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ABSTRACT

Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of
many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial
families are engaged in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from
mutualism to pathogenicity. The importance of bacterial–fungal interactions (BFI) in environmental science, medicine and
biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse
approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and
ecological modelling. In this review, we discuss most recent advances that underscore the roles of BFI across relevant
habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities
and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms
involved in bacterial–fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in
terms of physical associations and molecular dialogues. Finally, we discuss future directions for researches in order to
catalyse a synergy within the BFI research area and to resolve outstanding questions.
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INTRODUCTION

Bacteria and fungi often share microhabitats where they as-
semble into dynamic co-evolving communities. Such bacterial–
fungal communities have been described to exist in nearly all60
ecosystems and include microbial species from a wide diver-
sity of fungal and bacterial families (Peleg, Hogan and Mylon-
akis 2010; Scherlach, Graupner and Hertweck 2013). Interactions
between fungi and bacteria play a key role in the functioning of
numerous ecosystems: they are cornerstone members of com-65

munities driving biochemical cycles, and contribute to both the
health and diseases of plants and animals (Fig. 1). Moreover,
they have been exploited by humans for centuries to manu-
facture food products, antibiotics and secondary metabolites
for pharmacology and biotechnological applications (Frey-Klett70
et al. 2011). As a consequence, by-products of bacterial–fungal
interactions (BFI) have been harnessed to improve many hu-
man activities in agriculture, horticulture, forestry, environmen-
tal protection, food processing, biotechnology and medical ap-
plications.75

BFI intrinsically modulate the behaviour of either or both of
the interacting partners. Such modulation cannot be easily pre-
dicted based on our knowledge of the biology of the isolated mi-
croorganisms grown in pure cultures. Different levels and degree
of specificity of BFI have been reported. On one end of the spec-80
trum, co-occurrence patterns of bacteria and fungi result from
intimate biophysical and metabolic interactions during which
bacterial and fungal partners interdependently develop and co-
evolve. On the other end, co-occurrence may not be represen-
tative of any causal relationships, being the result of stochas-85

tic ‘mixing’ within the microbial community. Depending on the
degree of interaction, a molecular dialogue between the part-
ners may be very simple, highly refined or absent. Depending
on the species involved in BFI, interactions can be highly spe-
cific, like the intimate interaction between endofungal bacteria90
and early emerging fungi (Bonfante and Desirò 2017), or they

can involve a broad spectrum of species. For instance, the op-
portunistic human pathogens Candida albicans and Pseudomonas
aeruginosa frequently interact with each other, but also with nu-
merous additional bacteria and fungi, respectively (Leclair and 95
Hogan 2010). Such multipartner interactions can occur within a
single environment—such as in the oral plaque (Janus, Willems
and Krom 2016), in soil (Warmink, Nazir and van Elsas 2009), in
a single food product (Kastman et al. 2016) or across multiple
environments. Opportunisticmicroorganisms such as the afore- 100

mentioned P. aeruginosa colonise a wide variety of environments
including human tissues, plant root systems and soils, in which
they engage in different interactions with local fungal species
(Walker et al. 2004). Whatever the environment considered, BFI
can produce a diverse range of interactions—from antagonism 105
tomutualism—that influence the biology and ecology of the fun-
gal and bacterial partners at different levels, i.e. with respect to
growth, reproduction, transport/movement, nutrition, stress re-
sistance and pathogenicity. The outcomes of these interactions
are the combined results of the physical associations (biofilm, 110

free cells, intracellular), the molecular dialogue between the or-
ganisms (direct or indirect), and the environmental conditions
and/or the host activity (Fig. 1).

Within the past decade, a range of multidisciplinary stud-
ies on diverse BFI, which integrate tools from molecular biol- 115
ogy, genomics, chemical and microbial ecology, biophysics and
ecological modelling, have emerged. The more than 300 stud-
ies dealing with BFI, as published within the last five years
across divergent fields of research (e.g. medicine, agriculture,
environment science, biotechnology and food processing), have 120
culminated in a better understanding of interaction mecha-
nisms and consequences of BFI. Striking mechanistic general-
ities have emerged that extend beyond known BFI despite the
intricacies inherent to each system analysed, as first outlined
by Frey-Klett et al. (2011) and Scherlach, Graupner and Hertweck 125
(2013). Such generalist patterns mirror the remarkable similari-
ties shared between plants and animals recently documented in
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Figure 1. Relevance, applications and drivers of BFI. Biotic and abiotic environments filter microbial communities selecting for specific consortia and conversely

interactions between microorganisms influence the biotic and abiotic environment. Bacterial–fungal phenotypes emerge from physical and molecular interactions
between members of the microbial community and are highly dependent on time and scale.

microbiota-assisted host nutrition (Hacquard et al. 2015). Here,
we review the main findings obtained with respect to BFI in dif-
ferent fields in the past years, including the latest advances with130

respect to the roles and mechanisms involved, as well as the
emerging opportunities and applications to biotechnology and
sustainability.

BFI WITHIN COMPLEX NETWORKS OF
INTERACTIONS: FROM FUNGAL MICROBIOMES135

TO METAORGANISMS AND HOLOBIONTS

The exponential development of molecular tools aimed at de-
scribing the diversity of microorganisms in many biomes and
environments on Earth has brought to light the huge diver-
sity ofmicroorganisms and potential interactions between them140
(Thompson et al. 2017). As a consequence, the traditional con-
cept of BFI as bipartite bacterial–fungal or bacterial–fungal–host
interactions is now shifting towards BFI as complex networks
of multiple interacting organisms. In these networks, there may
be different levels of complexity depending on the environment145
and the scale of analysis. The networks can be envisioned at
different levels depending on the habitats considered: ranging
from networks restricted to microorganisms on abiotic matri-
ces and surfaces such as soils, wood, hydrothermal vents, wa-
ter pipes and medical catheters (Hervé et al. 2014; Lindsay and150
Hogan 2014; Urich et al. 2014; Douterelo et al. 2016; de Menezes,
Richardson and Thrall 2017) to networks involving higher organ-
isms, in which BFI occur within the microbiomes of hosts such
as lichens (Grube et al. 2015), corals (Moree et al. 2013), nema-

todes (Wang et al. 2014), insects (Aylward et al. 2014), batrachians 155
(Longo and Zamudio 2017) or mammals (Hacquard et al. 2015;
Hoyt et al. 2015). In this regard, the interacting microorganisms
together may be conceptually regarded as one metaorganism
(Olsson, Bonfante and Pawlowska 2017, see box 1).

