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Abstract—Generation portfolio can be significantly altered due
to the deployment of distributed energy resources (DER) in
distribution networks and the concept of microgrid. Generally,
distribution networks can operate in a more resilient and eco-
nomic fashion through proper coordination of DER. However,
due to the partially uncontrollable and stochastic nature of some
DER, the variance of net load of distribution systems increases,
which raises the operational cost and complicates operation
for transmission companies. This motivates peak shaving and
valley filling using energy storage units deployed in distribution
systems. This paper aims at theoretical formulation of optimal
load variance minimization, where the infinity norm of net load
is minimized. Then, the problem is reformulated equivalently
as a linear program. A case study is performed with capacity-
limited battery energy storage model and the simplified power
flow model of a radial distribution network. The influence of
capacity limit and deployment location are studied.

I. INTRODUCTION

Increasing deployment of renewable sources (mainly wind
and solar photovoltaic (PV) generation) has decreased the
power consumption for distribution companies. However, deep
penetration of renewable resources into the current electric grid
remains a challenging problem. When there is a concurrent
drop in renewable generation and increase in demand, the
power consumption at the point of common coupling (PCC)
between distribution networks and the main grid changes
rapidly. This is known as the duck curve issue [1]. In particular,
the most significant daily ramp starts around 5:00 p.m. when
the sun sets (i.e., solar generation ends) and the demand
increases [2]. The traditional power system is designed to
meet the highest level of demand but ramping rates are
limited particularly for large thermal units. Large amounts of
renewable generation during off-peak hours deepen the valley
and increase the ramp rate requirement. Fast ramping units,
however, are limited in number and capacity, capital-intensive
and subjected to possible transmission network congestions
[3].
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An alternative solution is peak shaving and valley filling,
referred to here as load variance minimization, by utilizing var-
ious dispatchable resources in distribution networks. Electric
vehicles (EV) are scheduled in [4] so that the power at PCC
follows a target profile. A storage scheduling algorithm that
is resilient to the inevitable errors between the forecasted and
actual demand is proposed in [5] for peak demand reduction.
A day-ahead battery energy storage scheduling is performed
in low voltage unbalance distribution networks in [6], where
peak load shaving is considered as the main objective and load
leveling is regarded as the second objective. In [7], household
load variance is minimized by EV control. Tap changer effects
on peak shaving from EV was studied in [8]. Price-based
programs of demand response, which is based on dynamic
pricing rates, can be employed to flatten the demand curve
by offering a higher price during peak periods and a lower
price during off-peak periods [9]. Household appliances can
also participate in peak shaving as shown in [10]. Meanwhile,
power at the PCC can be limited to a certain range during
cost-based [11], [12] or risk-based [13] scheduling.

Most of the aforementioned research relies on a cost-
optimization framework, which highly depends on the specific
electricity price profile or market mechanism. Consequently,
it is hard to clarify the optimal solution of load variance
minimization constrained only by physical limits. A recent
theoretical study on peak shaving in [14] proved the optimal
solution under limited storage capacity. It was shown that the
infinity norm of the power at PCC is minimized if the energy
at PCC takes the shortest path within the energy band between
the load energy and the energy summation of load and storage
limit. Such a theoretical study helps clarify the physical limits
under correct mathematical principle without mixed effects of
cost and other considerations. For now, there is no theoretical
formulation for load variance minimization.

Thus, this paper aims at theoretical study on load variance
minimization. The infinity norm minimization-based battery
energy storage (BES) scheduling is formulated to optimally
flatten the load. This formulation is more general than the
shortest path principle [14], which is only applicable to peak
shaving. Moreover, an equivalent formulation is proposed to
convert the optimization problem into a linear program. The
radial distribution network power flow (DistFlow) proposed
in [15], [16] is employed in this study with several simpli-
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Fig. 1: Load flattening objective.

fications made based on [17]. The impacts of capacity limit,
voltage constraints and location of BES units on load variance
minimization performance are investigated.

The remainder of this paper is organized as follows. Section
II introduces the infinity norm minimization-based scheduling
formulation and its equivalent form. The BES model and
radial distribution network power flow are introduced as well.
Section III presents the case study on a lumped system as well
as a radial feeder. Finally, the conclusion and future work are
discussed in Section IV.

