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Abstract— Convolutional Neural Networks (CNN) have re-
cently demonstrated effective performance in many Natural
Language Processing tasks. In this study, we explore a novel
approach for pruning a CNN’s convolution filters using our new
data-driven utility score. We have applied this technique to an
information extraction task of classifying a dataset of cancer
pathology reports by cancer type, a highly imbalanced dataset.
Compared to standard CNN training, our new algorithm
resulted in a nearly .07 increase in the micro-averaged F1-score
and a strong .22 increase in the macro-averaged F1-score using
a model with nearly a third fewer network weights. We show
how directly utilizing a network’s interpretation of data can
result in strong performance gains, particularly with severely
imbalanced datasets.

I. INTRODUCTION

Cancer surveillance is the ongoing, timely, systematic
collection and analysis of data relating to new cancer cases,
the disease’s extent, screening tests, treatment, survival, and
cancer deaths [1]. The resulting intelligence can be used to
identify trends over time, cancer patterns in certain regions or
populations, and evaluate the impact of screening and other
prevention measures. In 2016, an estimated 1,685,210 new
cases of cancer were diagnosed and 595,690 people died
from the disease in the United States; equivalent to 454.8
new cases per 100,000 people, and 171.2 cancer deaths per
100,000 people [2]. Extracting structured data at this scale
with only manual human efforts is labor intensive, costly,
and error prone. Therefore, the cancer surveillance research
communities have expended much effort automatically ex-
tracting information from natural language data, an essential
application of big data science.

Pathology reports are unstructured text documents con-
taining specific and detailed descriptions of human tissue
specimens. They are a standard component of the clinical
reporting and management of cancer patients. In addition,
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cancer pathology reports are a primary source of information
for the Surveillance, Epidemiology, and End Results (SEER)
program. The SEER program is the premier population can-
cer surveillance program covering 30% of the US population
[3]. It is an important national resource for monitoring cancer
outcomes across demographic groups, geographic regions,
and time. Furthermore, SEER provides unique insights into
the impact of oncology practice outside the clinical trial set-
ting. Collected data includes patient demographics, primary
tumor site, tumor morphology and stage at diagnosis, the
first course of treatment, and follow-up for vital status.

Deep Learning (DL) approaches based on Convolutional
Neural Networks (CNN) have shown success in many areas
of machine learning and pattern recognition research [4].
Originating in computer vision applications, CNN techniques
have been adapted to natural language text classification
[5]. The feasibility of such a model was studied in the
Bioinformatics domain [6], which reported that the CNN
models outperformed conventional machine learning tech-
niques. Our previous work [7] demonstrated primary cancer
subsite identification from cancer pathology reports using the
CNN, which outperformed popular traditional learning tech-
niques such as a Support Vector Machine (SVM) classifier
[8] and text feature extraction using Term Frequency-Inverse
Document Frequency (TF-IDF) [9].

DL models are characterized by the ability to produce
effective abstract representations of data using automatic
latent feature extraction [10]. To accomplish this, deep neural
networks are substantially more complex compared to more
traditional machine learning techniques, and require many
orders of magnitude more parameters to be trained. To better
understand how a network interprets data, researchers have
recently examined how individual components or intermedi-
ate layers of a deep network respond to an input [11]. Some
recent efforts expanded this further by using a deep neural
network’s intermediate responses to identify and remove
superfluous sections of a network and reduce its size, known
in the literature as node or filter pruning [12].

In this paper, we investigated the learning mechanism of
the CNN for text classification, suggested a utility measure-
ment that represents the power of distinguishing relevant and
non-relevant contents, and implemented an algorithm of iter-
ative processes of convolution filter pruning followed by fine-
tuning with the remaining filters. This work demonstrates
that the algorithm maintains or increases task performance
while reducing unnecessary filtering, while preserving classi-
fication performance of the underrepresented classes. Cancer
types and their subtypes on the pathology report corpus,



TABLE I
TWELVE PRIMARY CANCER SUBSITES OF BREAST AND LUNG CANCERS

AND NUMBER OF CASES IN THE DATASET

Code Description # cases
C34.0 Main Bronchus 26
C34.1 Upper Lobe of Lung 139
C34.2 Middle Lobe of Lung 11
C34.3 Lower Lobe of Lung 78
C34.9 Lung, NOS 191
C50.1 Central Portion of Breast 13
C50.2 Upper-Inner Quadrant of Breast 36
C50.3 Lower-Inner Quadrant of Breast 10
C50.4 Upper-Outer Quadrant of Breast 63
C50.5 Lower-Outer Quadrant of Breast 21
C50.8 Overlapping Lesion of Breast 62
C50.9 Breast, NOS 292

review of the word-based CNN model and its application
to the filter pruning, and performance evaluation metrics are
described in Section II, experimental results of the proposed
filter pruning algorithm and evaluations are in Section III,
and, lastly, the discussion of the results and future research
are addressed in Section IV.