Box 1. Definitions of terms and concepts

Bacterial fungiphile. Bacterial strains that preferentially as-
sociates with fungi and for which the hyphosphere is the
main habitat (Warmink and van Elsas 2009).
Hub microorganism. Highly interconnected species that
drive community responses through microbe-microbe in-
teractions.
Hyphosphere. The microhabitat surrounding hyphal cells.
Keystone species. Species on which relies the functioning
of the community.
Metaorganism & holobiont. Themetaorganism concept has
been defined as “a community of interacting biological enti-
ties that is indicated by a metagenome” (Bosch and McFall-
Ngai 2011). It thus is a dynamic entity in dependency of
the boundaries set by the researchers. Similarly, the holo-
biont concept is often used in reference to microbiomes
associated with hosts, being both parts of this association
subjected to evolutionary selection (Bordenstein and Theis
2015). When it comes to microbial interactions, it is often
difficult to determine who is the “host”, as is the case in, for
example, the fungal-algal-bacterial holobiont (Aschenbren-
ner 2016). Here, we redefine a holobiont as a “unit of bio-
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logical organization composed of several distinct genomes,
that, in principle, influence the genomic evolution of each
other”. This definition is “host neutral”, and avoids the in-
clusion of temporary opportunistic assemblages, while at
the same time focusing on the evolutionary importance of
the holobiont concept (Bordenstein and Theis 2015).
Microbial logistics. Effective provision of microbes, matter
and energy for microbial ecosystem functioning and tar-
geted substrate turnover (Fester 2014).
-omics. The suffix “omics” designates an approach that per-
mits to study given molecules in their globality within a
sample: metabolomics for metabolites, proteomics for pro-
teins , volatilomics for volatiles, genomics for genes and
transcriptomics for transcripts. Moreover, adding the prefix
‘meta’ implies that the omics method will, within technical
limits, measure all genes, transcripts, proteins, metabolites
and volatiles in a given sample containing more than one
organism.

The fungal microbiome160

The hyphosphere (box 1) provides microhabitats that are
colonised by specific bacterial communities (Frey-Klett et al.
2011). In a seminal paper, some bacterial associates of soil fungi
were called bacterial ‘fungiphiles’ (Warmink and van Elsas 2009,
box 1). The diversity of these communities can range from a few165
to several hundreds of species, depending on the fungus and
the organ considered (Grube et al. 2015; Wolfe and Dutton 2015;
Schulz-Bohm et al. 2016; Ghodsalavi et al. 2017). Filamentous
fungi can produce differentiated tissues (e.g. mycelium, fruiting
bodies, spores, mycorrhizae) that are colonised by distinguished170
microbiomes (Zagriadskaia et al. 2013; Deveau et al. 2016; El-Jurdi
and Ghannoum 2017). While some bacteria, such as Burkholderia
spp., can colonise a large set of fungal species given their abil-
ities to utilise fungal-derived metabolites and overcome fungal
defence mechanisms (Haq et al. 2014; Stopnisek et al. 2016; Jung175
et al. 2018), others may have a more specific and intimate re-
lationship with their fungal hosts (Warmink, Nazir and van El-
sas 2009). Similar to plant and animal microbiomes, which are
known to contribute to the ‘extended phenotype’ of their hosts,
it is likely that fungalmicrobiomes also contribute to the biology180

of their fungal hosts. Indeed, treatments with antibiotics that
suppress or alter fungal-associated bacterial communities im-
pairedmycelial growth, secondarymetabolite production and/or
reproduction (Vahdatzadeh, Deveau and Splivallo 2015; Schulz-
Bohm et al. 2016; Mondo et al. 2017; Uehling et al. 2017).185

Understanding of the fungal microbiome is an important
challenge in food processing and production, as microbiomes
are often involved in fermentation of alcoholic beverages (e.g.
wine and beers), dairy products (e.g. cheese, sourdough) and
other fermented foods (for review, see Wolfe and Dutton 2015),190

as well as cultivation of edible mushrooms (Bánfi et al. 2015;
Murat 2015).

The endofungal microbiome

Bacteria that live inside fungal cells (i.e. endofungal bacteria or
endobacteria) have first been described in the seminal work by195
Barbara Mosse (Mosse 1970). They were originally considered
as biological curiosities; however, numerous emerging studies
have demonstrated their omnipresence in fungi, as well as their
clear effects on fungal biology (Bonfante and Desirò 2017). To

date, endobacteria have been reported in fungi with diverse 200
lifestyles and of broad taxonomic origins, including endophytic
Ascomycetes (Hoffman andArnold 2010; Arendt et al. 2016; Shaf-
fer et al. 2016), symbiotic, pathogenic and endophytic Basid-
iomycetes (Bertaux et al. 2003; Ruiz-Herrera et al. 2015; Glaeser
et al. 2016) as well as saprotrophic fungi in the Mucoromycota 205

(Partida-Martı́nez 2017; Uehling et al. 2017). The best-studied
fungal endobacteria belong to the family Burkholderiaceae, and
are associated with early-diverging lineages of terrestrial fungi
within the Mucoromycota (Bonfante and Desirò 2017; Uehling
et al. 2017). These associations appear to be specific, and have 210
presumably tightly coevolved overmillions of years (Mondo et al.
2012; Desirò et al. 2015; Uehling et al. 2017). This has resulted in
host dependency and significant genome reductions for the bac-
terial endosymbionts (Ghignone et al. 2012; Uehling et al. 2017).
Endobacteria can have profound effects on fungal host biology, 215
including aspects of host reproduction (Partida-Martinez et al.
2007; Mondo et al. 2017), growth (Shaffer et al. 2017; Uehling et al.
2017), energy dynamics (Salvioli et al. 2016; Vannini et al. 2016),
primary metabolism (Lastovetsky et al. 2016; Salvioli et al. 2016;
Vannini et al. 2016; Li et al. 2017; Uehling et al. 2017) and sec- 220
ondary metabolism (Rohm et al. 2010; Hoffman et al. 2013).

Several examples of fungi in the Mucoromycota and their
endosymbionts offer lessons in fungal endosymbiotic biology.
First, the association between Paraburkholderia rhizoxinica (for-
merly Burkholderia rhizoxinica) and Rhizopus microsporus is mu- 225
tualistic, whereby the bacterium provides its host with a toxin,
which facilitates fungal pathogenicity on rice. Remarkably, the
vertically transmitted endobacteria impact fungal reproduction,
as their removal abolishes asexual sporulation and significantly
reduces mating. A recent study leveraged this endobacterial 230
control over fungal mating into identifying reproductive genes
in theMucoromycota, a group of fungi that is notoriously recalci-
trant to genetic approaches, as well as reconstructing key repro-
ductive pathways across the fungal kingdom (Mondo et al. 2017).
Moreover, studying the pre-symbiotic interaction between R. mi- 235
crosporus and Paraburkholderia revealed that the fungus under-
goes specific lipid metabolic changes in order to accommodate
endobacteria, which, when perturbed, shift the interaction from
mutualistic into antagonistic (Lastovetsky et al. 2016). Clearly,
the Rhizopus-Paraburkholderia system is a token of the key role 240

that bacteria can play in modulating the basic biology of their
host fungi.