II. PROBLEM FORMULATION

A. Objective Function

Let PBc(t) and PBd(t) denote total BES charging and dis-
charging powers, respectively. Let PL(t) denote the forecasted
total load profile, which is assumed to be known in this paper.
Loss is neglected for now. Then, the power at PCC Pg(t) can
be expressed as follows

Pg(t) = PBc(t)−PBd(t)+PL(t) (1)

where PBc(t)> 0 and PBd(t)> 0. The objective is to minimize
the demand peak-valley gap. To explore the optimality, the
ideal case is set as the target curve, where there is no peak-
valley gap illustrated as the red line in Fig. 1. Then, the
objective can be expressed as the infinity norm minimization
as follows

min
PBc(t),PBd(t)

‖PBc(t)−PBd(t)+PL(t)−θ‖∞ (2)

In robust control, instead of minimizing ||Tzw||∞, it is usually
desired to minimize the upper bound γ , where ||Tzw||∞ < γ

and γ > 0 [18]. Similar idea is applied into the objective
reformulation as the objective in (2) is equivalent to

min
PBc(t),PBd(t)

K (3)

such that

0≤| PBc(t)−PBd(t)+PL(t)−θ |≤ K (4)

There are two ways to deal with the target curve θ . One
is to treat θ as a given constant. The second approach is to
regard θ as a decision variable. Since here the objective is to

minimize the variance of the power at PCC, so θ needs to be
limited between the valley and peak of forecasted load. Then
the alternative problem can be formulated as

min
PBc(t),PBd(t),θ

αK +βθ (5)

such that

0≤| PBc(t)−PBd(t)+PL(t)−θ |≤ K

minPL(t)≤ θ ≤maxPL(t),α > 0,β > 0
(6)

Remark 2.1: The formulation in [14] employs the infinity
norm in the following form

||z(t)||∞ = lim
m→∞

(

T∫
0

|z(τ)|mdτ)1/m (7)

The shortest path principle can be applied when |z(τ)|m
is monotonically increase. It is true when performing peak
shaving without reverse load flow to main grid since z(τ) =
Pg(τ)> 0. But it does not hold when minimizing load variance,
where z(τ) = Pg(τ)− θ is not always positive. As seen, the
formulation proposed above is more general.

B. Battery Energy Storage Model

Let E denote the set of buses that have BES and load
connected. The battery model can be expressed as follows
[19]

Eb,i(t) = Eb,i(t−1)+ηT Pbc,i(t)−
1
η

T Pbd,i(t) ∀i ∈ E (8)

where Pbc,i(t) and Pbd,i(t) are charging and discharging power
of BES at bus i in kW. Eb,i(t) is the available capacity of BES
at bus i (kW·h). η represents the BES charging/discharging
efficiency. T is the time interval. The BES capacity limit can
be expressed by the following constraints

SOCminBcap ≤ Eb,i(t)≤ SOCmaxBcap ∀i ∈ E (9)

where Bcap is the rated capacity in kW·h. SOCmin and SOCmax
are the state-of-charge limits in percentage. In general, si-
multaneous charging and discharging is unrealistic. Binary
variable can be introduced to force only one action to be
activated during each scheduling interval T [20] as follows

PBc(t) = ∑
i∈E

Pbc,i(t),PBd(t) = ∑
i∈E

Pbd,i(t)

0≤ Pbc,i(t)≤ Pbc,maxmbc,i(t) ∀i ∈ E

0≤ Pbd,i(t)≤ Pbd,maxmbd,i(t) ∀i ∈ E

mbc,i(t)+mbd,i(t)≤ 1 ∀i ∈ E

(10)

where Pbc,max and Pbd,max are the BES charging and discharg-
ing power limits. mbc,i(t) and mbd,i(t) are binary variables
representing the operating modes of charging and discharging.
1 means the corresponding mode is activated while 0 stands
for deactivation. The last constraint in Eq. (10) ensures no
simultaneous charging and discharging situation.
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Fig. 2: One line diagram of a main distribution feeder.