II. METHODS

A. Cancer Pathology Report Data

Our analysis used a corpus of 942 de-identified pathol-
ogy reports annotated with 12 ICD-O-3 topography codes
corresponding to 7 breast and 5 lung primary sites. The
pathology reports were provided from five different SEER
cancer registries (CT, HI, KY, NM, Seattle) with the proper
IRB-approved protocol.

For our gold standard, cancer registry experts manually
annotated using the standardized SEER coding guidelines
[13]. For label consistency in our training set, we used only
pathology reports with a single topography code sourced only
from the Final Diagnosis section of the report to minimize
variation in our training data. Since pathology report sections
vary across pathology labs and registries, we aggregated the
text content of every section in the pre-processing phase. The
average length of the reports was 469 words. Table I includes
the number and types of pathology reports provided by each
SEER registry in our dataset.

Of particular note is the heavy class imbalance of the “Not
Otherwise Specified” or NOS codes (C34.9, C50.9). This is
because some reports were produced from a patient’s post
diagnostic follow-up visit, which can produce a less detailed
report which coding guidelines denote as NOS. This allows
our experiments to be more robust and demonstrates the
ability to handle imprecise codes.

B. Convolutional Neural Networks for Text Classification

Yoon Kim’s word-based CNN model [5] is a popular
model for natural language text comprehension. In this ap-
proach, documents are represented as 2 dimensional matrices
by mapping each word token to a word embedding vector
with dimensionality k. These word embeddings can be pre-
trained by the training corpus, pre-trained by a general-
purpose text database, or initialized by uniformly distributed

random numbers. Specifically, a tokenized document of
length l, is transformed into a l × k matrix. However, if a
tokenized document’s length is shorter than l, the sequence
will be zero padded; if longer than l, the document token
sequence will be truncated. For our domain-specific classi-
fication task, we truncate the beginning of the document to
preserve the end of the document’s final diagnosis section.
For our dataset, we set l as 1500 tokens, approximately the
98th percentile of our tokenized dataset.

For our convolution layer, we applied convolution filters
of size h× k a 1-dimensional stride to the document matrix
followed by the Rectified Linear Unit (ReLU) activation
function. We then applied global max-pooling, resulting in
a scalar value corresponding to the maximum filter response
given a particular document matrix input. Therefore, in
our word-based CNN, the convolution filters are trained
to parameterize the relative discriminative power of a h-
word phrase and the global max-pooling selects the most
discriminative phrase.

C. Pruning Convolution Filters on the Convolutional Neural
Networks for Text Classification

Pruning of neural networks has a long history [14]. Tradi-
tionally, network node pruning algorithms utilized saliency
scores based on weight values between nodes. We can
assume those nodes are tightly coupled if the weight between
the nodes is high.

We propose an analogous approach based on the feature
mapping property of convolution filters in CNNs [12]. An
individual filter contributes to the overall classification task
by feeding forward only a scalar activation. Training multiple
filters in parallel enables individual filters to become more
specialized in their purpose as feature extractors. We can then
determine the utility of a particular filter given by its max-
pooled activation variability given some set of input data.
A filter with small activation variability implies that filter
does not convey much discriminative ability for the network’s
classification task. Our implementation used the training set
to calculate the variance of each filter’s globally max-pooled
activation, which we used as our filter utility score. We can
use this utility score to identify which filters to prune. Our
algorithm iteratively prunes convolution filters in the lowest
x percentile of utility scores, then fine-tunes the CNN by
adjusting the remaining convolution filters. The pseudo-code
of the algorithm is described in Algorithm 1.

D. Performance Metrics

For our experiments we utilize 10 fold cross validation by
randomly partitioning our dataset into 10 sets using each
set once as our test set and the others as our train set.
Classification performance on the primary cancer subsite
was evaluated with each fold’s test sets. We evaluated
performance with the F1 score, which is the harmonic
mean of precision and recall, as it is widely accepted in
the natural language processing community [15]. Due to
our dataset’s heavy class imbalance, we report both micro-
averaged and macro-averaged F1 scores. Micro-averaging



Algorithm 1 Filter pruning for word-based CNN
Input: M training set of pathology reports represented as

token sequences
1: repeat
2: N ← GetConvFilters(CNN)
3: for each n in N do
4: for each m in M do
5: w ←WordV ectorMatrix(m)
6: c← ReLU(1DConvolution(n,w))
7: P (n,m)← GlobalMaxPooling(c)
8: end for
9: U(n)← V ar(P (n))

10: end for
11: θ ← percentile(U, x)
12: for each n in N do
13: if U(n) > θ then
14: Nopt(n)← N(n)
15: end if
16: end for
17: CNNopt ← FineTuning(CNN(Nopt,M))
18: until stopping criteria has not been met

effectively weights each class’s performance by prevalence
using class-agnostic precision and recall. Macro-averaged F1
scores use a simple average of each class’s F1 scores and
more effectively describes performance in under-represented
and difficult classes.