A second example of a well-studied endobacteria-fungal sys-
tem is the association between members of the arbuscular my-
corrhizal fungal family (Gigasporaceae, Glomeromycotina) and 245
Candidatus Glomeribacter gigasporarum (CaGg, Burkholderiaceae).
These bacteria are vertically transmitted between the fungal
generations (Bianciotto et al. 2004) and have a strong effect on
the pre-symbiotic phase of the fungus. In the pre-symbiotic
phase, they raise the fungal bioenergetic capacity, increase ATP 250

production and elicit reactive oxygen detoxification mecha-
nisms (Salvioli et al. 2016). Recent work discovered a new aspect
of the endobacterial biology, in that a toxin-antitoxin system
was active (Salvioli Di Fossalunga et al. 2017), aswell as thewhole
operon for vitamin B12 production (Ghignone et al. 2012). This 255
indicates potential metabolic assistance by the endobacterium,
not only for the fungal host, but also for the plant mycorrhizal
partner. Interestingly, sharing of B-vitamins was also described
for the lichen Lobaria pulmonaria, where lichen-associated bac-
teria have been hypothesised to support photosynthesis by pro- 260

vision of vitamin B12 (Grube et al. 2015).
A third fungal endosymbiont example is the endobacterium

Mycoavidus cysteinexigens, an endosymbiont of the saprotrophic
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fungus Mortierella elongata (Mortierellomycotina) (Uehling et al.
2017). Despite the close phylogenetic affiliation to CaGg, its im-265
pact on host fungal growth is strikingly different. CaGg promotes
the growth of its fungal host, while M. cysteinexigens decreases
fungal growth (Uehling et al. 2017) suggesting that these later
endobacteria utilise host fungal metabolic products. This be-
haviour likely reflects their ancient divergence from CaGg and270
co-evolution with the fungal host.

Interestingly, many Glomeromycotina and some Mucoromy-
cota, such as Endogone, can host bacterial endosymbionts be-
longing to the Mollicutes (Naumann, Schüssler and Bonfante
2010; Desirò et al. 2014; Desirò et al. 2015); some have been identi-275

fied as novel types named ‘Candidatus Moeniiplasma glomeromy-
cotarum’ (CaMg) (Naito et al. 2017). The effect of CaMg on the
fungal host is still unknown, althoughmolecular evolution anal-
yses indicate that they could be fungal parasites in some cases
(Toomer et al. 2015). Remarkably, genome sequencing of selected280
CaMg revealed evidence of horizontal gene transfer events, in
particular of fungal genes to the endosymbiont involved in post-
translational modification (Naito, Morton and Pawlowska 2015;
Torres-Cortés et al. 2015). Ongoing studies now aim at determin-
ing the function of CaMg; in particular, the striking observation285

of the presence ofmultiple lineages of endobacteriawithin a sin-
gle fungal host calls for further scrutiny (Desirò et al. 2014).

In contrast to the endobacteria of Mucoromycota, endofun-
gal bacteria reported in the Ascomycota and Basidiomycota ap-
pear to be more transient in nature, yet they can also influence290
host phenotype and fitness (Hoffman and Arnold 2010; Spraker
et al. 2016). Such transient bacterial–fungal associations may be
ecologically important in local habitat-associated adaptation, in
which the fungal hosts may serve as environmental reservoirs
or refuges for the bacteria (Spraker et al. 2016).295

The mechanisms by which endofungal bacteria colonise
their hosts have been deciphered for only a few examples.
Paraburkholderia rhizoxinica actively secretes chitinolytic en-
zymes by means of the type II secretion system, to penetrate
the hyphae of the R. microsporus host (Moebius et al. 2014). In300
contrast, Ralstonia solanacearum requires the production of the
lipopeptide ralsomycin to invade the chlamydospores of its fun-
gal hosts (Spraker et al. 2016). Once inside the mycelium, some
bacteria, much like mitochondria, are able to move through
dolipore septa (Bertaux et al. 2005). Some can also be verti-305
cally transmitted between generations through fungal spores
(Spraker et al. 2016), possibly via type III secretion systems (Lack-
ner, Moebius and Hertweck 2011). Further studies are neces-
sary to decipher how widespread these mechanisms are among
the endofungal bacteria. Interestingly, in some cases endosym-310
bionts influence fungal host biology and the ability of the fungus
to interact with its own host through beneficial (Hoffman et al.
2013; Vannini et al. 2016; Guo et al. 2017) or detrimental (Lack-
ner and Hertweck 2011) associations, giving rise to multilevel
interkingdom interactions.315

Bacterial DNA is often detected in fungal genome-
sequencing projects, opening the question of whether en-
dobacteria are more common in fungi than previously thought.
Such ‘contaminating’ DNA could belong to external bacteria or
to endobacteria (either transient or stable). With improvements320
in genome-sequencing technology, it has become possible to
assemble entire bacterial genomes from a fungal–bacterial
DNA preparation (Uehling 2017). Researchers are urged to keep
an open mind to the possibility of endobacterial associates in
their fungi before discarding these ‘contaminating’ bacterial325
reads from their projects. Though shotgun sequencing of such
samples may be suggestive of fungal endosymbiont symbioses,

the presence and taxonomic identity of endofungal bacteria
should still be demonstrated with other evidence, such as
provided by transmission electron microscopy and fluorescence 330

in situ hybridisation (FISH).

BFI in complex microbial communities, metaorganisms
and holobionts

Despite the increasing number of in-depth analyses of micro-
bial communities in multiple systems, studies that consider 335
fungi and bacteria together are still limited in number. Clearly,
NGS offers unprecedented opportunities for obtaining a broad Q7
view of potential BFI across habitats (reviewed in de Menezes,
Richardson and Thrall 2017), yet it only permits co-occurrence
inferences that may not represent true interactions. Network 340
inference can help to identify those microbes that potentially
interact. In a recent study, co-occurrence analyses between bac-
terial and fungal OTUs across 266 soil samples revealed a sig-
nificant association between bacteria belonging to the genus
Burkholderia and a wide range of soil fungi (Stopnisek et al. 345
2016). This ubiquitous association, together with co-cultivation
experiments under laboratory conditions, suggests that specific
soil bacteria have evolved strategies to utilise fungal-secreted
metabolites and overcome fungal defence mechanisms (Stop-
nisek et al. 2016). Interactions involving hub microorganisms or 350
keystone species (box 1) can be then further investigated at the
molecular level. Agler and co-workers thus identified the yeast
Dioszegia as a fungal hub of the phyllospheremicrobiome ofAra-
bidopsis thaliana, as well as its bacterial interactants (Agler et al.
2016). This methodology has already identified BF networks and 355

the drivers that govern community assembly in leaf litter (Pu-
rahong et al. 2016), soils (de Menezes et al. 2014; Ma et al. 2016;
Stopnisek et al. 2016), floral nectar (Álvarez-Pérez and Herrera
2013), plants (Bell et al. 2014; Agler et al. 2016) and human mi-
crobiomes (Mukherjee et al. 2014; Trosvik and de Muinck 2015). 360
All these studies revealed non-random associations between
fungi and bacteria and an over-representation of positive asso-
ciations compared to negative ones. Such positive associations
are likely to reflect commonalities of habitats between the mi-
croorganisms and potential positive interactions. However, they 365

can also be the result of the common colonisation of a habi-
tat via the same selective or dispersal agent, as in the case of
some microorganisms in flowers that are transported by bees
(Álvarez-Pérez and Herrera 2013). Networks can vary from a few
dozens of microorganisms (as in the oral microbiome) to over 370
50.000 (in soil) (Mukherjee et al. 2014; Ma et al. 2016). Linking
network-inferred prediction with functional analyses will rep-
resent an important step forward to decipher the potential link
between BFI and ecosystem functioning (Ma et al. 2016; Purahong
et al. 2016). For instance, the co-occurrence of the lignocellulose 375

decomposer fungi Clitocybe and Mycena spp. with potential N2-
fixing bacterial taxa was correlated with nitrogen (N) deposition
in the soil during the decay of leaves, indicating that some bac-
teriamay contribute to the N nutrition of fungi while fungimake
C available for bacteria (Purahong et al. 2016). 380

