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Motivation

2nd order TVD finite volume schemes are great at what they’re
great at:

I e.g. robust capturing of strong shocks

But: Increasing interest in LES etc.

I High-order methods are superior for problems dominated by
small smooth structures

Also: Important to understand error sources

I Difference with experiment from numerics or physics?

I High-order methods naturally extend to error analysis

To utilize high-order methods in hypersonics, robust shock
capturing needed



Objective

Can we improve:

1. Regularization excessively diffusing discontinuities over many
elements.

2. Regularization excessively dissipating flow features e.g.
turbulent structures.

3. Sufficient regularization for discontinuities near element
corners.
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Numerical Method

Solve:
u,t +∇ · (f − [c]∇u) = 0 (1)

Using entropy stable, spectral collocation methods based on
summation-by-parts framework[1, 2, 3]:

u,t + P−1
[
∆f̄ −D [ĉ] Θ

]
= P−1gint,q (2a)

Θ−Dw = P−1gint,θ (2b)

Equivalency with nodal DG, but has a stronger entropy stability
statement.
Two ‘flavors’:

I Node-Centered: Use Legendre-Gauss-Lobatto points for
collocation (sub-optimal quadrature, evaluation of properties
on boundaries, ...)

I Cell-Centered: Use Legendre-Gauss points (others possible)
for collocation (optimal quadrature, solution variables
evaluated on element interiors, ...)



Artificial Viscosity

Testing 3 artificial viscosity methods:

I Shakib Based: Based on the work of Shakib et al[4], uses a
disconituity operator added a Peclet number based limit (not
in Shakib’s work)

I Jump Base:Based on the work of Barter and Darmofal[5],
targets regions with large pressure jumps using a non linear
switch to give a viscosity based on Peclet number

I Entropy Viscosity: Based on the work of Guermond et al[6],
targets regions where entropy is produced (entropy equation
residual and entropy flux jump).

Regularize Artificial viscosity field (Max.-Linear):

1. Nodal artificial viscosity is the max from adjacent elements

2. Nodal artificial viscosities are linearly interpolated to the
elements

Linear artificial viscosity field that is continuous across elements
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Density and Pressure Ratio of 10

Very similar to Sod’s shock tube problem



Density and Pressure Ratio of 100

Sonic point in expansion fan can cause issues



Shu-Osher Problem

Tests whether artificial viscosity preserves flow structures
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Lifted vs. Interior Gradients in Residual Operator

Residual operator:
Lu = f,v v,x − f,x (3)

Two options for treating derivative terms:
I Lifted: Include jump penalties

I Penalized discontinuties more
I Larger effective stencil

I Interior: Use interior derivatives
I Smaller non-zero artificial viscosity region
I Smaller artificial viscosity



Riemann Problem Ratio 100

P3, 128 Elements, Node-Centered, Shakib-Based Viscosity

(a) Density (b) Velocity



Riemann Problem Ratio 100

P3, 128 Elements, Node-Centered, Shakib-Based Viscosity

(c) Artificial Viscosity (d) Temperature
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Riemann Problem Ratio 10

P3, 128 Elements, Shakib-Based Viscosity

(a) Density (b) Velocity



Riemann Problem Ratio 10

P3, 128 Elements, Shakib-Based Viscosity

(c) Artificial Viscosity (d) Temperature



Riemann Problem Ratio 100

P3, 128 Elements, Shakib-Based Viscosity

(a) Density (b) Velocity



Riemann Problem Ratio 100

P3, 128 Elements, Shakib-Based Viscosity

(c) Artificial Viscosity (d) Temperature



Shu Osher Problem

P3, 128 Elements, Shakib-Based Viscosity

(a) Density (b) Velocity



Shu Osher Problem

P3, 128 Elements, Shakib-Based Viscosity

(c) Artificial Viscosity (d) Pressure
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Riemann Problem Ratio 10

P3, 128 Elements, Cell-Centered

(a) Density (b) Velocity



Riemann Problem Ratio 10

P3, 128 Elements, Cell-Centered

(c) Artificial Viscosity (d) Temperature



Riemann Problem Ratio 100

P3, 128 Elements, Cell-Centered

(a) Density (b) Velocity



Riemann Problem Ratio 10

P3, 128 Elements, Cell-Centered

(c) Artificial Viscosity (d) Temperature



Shu Osher Problem

P3, 128 Elements, Cell-Centered

(a) Density (b) Velocity



Shu Osher Problem

P3, 128 Elements, Cell-Centered

(c) Artificial Viscosity (d) Pressure
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Regularization

Max. element Peclet numbers are in approx. range 1-10

I Rule of thumb: Peclet number ≤ 2 for no oscillations in
Burgers Equation

Proposal: The magnitude of the artificial viscosity is fine, but it is
distributed over too large region
Improvement: Pick a new regularization

I Jacobi style smoothing with additional step to ensure
continuity of artificial viscosity over interfaces