III. EXPERIMENTAL RESULTS

We classified primary cancer subsites from pathology
reports of breast and lung cancers using a word-based CNN
classifier with word vector length k = 300, and convolution
filters of sizes h = 3, 4, 5. The maximum word length of
documents was set to l = 1500. We did not set any fully
collected hidden layers.

The training started with 900 convolution filters – 300
from each filter length. We trained the CNN model using
the Adam optimizer [16] with stopping criteria based on
validation loss. Once our model validation loss converged,
we identified and eliminated convolution filters with low
utility scores, which we calculated as the variance of the
filter’s max-pooled activation over each training sample. For
each cross validation fold’s training set, we removed the
convolution filters with utility scores in the lowest decile.
We repeated 20 iterations of this train - prune procedure
to observe how the task performance is influenced by the
remaining convolution filters. We implemented the algorithm
using Keras [17] with a TensorFlow [18] backend. We
performed the experiments on Summitdev at the Oak Ridge
Leadership Computing Facility with NVIDIA P100 Graphics
Processing Units. Micro and Macro-F1 scores are shown in
Figure 1 for different amounts of pruning.

The results in Figure 1 illustrate that the proposed con-
volution filter pruning algorithm boosts Micro-F1 scores
significantly from 0.72 to 0.78 as well as Macro-F1 scores
from 0.35 to 0.55 using fewer convolution filters. This

Fig. 1. Micro and Macro-F1 scores of 10-fold cross validation results of
CNN’s from the 900 convolution filters followed by 20 iteration of filter
pruning the utility scores in the lowest decile.

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCES BETWEEN

CONVOLUTION FILTER PRUNING ALGORITHM AND TRADITIONAL CNN
TRAINING BY NUMBER OF CONVOLUTION FILTERS

# filters Pruning Traditional
Micro-F1 Macro-F1 Micro-F1 Macro-F1

430 0.774 0.560 0.717 0.344
387 0.787 0.575 0.719 0.355
282 0.775 0.552 0.732 0.373
150 0.780 0.561 0.725 0.349
108 0.781 0.556 0.717 0.338

suggests that the proposed algorithm efficiently eliminates
unnecessary convolution filters. It is even evident that the
classification power holds with just 100 convolution filters.

For comparison purposes, we trained a conventional word-
based CNN with the same number of convolution filters as
the pruned CNN. Comparisons of task performance between
the pruning algorithm and the traditional CNN training
algorithm are listed in Table II. The suggested algorithm
consistently yielded much higher task performance than the
traditional method, even with a much smaller number of
convolution filters. This suggests the filter pruning algorithm
is an efficient approach to cut down the low-utility filters.

Table III lists our confusion matrix for evaluating predic-
tions from the CNN with our filter pruning algorithm with
387 convolution filters. Our algorithm correctly classified
minor classes (e.g.: C34.0 and C50.5) that the traditionally
trained CNN often failed to classify correctly [7]. However,
some of the severely underrepresented classes were not
classified correctly (e.g.: C50.1 and C50.3), suggesting the
need for further research and refinement.

IV. DISCUSSION

In this paper, we introduced a new word-based CNN
training and filter pruning algorithm to achieve both better
task performance and increased computational efficiency. We
evaluated convolution filters using the variance of their global



TABLE III
CONFUSION MATRIX OF THE RESULT FROM THE CONVOLUTION FILTER

PRUNING ALGORITHM WITH 387 CONVOLUTION FILTERS, LABELS IN

THE TABLE ARE 1: C34.0, 2: C34.1, 3: C34.2, 4: C34.3, 5: C34.9, 6:
C50.1, 7: C50.2, 8: C50.3, 9: C50.4, 10: C50.5, 11: C50.8, 12: C50.9