An ecological balance within the microbiome and between
themicrobiome and the host (host–microbiota homeostasis) has
been hypothesised to be fundamental to maintaining the health
of both animal and plant hosts (Krom and Oskam 2014; Hac-
quard et al. 2017). Understanding how microbiomes shift be- 385

tween healthy symbiosis and unhealthy dysbiosis, and how BFI
are involved in such process, is therefore of rising interest in
many research fields. For example, BFI can be a factor that
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modulates human disease if the ecological balance between
the partners shifts. This is illustrated by the recurrent in-390
teractions between fungi and bacteria in infections of burn
wounds, denture stomatitis, lungs of cystic fibrosis and im-
munocompromised patients, as well as in (recurrent) bowel dis-
ease, or related to the use of invasive medical devices (Dham-
gaye, Qu and Peleg 2016; Förster et al. 2016). Consequently, BFI in395
such associations may impact the virulence of both partners of
the interactome. In plants, the critical role of the microbiota for
suppression of plant pathogens has been extensively reported
(e.g. Santhanam et al. 2015; Ritpitakphong et al. 2016; Expósito
et al. 2017). Similar to what has been described for human dis-400

ease, several plant infections are often associated with dysbio-
sis and the loss of diversity in the microbiome (Santhanam et al.
2015; Koskella, Hall and Metcalf 2017). The mechanisms leading
to bacterial–fungal homeostasis in plant tissues remain unclear,
but likely involve a combination of host-dependent and host-405
independentmechanisms, such asmetabolic and nutritional in-
terdependencies among microbes, secretion of antimicrobials
and production of protective barriers (Wei et al. 2015; Mousa et al.
2016).

Such complex interactions are starting to be taken into ac-410

count when designing new strategies to improve the growth
and health of crops (Panke-Buisse et al. 2015; Poudel et al. 2016),
or treating dysbiosis in animals and plants using microbiome-
based strategies (Fraune et al. 2015; Santhanam et al. 2015; Adam
et al. 2016). For instance, there is growing awareness that we now415
need to consider potential synergisms between BF pathogenic
communities in order to analyse and treat diseases (Lamich-
hane and Venturi 2015), with an emphasis on the interactions
between microorganisms in the context of pathogenesis (Lopes,
Azevedo and Pereira 2014). In addition, positive BFI effects on420

human health might allow to use fungi and/or bacteria as pro-
biotics. Microbiome-based analyses are also used to improve
food processes such as cheese or wine making (Pinto et al. 2014;
Dugat-Bony et al. 2015; Liu et al. 2017), and could be applied to
many other systems including energy production and bioreme-425
diation.

The emerging importance of Archaea among
microbiomes

Besides bacteria, Archaea are now also recognised as impor-
tant members of Earth’s biosphere in terms of their contribu-430
tion to ecosystem functioning (Moissl-Eichinger et al. 2017). They
play key roles in global carbon and nitrogen cycles, for instance
in methanogenesis, anaerobic methane oxidation (methanotro-
phy) and ammonia oxidation. Interestingly, Archaea are found
in niches where BFI occur, such as decaying wood (Rinta-Kanto435

et al. 2016), the mycorrhizosphere (Bomberg and Timonen 2009),
rhizosphere (Thion et al. 2016), soil (Ma et al. 2016), rumen (Kumar
et al. 2015) and human gut (Hoffmann et al. 2013). However, to
date, only few studies have investigated the bacterial–archaeal
(Raymann et al. 2017), archaeal–fungal (Hoffmann et al. 2013; Ku-440
mar et al. 2015) and fungal–bacterial–archaeal (Ma et al. 2016)
interactions or co-occurrences. Altogether, this suggests that
Archaea should be integrated into the metaorganism concept,
especially since they are known to be involved in different
microbial interactions including syntrophy (Morris et al. 2013).445

MECHANISMS OF INTERACTIONS

A suite of molecular mechanisms may underlie BFI in differ-
ent systems relying on a combination of physical and chemi-

cal interactions, as outlined in Frey-Klett et al. (2011) and illus-
trated in Table S1, Supporting Information. Such mechanisms 450
were conceptually divided into four classes, i.e. (i) antibiosis in-
volving metabolite exchange, (ii) signalling and chemotaxis in-
volvingmetabolite sensing and conversion, (iii) physicochemical
changes following adhesion and (iv) protein secretion. Clearly,
the above division in four mechanistic types allows for overlap, 455
as it is likely that in all four cases signalling, signal perception
and modulation of gene expression in either or both of the part-
ner organisms play a crucial role. Hence, we present a strong
focus on the ways by which BFI depend on signal (or metabo-
lite) exchange. We also focus specifically on recent advances on 460

physical interactions during BFI and the peculiar importance of
‘microbial logistics’ in BFI.

Signalling and recognition during BFI

Whether and to what extent fungi and bacteria have the ability
to perceive and recognise other microorganisms is a question 465

that animates the BFI field since years. Transcriptomic analyses
of several BFI have demonstrated that both fungi and bacteria re-
act to the presence of the partner microorganism and respond
differentially depending on the interacting partners (e.g. Mela
et al. 2011; Sztajer et al. 2014; Gkarmiri et al. 2015; Haq et al. 2017; 470
Tomada et al. 2017). Several cues may be used by the microor-
ganisms for mutual detection, and most are based on small sig-
nallingmolecules (Scherlach andHertweck 2017) (Fig. 2). The un- Q8
derlying modes of action vary as well as specificity; from highly
specific signals which are solely perceived as a direct sign of the 475
presence of the interacting partner, to compounds that interfere
with signalling pathways in the interacting partner and induce
a specific response. This second class of compounds is the most
reported one in the literature so far.

One example is quorum sensing (QS). QS has long been 480
considered a means by which bacteria sense and communi-
cate their population density to coordinate their activities. Re-
cently, QS was shown to be also involved in fungal processes
such as morphogenesis, germination, apoptosis, pathogenic-
ity and biofilm development (reviewed in Wongsuk, Pumeesat 485
and Luplertlop 2016). Furthermore, both bacterial and fungal
QS molecules were shown to play significant roles in cross-
kingdom signalling (Cugini et al. 2007; Stanley et al. 2014; Szta-
jer et al. 2014; Dixon and Hall 2015). Indeed, certain bacteria re-
act to fungal QSmolecules (e.g. farnesol, tyrosol, phenylethanol, 490

tryptophol; Wongsuk, Pumeesat and Luplertlop 2016), and, con-
versely, fungi may react to bacterium-secreted compounds (e.g.
quinolone signals, homoserine lactones; Dixon and Hall 2015;
Fourie et al. 2016). Such interkingdom signalling is likely to be
a common mechanism of communication between microbes in 495
mixed fungal-bacterial biofilms in which these molecules are
abundantly produced (Trejo-Hernández et al. 2014; Dixon and
Hall 2015; Fourie et al. 2016). This intricate dialogue has been
particularly well studied in C. albicans–P.aeruginosa/S. gordonii/S.
aureus interactions (Lindsay and Hogan 2014). But they may be 500

involved in a broader number of habitats since QS may also in-
tervene in bacterial endofungal symbioses (Kai et al. 2012).