I NB: Smoothing does not preserve maximum in artificial
viscosity



Riemann Problem Ratio 10

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity

(a) Density (b) Velocity



Riemann Problem Ratio 10

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity

(c) Artificial Viscosity (d) Temperature



Riemann Problem Ratio 100

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity

(a) Density (b) Velocity



Riemann Problem Ratio 100

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity

(c) Artificial Viscosity (d) Temperature



Shu Osher Problem

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity

(a) Density (b) Velocity



Shu Osher Problem

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity

(c) Artificial Viscosity (d) Pressure
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Riemann Problem Ratio 10

WENO: P4, 512DOFs
SSSCE: P3, 128Elements

(a) Density (b) Velocity



Riemann Problem Ratio 100

WENO: P4, 512DOFs
SSSCE: P3, 128Elements

(a) Density (b) Velocity



Shu Osher Problem

WENO: P4, 512DOFs
SSSCE: P3, 128Elements

(a) Density (b) Velocity



Shu Osher Problem

WENO: P6, 512DOFs
SSSCE: P3, 128Elements

(a) Density (b) Velocity



Comparison to WENO

Cell-centered elements allow for a less aggresive artificial viscosity
scheme

I Cell-centered requires less artificial viscosity

I Less artificial viscosity ⇒ preserve flow features

I No oscillation around shock



Stronger Shocks

Is the artificial viscosity robust enough for stronger shocks?
Examine the Woodward Colella problem

I Interacting blast waves with pressure ratios of 100 and 1000

I Initial discontinuities at x = 0.1 and x = 0.9

Table : Initial Conditions

Left State Middle State Right State

Density 1.0 1.0 1.0

Velocity 0.0 0.0 0.0

Pressure 1000 0.01 100



Results

So far P1 with artificial viscosity and P4 WENO (1000DOFs)



Conclusion

Cell-centered methods out perform nodal methods

I Significantly less oscillatory primitive variable fields than nodal
methods

I Allows less conservative artificial viscosity

Using Shakib-based artificial viscosity (least aggressive smoothing)
gives best resolution of flow features

I Can be made more conservative (like Entropy Viscosity) with
lifted gradients



Future Work

I Is artificial viscosity applied to finite difference method
competitive with WENO?

I Investigate the effect of cell-centered finite difference for
WENO

I What is the efficiency trade-off between higher and lower
order methods with constant DOF count?
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Entropy Stability

Define entropy : S (u)

I Convex in solution variables

I For Euler/NS

S = − ρR

γ − 1
ln pρ−γ (4)

Entropy stability:
∂S

∂t
+∇ · F ≤ 0 (5)

Interpretation:

I Bounded convex function of solution variables ⇒ L2-style
stability

I Euler/NS: solutions obey 2nd law of thermodynamics

Still require shock capturing



Shakib Based Artificial Viscosity

Based on the work of Shakib et al[4].

µ̂ =

√
(Lu)T w,u (Lu)

wTu + w,xgiju,ww,x
. (6)

The discontinuity operator is then limited:

µ̂max = Cµ̂
|u|+ c

h
(7)

That is, the resulting artificial viscosity is defined by:

µ = gij max{µ̂, µ̂max} (8)

To avoid using the temporal term, the operator Lu is defined as:

Lu = f,v v,x − f,x (9)



Jump Based Artificial Viscosity

Based on the work of Barter and Darmofal[5].
Targets regions where jumps in a property (pressure) are large

µk =
h (|u|+ c)

p
SK (10)

Where SK is a nonlinear shock switch given by:

SK (J) =


0, if log10 J ≤ ψ0 −∆ψ

1, if log10 J ≥ ψ0 + ∆ψ
1

2

(
1 + sin

π (log10 J − ψ0)

2∆ψ

)
, otherwise

(11)
And J is the jump indicator, given by:

J =
1

|∂κ|

∫
∂κ

∣∣∣∣ [[p]]

{p}

∣∣∣∣ · n ds (12)



Entropy Viscosity

Based on the work of Guermond et al[6].
Targets regions where entropy is produced

µk = max{Cmaxhk max
∆Ω

(|u|+ c),Ceh2
kDk} (13)

Where Dk is based on the entropy production in the element and
at each interface,

Dk =
max{max∆Ω |R|,max∆Ω |J|}

N
(14)

R = S,t +∇ · uS (15)

J =
1

hk
· [[uS ]] (16)

N = max
x∈Ω

∣∣∣∣S (u)− 1

|Ω|

∫
Ω

S dΩ

∣∣∣∣ (17)



Riemann Problem Ratio 10

P1 256Elements vs. P3 128 Elements (Same DOF Count)

(a) Density (b) Velocity



Riemann Problem Ratio 10

P1 256Elements vs. P3 128 Elements (Same DOF Count)

(c) Artificial Viscosity (d) Temperature



Woodward Colella

So far P1 with artificial viscosity and P4 WENO (1000DOFs)
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