C. Radial Distribution Network Power Flow

The distribution network power flow (DistFlow) is borrowed
from [15] and more generally from [16] including lateral
branches, which has been employed in [21] for microgrid
scheduling. Consider a radial distribution network shown in
Fig. 2. Let N denote the set of buses that only have load
connected. The following equations can be used to describe
the complex power flows at each node i at time t

Pi+1(t) = Pi(t)− ri
P2

i (t)+Q2
i (t)

V 2
i (t)

−Pnl,i+1(t)

Qi+1(t) = Qi(t)− xi
P2

i (t)+Q2
i (t)

V 2
i (t)

−Qnl,i+1(t)

V 2
i+1(t) =V 2

i (t)−2[riPi(t)+ xiQi(t)]+(r2
i + x2

i )
P2

i (t)+Q2
i (t)

V 2
i (t)

(11)
where nl stands for net load. xi is inductance from branch i to
i+1. Pi and Qi are the load flow from branch i to i+1. The
first approximation is made by dropping the quadratic terms
as the branch losses are much smaller than the branch power
[16]. Then, the simplified DistFlow is shown as

Pi+1(t) = Pi(t)−Pnl,i+1(t)

Qi+1(t) = Qi(t)−Qnl,i+1(t)

V 2
i+1(t) =V 2

i (t)−2[riPi(t)+ xiQi(t)]

(12)

The second approximation is made by the following assump-
tion in [17]

[Vi(t)−V0(t)]
2 ≈ 0, (13)

which leads to

V 2
i (t)≈V 2

0 (t)+2V0(t)[Vi(t)−V0(t)] (14)

The rationality of the second approximation lies in the fact
that the per unit voltage variation along the line remain within
the bounds for proper operation of a distribution system as

1− ε ≤Vi(t)≤ 1+ ε (15)

where ε > 0 is generally very small [17]. After the two
approximations, the DistFlow equations become

Pi+1(t) = Pi(t)−Pnl
i+1(t),Qi+1(t) = Qi(t)−Qnl

i+1(t)

Vi+1(t) =Vi(t)−
riPi(t)+ xiQi(t)

V0(t)
,PL(t) = ∑

i∈E∪N
Pl,i(t)

Pnl,i(t) = Pl,i(t),Qnl,i(t) = Ql,i(t) ∀i ∈N

Pnl,i(t) = Pl,i(t)+Pbc,i(t)−Pbd,i(t) ∀i ∈ E

Qnl,i(t) = Ql,i(t)+Qbc,i(t)−Qbd,i(t) ∀i ∈ E

(16)

The terminal condition is given as Pn(t) = 0 and Qn(t) = 0
for all t. As we can see, by restricting the voltage variation
the BES power is confined. Consequently, this turns out to be
another constraint for load variance minimization.

III. CASE STUDY
In this section, we will evaluate the performance of the

proposed technique on a 12 kV distribution system. The study
is performed on two versions of the system, i.e., a lumped
version and a radial version, for different purposes. The
parameters are given as Pbase = 1 MW,ε = 0.05,SOCmin =
5%,SOCmax = 95%,η = 0.9,T = 1[h],Eb,i(0) = SOCmin ×
Bcap for i ∈ E ,V0(t) = 1.02 for any t. Pbc,max and Pbd,max are
assumed to be sufficiently large.

A. A Lumped System without Voltage Constraint
The lumped system shown in Fig. 3 is employed to study

the property of the formulation. The system consists of one
aggregated BES and load, and is assumed to be lossless.
Consider the first optimization problem

min
PBc(t),PBd(t)

K

s.t. (4),(8),(9),(10)
(17)

The problem in (17) is a mix-integer linear programming
(MILP). Let θ = 1830. The load flattening results when BES
capacity equals to 1200 kW·h, 1600 kW·h and 2200 kW·h are
shown in Fig. 4. Based on the scheduling results using (17),
when Bcap ≥ 2040 kW · h, the load flattening attains the best
performance, where K = 0.

As expected, the value of objective function varies with
the choice of θ . The relationship curve under different BES
capacity is studied and illustrated in Fig. 5. As shown, when
the BES capacity is less than or equal to the critical capacity
limit, there is only one choice of θ that can reach the best
load flattening performance under that particular capacity
limit. After the critical limit, larger BES capacity will lead
to wider range of θ that can minimize the load variance to
zero shown as the flat bottom in Fig. 5. In these scenarios,
it is always desired to use the smallest θ for cost reduction,
which corresponds to the left turning point at the flat bottom.
This critical choice of θ enables the energy balance between
peak shaving and valley filling. It should be mentioned that
the curves will be altered when the BES unit starts from a
different initial condition.

Regarding θ as another decision variable yields:

min
PBc(t),PBd(t)

αK +βθ

s.t. (6),(8),(9),(10)
(18)

Load

Battery Energy 

Storage

PCC

( )gP t ( )LP t

0 1
( )BP t

Fig. 3: A lumped system.
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Fig. 5: Relationship between value of objective function and
choice of θ under different BES capacity limits.