Other soluble compounds released by fungi are also sensed
by bacteria. Examples are organic acids, sugars, polyols and
even toxins. These compounds induce bacterial chemotaxis to- 505
wards the hyphae of fungi that excrete them. Among these
compounds, oxalic acid is of peculiar interest since it induces
chemotaxis in the soil bacterium Collimonas without being con-
sumed (Rudnick, van Veen and de Boer 2015; Haq 2016). This
is in contrast to most other compounds (e.g. glycerol) that are 510

later used as a source of nutrients by fungal-associated bacteria
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Figure 2. Short and long distance signalling in BFI. Diverse small molecules, either soluble or volatile, are perceived as a cue for the presence of the fungal/bacterial
interactant during BFI. These molecules affect positively or negatively the fungal/bacterial partner but also sometimes the hosts of BFI or additional organisms.

(Boersma et al. 2009; Haq et al. 2016). Oxalic acid would therefore
serve as a sole probe of the presence of fungi in the present case.

The importance of volatile organic compounds (VOCs) in BFI
signalling has long been overlooked. However, reports involving515
‘long-distance’ signalling during BFI through VOCs originating
from bacteria (Briard, Heddergott and Latgé 2016; Jones et al.
2017), fungi (Schmidt 2015), or synergistically from both part-
ners (Spraker et al. 2014; Vahdatzadeh, Deveau and Splivallo
2015; Schmidt et al. 2017; Uehling et al. 2017) have recently accu-520
mulated. VOCs encompass a broad range of small compounds
that easily diffuse through water- and gas-filled pores or tissues
(reviewed in Effmert et al. 2012; Schmidt et al. 2015). In addi-
tion to their well-described fungistatic and bacteriostatic activ-
ities (Cordero et al. 2014; Cernava et al. 2015), VOCs such as ter-525
penes or dimethyl sulphide stimulatemicrobial activities during
BFI. For instance, the VOCs produced by P. aeruginosa stimulate
the growth of the opportunistic pathogen Aspergillus fumigatus,
favouring invasion of lung parenchyma by the fungus (Briard,
Heddergott and Latgé 2016). Conversely, the plant-pathogenic530
fungus Fusarium culmorum produces terpenes that induce motil-
ity in the bacterium Serratia plymuthica (Schmidt et al. 2017).
Interestingly, VOC production is highly influenced by nutrient
availability (Hacquard 2017), and it has been proposed that mi-
croorganisms sense changes in their environments via shifts in535
VOC blends, adapting their behaviour accordingly (Garbeva et al.
2014). Intriguingly, some VOCs, such as the terpene sordorifen,
are produced by both fungi and bacteria. This has led to the hy-

pothesis that VOCs may serve as a lingua franca between mi-
croorganisms (Schmidt et al. 2017). Elucidating VOC perception 540

mechanisms in both fungi and bacteria may answer the ques-
tion whether a shared language is used by bacteria and fungi
during their interactions. To date, volatile receptors have not
been identified in either fungi or bacteria and the effects of VOCs
on cell membrane depolarisation-based signalling during BFI re- 545
main to be measured.

Lastly, fungi may also recognise bacteria during BFI using re-
ceptors similar to plant and animal immune receptors that de-
tectmicrobe-associatedmolecular patterns (MAMPs). Transcrip-
tomic data have recently revealed that fungi react to similar 550

MAMPs as plants and animals (Ipcho et al. 2016), and a recent
survey of fungal genomes has uncovered a repertoire of putative
Nod-like immune receptors or NLRs (Dyrka et al. 2014; Uehling,
Deveau and Paoletti 2017). Some NLRs could directly recognise
the presence of theseMAMPs in the environment. Noteworthy is 555
the fact that a subset of NLRs has the ability to rapidly generate
new binding specificities through recombination of tandem re-
peat sequences (Dyrka et al. 2014; Uehling, Deveau and Paoletti
2017) that could favour fast adaptation to new ligands. A fungal
lectin that binds bacterial lipopolysaccharide was also found to 560
be upregulated during the interaction of the fungus Laccaria bi-
colorwith different soil bacteria (Deveau et al. 2014;Wohlschlager
et al. 2014). Whether these different receptors trigger immunity-
like responses or are used to detect more generic BFI still needs
to be determined. 565
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Figure 3. Microbial logistics in BFI. Fungal hyphae can efficiently colonise heterogeneous environmental habitats, creating new microhabitats and thereby enabling a
variety of emerging ecosystem processes and services that can be beneficial or detrimental to bacteria. The mycosphere functions depend on the environment and
the microorganisms involved and are highly susceptible to disturbance.

Mycelia as networks for bacterial transport

The spatial structure of the habitat has been recognised to be
crucial in microbial ecology as it drives the composition and
activity of microbiomes (Andersson et al. 2014; Tecon and Or
2017). Clearly, BFI are also shaped by spatial aspects (Harms,570
Schlosser and Wick 2011) and further enhanced knowledge will
assist their use in microbial resource management. Similar to
logistics of management of human resources and goods, mi-
crobial logistics (box 1) are essential for the functioning of mi-
crobial systems (Fig. 3). In the light of the extent of mycelial575

networks in soils (up to 102 m g−1, 103 m g−1 and 104 m g−1

length in arable, pasture and forest soils, respectively) (Ritz
and Young 2004; Joergensen and Wichern 2018), these can be
considered to constitute ideal transport paths and scaffolds
for bacteria. The fractal mycelial structure enables fungi to580
effectively exploit the three-dimensional space, easily adapt-
ing to environmental disturbances. Fungi also cope well with
heterogeneous distribution of nutrients (Boswell et al. 2007).
A relevant feature of microbial logistics related to mycelial
growth is the translocation of compounds between ‘feeder’585

hyphae growing in optimal environments to hyphal expan-
sion/exploration ofmore unfavourable areas (i.e. resource trans-
port, Fig. 3). Likewise, fungi recycle and re-allocate their hyphal
biomass from substrate-depleted regions to the benefit of ex-
ploratory colonisation of new habitats (Fricker et al. 2017). Hy-590
drophobic cell wall proteins (hydrophobins) further enable hy-

phae to cross air interfaces and access heterogeneously dis-
tributed nutrients in vadose environments. Important for BFI
ecology is the observation that hyphae serve as dispersal vec-
tors for motile bacteria (‘fungal highways’, Kohlmeier et al. 2005; 595
see https://www.youtube.com/watch?v=AnsYh6511Ic for a time
lapse movie). In soil, fungal hyphae may thereby preferentially
invade the larger pores that are most likely air-filled under typ-
ical field conditions (Falconer et al. 2012) and hence allow for
bacterial dispersal at vadose conditions. This enables random 600

