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Motivation

2" order TVD finite volume schemes are great at what they're
great at:

» e.g. robust capturing of strong shocks
But: Increasing interest in LES etc.

» High-order methods are superior for problems dominated by
small smooth structures

Also: Important to understand error sources
» Difference with experiment from numerics or physics?
» High-order methods naturally extend to error analysis

To utilize high-order methods in hypersonics, robust shock
capturing needed



Objective

Can we improve:

1. Regularization excessively diffusing discontinuities over many
elements.

2. Regularization excessively dissipating flow features e.g.
turbulent structures.

3. Sufficient regularization for discontinuities near element
corners.
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2. Numerical Methods



Numerical Method

Solve:

u;+V-(f—[c]Vu)=0 (1)
Using entropy stable, spectral collocation methods based on
summation-by-parts framework[1, 2, 3]:

u,+P L[AF-D[e]O] =P lghta (2a)
O — Dw = p~lgnt? (2b)

Equivalency with nodal DG, but has a stronger entropy stability
statement.
Two ‘flavors':

» Node-Centered: Use Legendre-Gauss-Lobatto points for
collocation (sub-optimal quadrature, evaluation of properties
on boundaries, ...)

» Cell-Centered: Use Legendre-Gauss points (others possible)
for collocation (optimal quadrature, solution variables
evaluated on element interiors, ...)



Artificial Viscosity

Testing 3 artificial viscosity methods:

» Shakib Based: Based on the work of Shakib et al[4], uses a

disconituity operator added a Peclet number based limit (not
in Shakib’s work)

» Jump Base:Based on the work of Barter and Darmofal[5],
targets regions with large pressure jumps using a non linear
switch to give a viscosity based on Peclet number

» Entropy Viscosity: Based on the work of Guermond et al[6],
targets regions where entropy is produced (entropy equation
residual and entropy flux jump).

Regularize Artificial viscosity field (Max.-Linear):

1. Nodal artificial viscosity is the max from adjacent elements

2. Nodal artificial viscosities are linearly interpolated to the
elements

Linear artificial viscosity field that is continuous across elements
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3. Test Cases



Density and Pressure Ratio of 10

Very similar to Sod’s shock tube problem
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Density and Pressure Ratio of 100

Sonic point in expansion fan can cause issues
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Shu-Osher Problem

Tests whether artificial viscosity preserves flow structures
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4. Lifted vs. Interior Gradients in Residual Operator



Lifted vs. Interior Gradients in Residual Operator

Residual operator:
Lu=Ff,vy—"Tx

) ) ’

Two options for treating derivative terms:
» Lifted: Include jump penalties
» Penalized discontinuties more
» Larger effective stencil
» Interior: Use interior derivatives

» Smaller non-zero artificial viscosity region
» Smaller artificial viscosity
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Riemann Problem Ratio 100

P3, 128 Elements, Node-Centered, Shakib-Based Viscosity
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5. Cell-Centered vs. Node-Centered



Riemann Problem Ratio 10

P3, 128 Elements, Shakib-Based Viscosity
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Riemann Problem Ratio 10

P3, 128 Elements, Shakib-Based Viscosity
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Riemann Problem Ratio 100

P3, 128 Elements, Shakib-Based Viscosity
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Riemann Problem Ratio 100

P3, 128 Elements, Shakib-Based Viscosity
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Shu Osher Problem

P3, 128 Elements, Shakib-Based Viscosity
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Shu Osher Problem

P3, 128 Elements, Shakib-Based Viscosity
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6. Comparison of Viscosity Methods
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Riemann Problem Ratio 10

P3, 128 Elements, Cell-Centered
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Riemann Problem Ratio 100

P3, 128 Elements, Cell-Centered
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Riemann Problem Ratio 10

P3, 128 Elements, Cell-Centered
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Shu Osher Problem

P3, 128 Elements, Cell-Centered
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Shu Osher Problem

P3, 128 Elements, Cell-Centered
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7. Regularization Effect



