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Introduction

Richtmyer-Meshkov Instability
 Shock-induced baroclinic vorticity generation 

that occurs at a fluid interface

 Extension of Rayleigh-Taylor Instability
 Gravity driven

 Characterized by Atwood number: A

Applications
 Inertial confinement fusion

 Material mixing in supernovae

 Combustion systems

Motivation for applying DSMC
 Late-time development of the instability 

depends on the initial condition
 Nishihara et al., Youngs

 Need a realistic initial condition to better 
reproduce experimental behavior
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Richtmyer-Meshkov Instability

Shock propagation
 Incident shock travels down in upper 

gas 

 Transmitted shock travels down in 
lower gas

 Reflection behavior depend on Atwood 
number
 Positive results in reflected shock

 Negative results in reflected rarefaction

Interface motion
 Interface is accelerated to constant 

velocity 

 Travels in same direction as shock

 Vorticity generated baroclinically at 
interface
 Density & pressure gradients misaligned

Grove et al.

Morgan et al.



Richtmyer-Meshkov Instability

Perturbation growth
 Initially, amplitude growth is linear 

with time

 Later, amplitude growth becomes 
nonlinear

 When amplitude is similar to 
wavelength

 Spikes features begin to roll-up and 
gain other disturbances

Gallis et al.
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Computational Methods
Navier-Stokes: US3D

 Developed by Graham Candler et al. at the University of Minnesota
 Reacting, 3D NS equations based on finite volume formulation
 Many spatial flux evaluation and time advancement methods 

 3rd order Runga-Kutta time advancement
 6th order KEC spatial fluxes with 2nd order MSW dissipation 

 Thermal equilibrium or T-Tv thermal non-equilibrium

DSMC: SPARTA
 1D, 2D, 2D-axisymmetric or 3D, serial or parallel
 Cartesian, hierarchical grid

 Oct-tree (up to 16 levels in 64-bit cell ID)
 Multilevel, general NxMxL

 Triangulated surfaces cut/split the grid cells
 3D via Schwartzentruber algorithm
 2D via Weiler/Atherton algorithm

 C++, but really object-oriented C
 Exascale-capable (scales to 1.6 Million cores, GPUs, Threading)
 The code has been extensively verified and validated.
 Includes advanced collision/chemistry models, boundary conditions, etc.



NS Verification Study 
Code-to-Code Comparison

 Use a previous simulation to verify the NS solver to calculate a high-
Mach number RMI

Samtaney and Meiron
 Inviscid, non-reacting Mach 10 H2- N2 interface, A = 0.867

 Mimic conditions in the Caltech T5 shock tunnel

 Pressure P0=P3 = 0.1 atm; Temperature T0=T3 = 298.0 K

 Disturbance: wavelength = 0.1m; initial amplitude A0 = 0.01m

 2nd-order accurate method range of grids 

 500x50; 1000x100; 2000x200; 4000x400
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RMI Simulation
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Density gradient magnitude video
 Experimental data is often taken by shadowgraph

 Computational shadowgraph can be approximated with density gradient 
magnitude

Dimensions normalized by wavelength



Simulation Comparison
Samtaney and Meiron Current
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Simulation Comparison

Quantitative comparison
 Disturbance amplitude 

 Higher in the current study

 Amplitude growth similar

 Circulation

 Similar to previous work

 Wave speed difference evident
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SPARTA Verification

Gallis et al. Physics of Fluids 2015
 Series of lower Mach RMI simulations

 Compared against various theories

 Early time compressible

 Late time incompressible

 Limit of A     0

10Ar/He A=0.82 Ar/Ne A=0.33

→



Reacting RMI Comparison
Compare the NS simulations to DSMC 

 Evaluate differences in flowfield development 

 Determine what NS can learn from DSMC simulations

Similar conditions to Samtaney and Meiron
 Viscous, dissociating Mach ~ 10 H2- N2 interface, A = 0.867

 Pressure P0=P3 = 101.4 kPa; Temperature T0=T3 = 278.15 K

 Disturbance: wavelength = 0.5 mm; initial amplitude A0 = 0.05 mm

 Nominal grid: 1000x4000 cells; Refined grid: 2000x8000 cells

 DSMC grid 10000x40000; 100 particles/cell
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CFD Simulation

Simulation Characteristics
 Similar flow features to 

Samtaney and Meiron
 Different scale

 Shock refraction

 Vorticity generation leading 
to roll-ups

 Highest temperatures 
confined to interface region

 Addition of viscosity adds 
 Diffusion of the interface

 More Kelvin-Helmholtz 
features

12Density Gradient Magnitude



CFD Simulation

Simulation Characteristics
 Similar flow features to 

Samtaney and Meiron
 Different scale

 Shock refraction

 Vorticity generation leading 
to roll-ups

 Highest temperatures 
confined to interface region

 Addition of viscosity adds 
 Diffusion of the interface

 More Kelvin-Helmholtz 
features

13Temperature Contours



DSMC Simulation

Simulation Characteristics
 Shocked interface is 

different
 Immediately has a larger 

range of scales compared to 
CFD

 Pockets of dissociation 
coincide with small scale fluid 
fluctuations

 Similar features to CFD
 Shock refraction still visible
 Vorticity generation leading to 

roll-ups
 Highest temperatures 

confined to interface region
 Diffusion of the interface
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Simulation Characteristics
 Shocked interface is 

different
 Immediately has a larger 

range of scales compared to 
CFD

 Pockets of dissociation 
coincide with small scale fluid 
fluctuations

 Similar features to CFD
 Shock refraction still visible
 Vorticity generation leading to 

roll-ups
 Highest temperatures 

confined to interface region
 Diffusion of the interface

DSMC Simulation
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Method Comparisons

Compare solutions at 80 nanoseconds
 Simulations show similar behavior

 Similar wave speeds and disturbance amplitudes

 DSMC shows a more feature-rich interface

 Most likely due to particle information
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Data from Experiments

Smooth interface is not realistic
 Data from Morgan et al. show higher frequency content compared with 

primary disturbance

 NS method late-time behavior would improve if it could mimic this 
initial condition

17Morgan et al.



Random noise description
Smooth vs. fuzzy interface

 DSMC simulations produce a more feature-rich interface

 Test to determine if NS method can reproduce something similar

 Apply random noise to interface in the NS simulations

Same conditions as before
 Viscous, dissociating Mach ~ 10 H2- N2 interface, A = 0.867

 Pressure P0=P3 = 101.4 kPa; Temperature T0=T3 = 278.15 K

 Disturbance wavelength = 0.5 mm; initial amplitude A0 = 0.05 mm

 Grid size 1000x4000 cells
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Simulation differences
 Fuzzy interface 

produces asymmetries

 Fuzzy interface has 
more secondary 
disturbances
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Smooth vs Fuzzy

Solution comparison
 Addition of the interface noise produces a small change in amplitude 

and circulation
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Method Comparisons

Compare solutions at 80 nanoseconds
 Fuzzy interface in the NS simulation produces an interface more similar 

to the DSMC simulation
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Summary and conclusions

Comparisons show DSMC viable method for reacting 
hypervelocity RMI simulations

 DMSC produce a more realistic, feature-rich interface due to particle 
information at the interface

Work in progress
 Continuing development of NS interface information to better 

reproduce DSMC behavior

 Need experimental data at reacting gas conditions to benchmark both 
codes against
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Questions?
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Quantitative Comparisons

Interface Amplitude Circulation
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Grid Convergence

Solution comparison
 CFD solution shows minimal difference between nominal and refined 

grids
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