and directed (e.g. chemotactic) access to new habitats and nu-
trients (Furuno et al. 2010). For instance, experiments andmodel
simulations showed that mycelia-based bacterial dispersal
stimulates contaminant biodegradation in situations where
chemicals and/or bacteria are heterogeneously distributed and 605
the active movement of bacteria to pollutant reservoirs is lim-
ited by physical barriers (e.g. air-filled pores) (Banitz et al. 2011;
Tecon and Or 2016; Worrich et al. 2016). The hyphosphere is also
an ideal hotspot for the foraging of bacterial prey populations
(Otto et al. 2016; Otto, Harms and Wick 2017) and for horizon- 610
tal gene transfer, including those for antibiotic resistance, by
facilitating dispersal and preferential contact of bacteria in the
hyphosphere (Zhang et al. 2014; Berthold et al. 2016; Nazir et al.
2017). Mycelia-facilitated bacterial dispersal may promote new
niche colonisation (Warmink and van Elsas 2009; Martin et al. 615
2012; Simon et al. 2017) and participate to bacterial food spoilage
(Lee et al. 2014), or the co-invasion of tissues during pathogen-
esis (Schlecht et al. 2015; Jung et al. 2018). It may be a critical

https://www.youtube.com/watch?v=AnsYh6511Ic
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issue in the medical field, as recent studies have revealed the
existence of a variety of diverse mycobiomes related to human620
niches (Kalan et al. 2016; El-Jurdi and Ghannoum 2017).

Is it all about food acquisition? New aspects of
nutrient-based BFI

It has long been known that many BFI, whether antago-
nistic or synergistic, rely on competition or cooperation for625
the acquisition of nutrients, both organic and inorganic ones
(Fig. 3). Competition for nutrients has led to the development
of a large chemical arsenal in both fungi and bacteria over
the millions of years of interaction. Antimicrobial peptides
(e.g. copsin—Essig et al. 2014), biosurfactants (e.g. surfactin,630

nunamycin—Raaijmakers et al. 2010; Hennessy et al. 2017), phe-
nol and quinone derivatives (e.g. penicillin, atromentin—Kong,
Schneper and Mathee 2010; Reen et al. 2016; Tauber et al. 2016),
pyrrol nitrin (Costa et al. 2009), phenazines (e.g. pyocianin—
Morales et al. 2010), QS inhibitors (Scopel et al. 2013; de Carvalho635
et al. 2016) to name a few, are all microbial compounds naturally
involved in BFI (Table 1). These compounds act through a wide
variety of mechanisms that include cell membrane disruption,
inhibition of cell wall biosynthesis and primarymetabolism, for-
mation of reactive oxygen species against a fungus, starvation640

or disruption by a fungus of bacterial QS signalling (Table 1). The
production of these compounds varies depending on the organ-
isms and on environmental conditions, as exemplified by the
interaction between P. aeruginosa and A. fumigatus or C. albicans
(Lindsay and Hogan 2014; Ferreira et al. 2015). In response, de-645
fensive mechanisms (e.g. active efflux of antibiotics or degrad-
ing enzymes) have also been developed by target microorgan-
isms to protect themselves (Künzler 2015). The development of
protection mechanisms against toxin can also lead to coopera-
tive behaviours between toxic fungi and bacteria as in the case650

of the plant pathogens B. glumae and F. graminearum (Jung et al.
2018). Chemical warfare in BFI can be exploited to search for new
drugs and antibiotics (Reen et al. 2016). Number of novel com-
pounds, e.g. glionitrin A or new members of enacyloxin fam-
ily, have been uncovered through BFI analyses in the past years655
(Park et al. 2009; Ross et al. 2014; Tyc et al. 2014; Barkal et al.
2016). High-throughput screening of BFI has been developed to
uncover cryptic or new secondary metabolites (Tyc et al. 2014;
Navarri et al. 2016). Antibiotics are probably the most commonly
sought-after compounds; however, other compounds such asQS660
inhibitors could also prove to be valuable (Scopel et al. 2013; de
Carvalho et al. 2016). Given the huge unexplored metabolome
space, there is great potential for the discovery of novel ther-
apeutic approaches or methods to limit food spoilage (Debbab
et al. 2010; Navarri et al. 2016). For instance, lactic acid bacte-665
ria, via the production of organic acids, hydroxyl fatty acids, hy-
drogen peroxide or reuterin, may protect against food spoilage
(Gänzle 2015). Conversely, some compounds may be detrimen-
tal, as exemplified by the production of rhizoxin and rhizonin
toxins through BFI in soybean fermentations, which can cause670
hepatic lesions when ingested (Rohm et al. 2010).

Less recognised is maybe the importance of BFI in food
webs and nutrient cycling. Numbers of bacteria have the abil-
ity to degrade fungal cell walls, and bacteria are likely to have
an important role in fungal bacterial biomass decomposition675
(Brabcová et al. 2016; Lladó, López-mondéjar and Baldrian 2017).
Fungal lysis by bacteria also stimulate biogeochemical processes
such as carbon flow within the mycorrhizosphere (Ballhausen
and de Boer 2016) or cellulose degradation from plant biomass

as exemplified by the activities of the forest soil bacterium 680
Clostridiumphytofermentans (Tolonen et al. 2015). Plant biomass
degradation often involves the action of both bacteria and fungi
(Žifčáková et al. 2017). In the case of fungus-growing termites
of the order Macrotermitinae, it has been demonstrated that
both fungal ectosymbiont (Termytomyces) and termite (workers) 685

gut microbiomes participate in plant biomass decomposition
by providing a full set complementary carbohydrate-active en-
zymes (Poulsen et al. 2014). In addition to decomposition, a large
array of rhizosphere bacteria can directly consume fungal exu-
dates, and so fungal hyphae may be an important source of nu- 690
trients in this habitat as well as in soil (Rudnick, van Veen and de
Boer 2015). Some bacteria can kill and consume living fungi (i.e.
mycophagy, Fig. 3). Collimonas fungivorans is the best-described
‘mycophagous’ bacterium so far, whereas other bacteria such
as S. marcescens can also live off living fungi (Rudnick, van Veen 695
and de Boer 2015; Ballhausen 2016; Hover et al. 2016). While Col-
limonas relies on the production of secondary metabolites and
chitinases to destabilise and degrade fungal cell walls (Mela et al.
2012), the killer activity of S. marcescens is independent of chiti-
nase production and relies instead on the ability to formbiofilms 700
on the hyphae (Hover et al. 2016). The abilities to produce anti-
fungal compounds are phylogenetically conserved in collimon-
ads, suggesting the existence of co-evolution processes in this
nutrient-based BFI (Ballhausen 2016). Fungi may also be able to
take advantage of their bacterial partner to improve their nu- 705
trition. Pion et al. (2013) demonstrated that the fungus Morchella
crassipes is able to exploit bacterial biomass through a sophisti-
cated mechanism coined bacterial farming, in which the fungus
first feeds the bacterium P. putida and then harvests this self-
created C source. 710

By contrast mycelia of fungi (F. oxysporum and Lyophillum sp.
strain Karsten) and oomycetes (Pythium ultimum) may enable
bacterial activity by nutrient and water transfer from the hy-
phae to the bacterial cells exposed to oligotrophic habitats (Wor-
rich et al. 2017) or favour microbial activity in dry soils (Guhr 715
et al. 2015) (Fig. 3). Mycelia have also been found to mobilise
entrapped polycyclic aromatic hydrocarbons (PAHs) via vesicle-
bound cytoplasmic transport (‘hyphal pipelines’, Furuno et al.
2012) and to render them available to degrader bacteria (Fester
et al. 2014; Schamfuß et al. 2013). Altogether, we see an emerg- 720

ing picture of fungi promoting ecosystem functioning in hetero-
geneous habitats by transporting resources from high nutrient
level and water activity areas to nutrient-poor and dry areas.