1 2 3 4 5 6 7 8 9 10 11 12
1 12 2 1 1 10 0 0 0 0 0 0 0
2 0 123 1 6 7 0 0 0 0 0 0 2
3 0 0 7 2 2 0 0 0 0 0 0 0
4 1 1 1 64 10 0 0 0 0 0 0 1
5 2 19 0 9 159 0 0 0 1 0 0 1
6 0 0 0 0 0 0 0 0 0 2 2 9
7 0 0 0 0 0 0 12 0 10 0 4 10
8 0 0 0 0 0 0 1 0 0 6 1 2
9 0 0 0 0 0 0 10 0 36 0 0 17
10 0 0 0 0 0 0 0 0 1 13 1 6
11 0 0 0 0 1 0 2 0 3 0 42 14
12 0 0 0 0 1 0 0 0 9 2 7 273

max pooling outputs from the training set. Experimental
results support the effectiveness of our utility score in
eliminating unnecessary convolution filters that are either too
general or too specific. Therefore, we achieved substantially
higher Micro and Macro-F1 scores than the traditional word-
based CNN training method while using a similar number
of convolution filters. Moreover, we can maintain high task
performance even with a small fraction of the convolution
filters. Substantial improvement of the Macro-F1 score is a
strong indication that the optimal convolution filters are ef-
ficiently describing cases of underrepresented classes, which
is a highly desirable characteristic for classifying a severely
imbalanced text corpus such as cancer pathology reports.

Our algorithm improves a trained CNN model by observ-
ing the network’s responses to data and intelligently modi-
fying the model’s architecture. Identifying optimal network
structure and other network hyper-parameters has recently
received much focus from researchers since current standard
practice is to use default configurations described in literature
or utilizing costly search algorithms. Our approach improves
upon convention by utilizing actual data and observing in-
termediate interactions to efficiently adapt the model beyond
the initialization phase. Identifying additional utility scores
could further improve performance or allow for additional
model compression.

This study was currently focused solely on word-based
CNN models, assessing only the utility of the convolution
filters at a single layer of the network. Further research will
be conducted to develop more utility measurements capable
of evaluating multiple layers of convolution filters or multiple
layer types, such as the fully-connected layer.

ACKNOWLEDGMENT

This work has been supported in part by the Joint Design
of Advanced Computing Solutions for Cancer (JDACS4C)
program established by the U.S. Department of Energy
(DOE) and the National Cancer Institute (NCI) of National
Institutes of Health. This work was performed under the

auspices of the U.S. Department of Energy by Argonne
National Laboratory under Contract DE-AC02-06-CH11357,
Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344, Los Alamos National Laboratory un-
der Contract DE-AC5206NA25396, and Oak Ridge National
Laboratory under Contract DE-AC05-00OR22725.

The authors wish to thank Valentina Petkov of the Surveil-
lance Research Program from the National Cancer Institute
and the SEER registry at Connecticut, Hawaii, Kentucky,
New Mexico and Seattle for the pathology reports used in
this investigation.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Labora-
tory, which is supported by the Office of Science of the
U.S., Department of Energy under Contract No. DE-AC05-
00OR22725.

REFERENCES

[1] Thomas J Smith, Nancy E Davidson, David V Schapira, Eva Grun-
feld, Hyman B Muss, Victor G Vogel III, and Mark R Somerfield.
American society of clinical oncology 1998 update of recommended
breast cancer surveillance guidelines. Journal of Clinical Oncology,
17(3):1080–1080, 1999.

[2] Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer
statistics, 2016. CA: a cancer journal for clinicians, 66(1):7–30, 2016.

[3] Bradford W Hesse, David Ahern, and Ellen Beckjord. Oncology
informatics: using health information technology to improve processes
and outcomes in cancer. Academic Press, 2016.

[4] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[5] Yoon Kim. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882, 2014.

[6] Sebastian Gehrmann, Franck Dernoncourt, Yeran Li, Eric T Carlson,
Joy T Wu, Jonathan Welt, John Foote Jr, Edward T Moseley, David W
Grant, Patrick D Tyler, et al. Comparing rule-based and deep learning
models for patient phenotyping. arXiv preprint arXiv:1703.08705,
2017.

[7] John Qiu, Hong-Jun Yoon, Paul A Fearn, and Georgia D Tourassi.
Deep learning for automated extraction of primary sites from cancer
pathology reports. IEEE Journal of Biomedical and Health Informat-
ics, 2017.

[8] Johan AK Suykens and Joos Vandewalle. Least squares support vector
machine classifiers. Neural processing letters, 9(3):293–300, 1999.

[9] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information processing & management,
24(5):513–523, 1988.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[11] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured
pruning of deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 13(3):32, 2017.

[12] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. Pruning convolutional neural networks for resource efficient
transfer learning. arXiv preprint arXiv:1611.06440, 2016.

[13] MB Adamo, LA Dickie, and JL Ruhl. SEER Program Coding and
Staging Manual 2016. Bethesda, MD: National Cancer Institute, 2016.

[14] Russell Reed. Pruning algorithms-a survey. IEEE transactions on
Neural Networks, 4(5):740–747, 1993.

[15] Jakub Piskorski and Roman Yangarber. Information extraction: past,
present and future. In Multi-source, multilingual information extrac-
tion and summarization, pages 23–49. Springer, 2013.

[16] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[17] François Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.

[18] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016.