The scheduling results are summarized in Tab. I. When α > β ,
the values of the objective function are exactly those turning
points in Fig. 5. However, once α < β , θ is minimized with
priority and pushed to its lower limit. Thus, the infinity norms
are much larger than those in the first case. The scheduled
power at PCC of these two cases with different BES capacity
is shown in Fig. (6). When the BES capacity is larger than
the critical value, although the values of the objective function
are different, the scheduled results are the same. But it is not
the case when the BES capacity is not adequate for a perfect
flattening.

B. A Radial Feeder with Voltage Constraints

In this section, the lumped system is expanded into a 18-bus
radial feeder to study the voltage constraint. Loss is considered
in this case. The same total net active load in previous section
is used, and distributed to each bus according to Tab. II. The
reactive load is assumed to be fixed and given in Tab. II as
well. Based on the study in the last subsection, Formulation
2 is chosen with larger weighting factor on infinity norm K
than target θ , which leads to

min
PBc(t),PBd(t)

αK +βθ

s.t. (6),(8),(9),(10),(15),(16),α > β

(19)

One BES with adequate size of 2200 kW·h is deployed in
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Fig. 6: Scheduled power at PCC under different objective
weighting factors and BES capacity. (a) 1200 kW·h, (b) 1600
kW·h and (c) 2040 kW·h.

different nodes and the scheduled power at PCC is shown
in Fig. 7. Due to the voltage constraint, when the BES is
deployed at the end of the network, the charging power is
limited to further limit the voltage drop along the line. When
the deployment location is moving forward, the scheduled
power is approaching the best performance as expected. The
best performance is achieved when the BES is deployed at bus
13 or any bus ahead of bus 13.

IV. CONCLUSIONS AND FUTURE WORKS
This paper proposes an infinity norm minimization problem

aiming at minimizing the load variance. Two linear programs
are formulated to solve the proposed problem. The equivalence
of these two problems are observed under certain conditions.
A case study is performed with capacity-limited battery energy
storage model and the simplified power flow model of a
radial distribution network. The critical capacity of BES is
obtained for the best performance, meaning zero variance of
the scheduled power at PCC. Deployment location is also
studied. It is shown that for better scheduling performance



TABLE I: Results of Problem in (18)

Capacity 1200 kWh 1600 kWh 2040 kWh 2400 kWh 2800 kWh
α > β K = 89.8,θ = 1781 K = 45.7,θ = 1803 K = 0, θ = 1827 K = 0,θ = 1827 K = 0,θ = 1827
α < β K = 428.7,θ = 1442 K = 407.1,θ = 1442 K = 385.4,θ = 1442 K = 385.3,θ = 1442 K = 385.3,θ = 1442

TABLE II: Radial Feeder Data

Loads on to-node
From To R (p.u.) X (p.u.) % in Total P Q in p.u.
0 1 0.000574 0.000293 6.64 0.06
1 2 0.00307 0.001564 5.98 0.04
2 3 0.002279 0.001161 7.97 0.08
3 4 0.002373 0.001209 3.99 0.03
4 5 0.0051 0.004402 3.99 0.02
5 6 0.001166 0.003853 13.29 0.1
6 7 0.00443 0.001464 13.29 0.1
7 8 0.006413 0.004608 3.99 0.02
8 9 0.006501 0.004608 3.99 0.02
9 10 0.001224 0.000405 2.99 0.03
10 11 0.002331 0.000771 3.99 0.035
11 12 0.009141 0.007192 3.99 0.035
12 13 0.003372 0.004439 7.97 0.08
13 14 0.00368 0.003275 3.99 0.01
14 15 0.004647 0.003394 3.99 0.02
15 16 0.008026 0.010716 3.99 0.02
16 17 0.004558 0.003574 5.98 0.04
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Fig. 7: Scheduled power at PCC when one BES with capacity
of 2200 kW·h is deployed at different buses.

it is desired to deploy the BES units in the front of a radial
network due to the voltage constraints.

Based on the proposed formulation, optimal allocation and
sizing of BES units for load variance minimization can be
determined. Different types of DER like fuel cell [22] can
be integrated and analyzed. Since the formulation provides
capability of reshaping power at PCC, a resiliency-oriented
or a market-oriented scheduling problem can be considered.
Distributed coordination of BES units and tap changers over a
large distribution network with more sophisticated power flow
model would be an interesting extension.
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