BFI mediated habitat modification

Bacteria and fungi can indirectly interact by modifying their en- 725

vironment in ways that positively or negatively affect their part-
ners (i.e. niche modulation, Fig. 3). For instance, pH has been
frequently reported as an important factor involved in tinker-
ing with BFI (Frey-Klett et al. 2011). Fungi sense and actively
modulate the pH in their surroundings (Nazir et al. 2010; Bignell 730
2012; Braunsdorf, Mailänder-Sánchez and Schaller 2016). For in-
stance, Lyophyllum sp. strain Karsten growing through soil was
shown to raise the soil pH from levels below pH 5.0 to just above
this threshold for survival of the pH sensitive Variovorax para-
doxus and other fungal-associated bacterial strains (Nazir et al. 735
2010). Also, C. albicans has been shown to influence the pH of the
phagolysosome to increase its chances of survival in phagocytic
cells of the immune system (Vylkova and Lorenz 2014; Vylkova
2017). In addition, in combination with Streptococcus mutans, a
cariogenic acid producing oral bacterium, C. albicans actively 740
raises the environmental pH (Willems et al. 2016). Increasing the
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pH from acid towards a more neutral value directly stimulates
overall bacterial growth and metabolism, as low pH commonly
inhibits the growth of most bacteria.

Recent studies also identified oxygen level as an important745
BFI modulator, particularly for C. albicans—bacteria interactions.
Early reports indicated that biofilms of C. albicans provide an
anoxic environment (Bonhomme et al. 2011). This was later con-
firmed by co-culturing C. albicans with a variety of strict anaer-
obic bacterial species (Fox et al. 2014). In the oral cavity, rapid750

respiration by C. albicans and several other Candida species cre-
ates an anaerobic niche by reducing the level of dissolved oxy-
gen (Lambooij et al. 2017). This favours anaerobic bacteria and
antagonises aerobic ones, thereby directly influencing the com-
position of the microbiome (Janus, Willems and Krom 2016;755
Janus et al. 2017). Notwithstanding theafore described anaero-
bism, aerobic respiration is facilitated by the structure of Candida
biofilms, and inhibition of respiration (e.g. by bacterial metabo-
lites such as phenazines) inhibits biofilm formation by the fun-
gus (Morales et al. 2013). Conversely, ethanol production by C.760

albicans stimulates phenazine production by P. aeruginosa and
biofilm formation by the bacteria through a feedback loop,which
theoretically increases virulence of both microorganisms (Chen
et al. 2014). In light of the diversity of other fungi commonly
found in the oral cavity, this oxygen-mediated effect may play765
an important role in more BFI in this habitat as well as many
other human niches.

BFI can also occur indirectly, via host behaviourmodulations.
For instance, bacteria and fungi induce different innate immune
defences in the nematodeCaenorhabditis elegans (Pukkila-Worley,770
Ausubel and Mylonakis 2011). By this mean, co-infection by bac-
teria and fungi can alter the outcome of the disease and favour
or reduce the development of the pathogens (Arvanitis and My-
lonakis 2015). Candida albicans and S. aureus resulted in increased
end-organ damage in murine peritonitis and higher mortality775
comparedwith single-pathogen infection. This wasmediated by
higher levels of circulating inflammatory cytokines (Peters and
Noverr 2013). Interplays between bacteria, fungi and the innate
‘immune systems’ are also expected in plants (Hacquard et al.
2017).780

Use of -omics to obtain an integrated view of BFIs

The molecular dialogue that occurs during BFI usually relies on
intricate and multiple cell responses as highlighted in Table S1, 
Supporting Information. ‘Omics’ approaches are ideally suited to

785 address such dialogues and -omics tools can be used to analyse
BFI from ‘simple’ in vitro dual interactions to complex natural 
multispecies interactions (box 1). The past years have seen a 
multitude of applications of -omics to BFI (e.g. Mela et al. 2012;

 Deveau et al. 2014; Phelan 2014; Benoit 2015; Gkarmiri et al. 2015;  
790 Lamachia 2016; Li et al. 2017; Haq et al. 2017; Schmidt et al. 2017; 

Uehling et al. 2017; Jung et al. 2018). As an overriding theme, re-
sponses of partner organisms were commonly found, yet the 
magnitudes of the responses varied greatly, probably reflect-
ing dependency on the types of interactions, their context, and

795 the technology used. Interestingly, most studies demonstrated 
regulation of primary metabolisms including nutrient trans-
porters, stress response, cell wall remodelling and secondary 
metabolite production during BFI. Noteworthy is the fact that
genes/proteins with unknown functions, or showing restricted

800 phylogenetic distribution, often represent a significant part of 
genes regulated in BFI. Emerging studies have been made on tri-
partite interactions between fungi, bacteria and a host, shedding

light on the complex cross-talks occurring (Kurth et al. 2015; Van-
nini et al. 2016).

Complex microbial communities, being most realistic, 805

should be examined using the combination of such analyses.
The following questions emerge as relevant: ‘Who is there?’,
‘What are they capable of?’, ‘Who is actively doing what?’ and
‘What are the factors that modify the output of the interac-
tion?’ Combining metagenomics and metaproteomics analy- 810
ses, Grube deciphered the multifaceted roles of the bacteriome
of the lichen L. pulmonaria (Grube et al. 2015). In this fungus-
alga-bacteria symbiosis, more than 800 bacterial species con-
tributed to the nutrient supply of the lichen, helped its resis-
tance against fungal pathogens and abiotic stress and provided 815
essential hormones and vitamins. Similarly, by using a combina-
tion of multi-omics approaches and soil biological techniques,
Nuccio demonstrated, for the first time, that the AMF Glomus
hoi in Plantago lanceolate, significantly modified 10% of the bacte-
rial community in decomposing litter (Nuccio et al. 2013). More- 820
over, the AMFwas shown to affect the physicochemical environ-
ment in the decomposing litter by preferentially exporting N, for
which it appeared to acquire N primarily in the inorganic form.
This implied that the export of N from litter is one mechanism
by which AMF alter the composition of the bacterial community 825
and decomposition processes in soil.