Regularization

Max. element Peclet numbers are in approx. range 1-10
» Rule of thumb: Peclet number < 2 for no oscillations in
Burgers Equation
Proposal: The magnitude of the artificial viscosity is fine, but it is
distributed over too large region
Improvement: Pick a new regularization
» Jacobi style smoothing with additional step to ensure
continuity of artificial viscosity over interfaces
» NB: Smoothing does not preserve maximum in artificial
viscosity
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Riemann Problem Ratio 10
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Riemann Problem Ratio 100

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity
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Riemann Problem Ratio 100

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity
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Shu Osher Problem

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity
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Shu Osher Problem

P3, 128 Elements, Cell-Centered, Shakib-Based Viscosity
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8. Comparison to WENO
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Riemann Problem Ratio 100
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Shu Osher Problem

WENO: P4, 512DOFs
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Shu Osher Problem
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Comparison to WENO

Cell-centered elements allow for a less aggresive artificial viscosity
scheme

> Cell-centered requires less artificial viscosity
> Less artificial viscosity = preserve flow features

» No oscillation around shock



Stronger Shocks

Is the artificial viscosity robust enough for stronger shocks?
Examine the Woodward Colella problem

> Interacting blast waves with pressure ratios of 100 and 1000

» |nitial discontinuities at x = 0.1 and x = 0.9

Table : Initial Conditions

Left State | Middle State | Right State
Density | 1.0 1.0 1.0
Velocity | 0.0 0.0 0.0
Pressure | 1000 0.01 100




Results

So far P1 with artificial viscosity and P4 WENO (1000DOFs)
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Conclusion

Cell-centered methods out perform nodal methods

» Significantly less oscillatory primitive variable fields than nodal
methods

> Allows less conservative artificial viscosity

Using Shakib-based artificial viscosity (least aggressive smoothing)
gives best resolution of flow features

» Can be made more conservative (like Entropy Viscosity) with
lifted gradients



Future Work

» Is artificial viscosity applied to finite difference method
competitive with WENQO?

> Investigate the effect of cell-centered finite difference for
WENO

» What is the efficiency trade-off between higher and lower
order methods with constant DOF count?
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Entropy Stability

Define entropy: S (u)
» Convex in solution variables
» For Euler/NS

pR
== | g 4
S 5 {nPp (4)

Entropy stability:

as
= .F <
5 +V-F<0 (5)

Interpretation:

» Bounded convex function of solution variables = Lj-style
stability

» Euler/NS: solutions obey 2" law of thermodynamics

Still require shock capturing



Shakib Based Artificial Viscosity

Based on the work of Shakib et al[4].

. (Lw) wa (L) ®)
=\ wTur WX ijUwW,x
The discontinuity operator is then limited:
~ ul+c
Hmax = Cﬁ‘ h (7)
That is, the resulting artificial viscosity is defined by:
H = gij max{ﬁ, ﬂmax} (8)

To avoid using the temporal term, the operator Lu is defined as:

»CUZfVV,X_fX (9)



Jump Based Artificial Viscosity

Based on the work of Barter and Darmofal[5].
Targets regions where jumps in a property (pressure) are large

Pk = h(|u|p+c)5/< (10)

Where Sk is a nonlinear shock switch given by:

0, if logiod <o — AY
Sk(d)=1% o8 J — ) if logio J > tho + Ay
i . m\log10J — %o .
> <1 + sin 200 > , otherwise
(11)
And J is the jump indicator, given by:
1 In1
nds 12
= Tonl Joe 10} (42




Entropy Viscosity

Based on the work of Guermond et al[6].
Targets regions where entropy is produced

ok = max{ Craxhi r’g?zx(|u| +¢), Cehka} (13)

Where Dy is based on the entropy production in the element and
at each interface,

max{maxagq |R|, maxaq |J|}

Dy = - (14)
R=S5:+V-uS (15)
1
J= 5 Lus] (16)
N = max|5 (0) ~ o7 / SdQ' (17)




Riemann Problem Ratio 10
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Riemann Problem Ratio 10

P1 256Elements vs. P3 128 Elements (Same DOF Count)
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Woodward Colella

So far P1 with artificial viscosity and P4 WENO (1000DOFs)
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