -

(511

622

633

623

613

612

a b c d e f
b g h i j f
c h k i e l

1
= d i i 

4 
(g + k) — +11 + V — 0 + (e —j)

e j e + (f — 1) 1 (a + k) — +c + (i — d)

I f l (e — j) + (i — d) 1 (a + g) —

where

a = C1111

b = C1122

= C1133

d = C1123

e = C1113

f = C1112

g = C2222

h = C2233

- C2223

- C2213

k = C3333

lb
2

= C3312

The pre-stress modulus tensor displays the same symmetries, i.e.,

Cijkl = Cjikl = Cijlk = Cap as the traditional elastic modulus tensor.

- -

ell

622

6'33

2e23

2e13

26'12

(16)

(17)
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Based on the fact that the pre-stress modulus tensor has the same symmetries as the
standard elastic modulus tensor, it is apparent that the reciprocity of source and
receiver commonly assumed in seismology is valid. This follows from Betti's theorem
(Equation 2.34 in Aki and Richards, 2002):

ft I (f — pii) • NT dV + If Tu(n) • v dS
v s

= f f f (g — pV) • u dV + f j Tv(n) • u dS
v s

(18)

where u and v are displacements due to body forces f and g, respectively, and Tu(n)
and Tv(n) are the tractions caused by displacements u and v, respectively, on surface
normals n. This relationship is possible because of the symmetries of the elastic
modulus tensor. Assuming that transient displacements are zero prior to some time
and that boundary conditions are homogeneous and independent of time (pre-stress
must vanish at the free surface of the earth just like transient stresses) allow us to
derive the source-receiver reciprocity relations found in equations 2.38-2.40 in Aki
and Richards (2002). These form the foundation of many assumptions made in
processing and imaging seismic data and they are valid for KG theory as well.
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3. CONCLUSIONS

We have reformulated the equations for linearized seismic wave propagation given by
Korneev and Glubokovskikh (2013) into an easier to utilize form. This form is more
compact, being written in terms of ambient strains. However, since ambient strains
are generally inaccessible, the derived equations allow for the inversion of the ambient
strains given ambient stresses, which are, in principle, measurable. This formulation
enables a direct mapping between dynamic stresses and strains analogous to Hooke's
Law. The resulting pre-stress modulus tensor demonstrates the same symmetries as
the traditional elastic modulus tensor. This latter property implies that the same
source-receiver reciprocity relationship applies in the presence of ambient stress as in
the absence of ambient stress. The stress-strain relationship also shows that for a
medium that is isotropic in the absence of ambient stress, the medium becomes
anisotropic with 12 independent coefficients when in the presence of ambient stress.
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