In addition to pinpoint functional activities within micro-
biomes, metaomics approaches help in determining the active
players in natural conditions in microbiomes of cheese, soil or
the human gut (Huttenhower et al. 2012; Dugat-Bony et al. 2015; 830

Perazzolli et al. 2016; Ghodsalavi et al. 2017). Identifying keystone
members of such microbiomes and their response to perturba-
tions is a current challenge of microbial ecology. To allow such
studies, synthetic communities may be designed that reproduce
patterns of community formation and dynamics of natural sys- 835
tems as well as their functional outputs. So far, good progress
has been achieved in fermented food ecosystems (Wolfe and
Dutton 2015). In surface-ripened cheese, BFI regarding key func-
tions involved in cheese maturation process such as carbohy-
drate, lipid and protein metabolisms were highlighted using 840

synthetic bacterial and fungal communities (Dugat-Bonny 2015).
Thus, the consumption of lactate produced by Lactobacillus lac-
tis, by the fungi Debaryomyces hansenii and Geotrichum candidum
was evidenced by a high level of lactate dehydrogenase tran-
scripts (Dugat-Bonny 2015). Moreover, the dominance of Staphy- 845
lococcus equorum in cheese was maintained due to the presence
of the fungus Scopulariopsis sp. via amolecularmechanismbased
on the iron utilisation pathways such as a homolog of the S.
aureus staphyloferrin B siderophore operon pathway (Kastman
et al. 2016). 850

One of the future challenges of such approach will be to take
into account the spatial and temporal scales of BFI in their anal-
ysis. Even though fungi and bacteria co-colonise the same habi-
tat, they do not have the same lifestyle in terms of colonisation
area. This is particularly true for soils, in which bacterial habi- 855
tats may be reduced to a soil particle of a mm3 or specific zones
in a biofilm on a root, while the hyphae of the fungus with
which they locally interact forage across centimetres to meters
and also interact with other plants, wood debris, microorgan-
isms and microfauna. We here argue that there are fundamen- 860

tal differences in the way that bacteria and fungi respond to
biotic and abiotic cues. For example, plant-associated bacterial
communities show more resistance and resilience than fungi
to environmental perturbations such change in land use or pH
modifications while fungi better resist than bacteria to drought 865
(Uroz et al. 2016). Moreover, the interactive populations tend to
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be spatiotemporally heterogeneous, so each part of the interact-
ing system may be (slightly) different from each other, at differ-
ent points in time during development. In addition, BFI tend to
be dynamic (Young and Crawford 2004; Hennessy, Stougaard and870
Olsson 2017). Current methodologies used to analyse bacterial
and fungal microbiomes do not allow one to take into account
such complex spatiotemporal organisation. However, their use
in combination with microscopy, FISH and analytic techniques
such as Raman spectroscopy, Imaging Mass Spectrometry or875

nanoSIMS may help to overcome this limitation (Behrens et al.
2008; Kaltenpoth, Strupat and Svatoš 2016; Wang et al. 2016).

FUTURE PERSPECTIVES OF BFI RESEARCH

As highlighted in this review, important progress has beenmade
in the understanding of BFI inmodel microorganisms, as well as880

in the description of complex microbial communities involving
BFI. Within the last two decades, it has become clear that BFI
are crucial to the functions in both natural and anthropogenic
ecosystems, including human health. At the ecosystem scale,
BFIs present all type of outcomes, from positive to negative. As885
a result, on the one hand they represent a great potential to be
harnessed, for instance in sustainable agriculture. On the other
hand, the recognition of BFI with negative properties, for in-
stance in human health, could lead to improved therapeutics.
However, there is still an important gap between studies per-890
formed in laboratory conditions and the ‘in vivo’ reality that im-
pedes our ability to extrapolate generic principles of BFI at the
(eco)system scale. The rapid technological advances in method-
ological fields related to the study of microorganisms may help
in reaching such goal. The manipulation of host-associated mi-895
crobiomes using either synthetic microbial communities, dilu-
tion of natural communities, CRISPR-cas9, agrobacterial medi-
ated and other transgenesis tools or antibiotic manipulation of
microbial communities and/or germ-free hosts combined with
modelling will help to identify the driving factors of BFI and of900
their interactions with their hosts and/or environment. More-
over, although the number of researchers integrating BFI into
their studies is expanding, the field needs to becomemore inter-
disciplinary. As a result, we expect that both themethodological
aspect and the interdisciplinary contribution will bring new de-905
velopment in the BFI research field.

Finally, BFI could also have a broader impact in science if
they are used as model systems to analyse complex interac-
tions. Indeed, apart from being an object of study, the BFI holo-
biont also provides an interesting and relatively simple model910
for the study of eukaryote–bacterial interactions. One advan-
tage is the fact that many fungi are haploid, easy to transform
(Michielse et al. 2005), and may be grown both in the ab-
sence or presence of bacterial partners. In this way, the BFI
holobiont can become a model system for the assessment915

of evolutionary conserved molecular interactions between eu-
karyotic cells and bacteria. A key characteristic of eukaryotic
metaorganisms/holobionts is the modulated recognition of bac-
terial symbionts by the hosts’ innate immune systems, welcom-
ing mutualists and resisting pathogens (Artis 2008; Zamioudis920
and Pieterse 2012). It has long been proposed that fungi, like
plants and animals, possess an innate immune system (Paoletti
and Saupe 2009; Salvioli et al. 2016), have receptor candidates for
recognising bacteria (Dyrka et al. 2014; Uehling, Deveau and Pao-
letti 2017) and indeed do so with fast transcriptomic responses925

(Ipcho et al. 2016). This opens up an exciting avenue of research
into the conservation of innate immune systems across phylo-

genetically distant eukaryotes. BFI also serve as useful models
for the study of evolutionary theory. For example, how do symbi-
otic bacteria–eukaryote interactions remain stable under differ- 930

ent environmental conditions and over time (Olsson, Bonfante
and Pawlowska 2017). Fungal mycelia have recently been pro-
posed to be a driving factor of the evolution of bacterial diver-
sity by enabling preferential contact of spatially distinct bacte-
ria and acting as focal point for horizontal gene transfer (Zhang 935
et al. 2014; Berthold et al. 2016). Thus, BFI may serve as models
to study other eukaryotes–prokaryotes interactions, in an anal-
ogous way to how fruit flies or worms are used as models to
study processes occurring in human cells (Olsson, Bonfante and
Pawlowska 2017). Fungal and bacterial model systems have the 940
advantages of being fast to grow, and easy to manipulate and
track genetically. Based on these premises, BFI research should
expand rapidly, not only to better understand the fundamental
processes involved in BFI across research fields, and commercial
and industrial settings, but also to take advantage of the fantas- 945
tic properties of BFI to exploit them as model systems.
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Briard B, Heddergott C, Latgé J-P. Volatile compounds emitted
by Pseudomonas aeruginosa stimulate growth of the fungal
pathogen Aspergillus fumigatus. mBio 2016;7:e00219.

Cernava T, Aschenbrenner IA, Grube M et al. A novel assay for 1080
the detection of bioactive volatiles evaluated by screening of
lichen-associated bacteria. Front Microbiol 2015;6:e398.

Chen AI, Dolben EF, Okegbe C et al. Candida albicans ethanol stim-
ulates Pseudomonas aeruginosa WspR-controlled biofilm for-
mation as part of a cyclic relationship involving phenazines. 1085

PLoS Pathog 2014;10:e1004480.
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GRAPHICAL ABSTRACT

Bacterial–fungal interactions are cornerstones of numerous processes that impact
ecosystem functions, animal and plant physiology, and industrial activities.




