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Abstract—In this paper, we propose networked microgrids to
facilitate the integration of variable renewable generation and
improve the economics and resiliency of electricity supply in
microgrids. A new concept, probability of successful islanding
(PSI), is used to quantify the islanding capability of a microgrid
considering the uncertainty of renewable energy resources and
load, as well as exchanged power at the point of common
coupling. With the goal of minimizing the total operating cost
while preserving the user-specified PSI, a chance-constrained
optimization problem is formulated for the optimal scheduling of
both individual microgrids and networked microgrids. Numerical
simulation results show significant savings in electricity cost can
be achieved by the proposed networked microgrids without com-
promising grid resiliency. The impact of correlation coefficients
among the renewable generation and loads of adjacent microgrids
has been studied as well.

Index Terms—Networked microgrids, optimal scheduling,
probability of successful islanding, economics, resiliency.

NOMENCLATURE

The main symbols used in this paper are defined below.
Others will be defined as required in the text. A A indicates
forecast error for the variable and " indicates the forecast value.

A. Indices

n Index of microgrids, running from 1 to Ny,.

i Index of dispatchable generators, running from 1
to Ng.

J Index of demands, running from 1 to Np.

b Index of battery storage devices, running from 1
to Np.

t Index of time periods, running from 1 to Np.
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m Index of energy blocks offered by generators,
running from 1 to Nj.

l Index of probability intervals, running from 1 to
Np.

B. Variables
1) Binary Variables:

Uiy 1 if unit ¢ is scheduled on during period ¢ and O
otherwise.
uS, ub 1 if battery b is scheduled charging/discharging

during period ¢ and O otherwise.
Binary indicators of probability interval [ during
period t.

U 1D
btl’ btl

2) Continuous Variables:
pit (M) Power output scheduled from the m-th block of
energy offer by dispatchable unit 7 during period
t . Limited to pi32* (m).

P; Power output scheduled from dispatchable unit ¢
during period ¢.

PFCC Exchanged power at PCC during period ¢.

Pb(g,PZB Charging/discharging power of battery b during
period t.

Py Output power of battery b during period ¢.

SOChy State of charge of battery b during period t.

RY, RY  Up- and down-spinning reserve of unit i during
period t.

R}, Ry, Up- and down-spinning reserve of battery b during
period t.

PSI, Probability of successful islanding during period
t.

C. Constants

Ait (M) Marginal cost of the m-th block of energy offer
by dispatchable unit ¢ during period t.

Cht Degradation cost of battery b during period ¢.

APCC Purchasing/selling price of energy from/to distri-
bution grid during period ¢.

A; Operating cost of dispatchable unit ¢ at the point
of Pmin,

U D

Cost of up- and down-spinning reserve of unit ¢
during period ¢.
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QL Qb Cost of up- and down-spinning reserve of battery
b during period ¢.

pmax | pmin Maximum/minimum output of DG .

PY. PPV Wind turbine/PV power output during period ¢.
P; Power consumption scheduled for demand j dur-

ing period ¢.

ANP Net demand forecast error of microgrid during
period t.

Lty Ot Mean and standard deviation of ANtD.

PSIred PSI requirements of microgrid operators.

PbC max | pDmax Maximum  charging/discharging power of

battery b.

SOCHa>* SOCH™ Maximum/minimum state of charge of
battery b during period ¢.

77,?, np Battery charging/discharging efficiency factor.

At Time duration of each period.

T Amount of time available of DGs and batteries to
ramp up/down their output to deliver the reserve.

I. INTRODUCTION

The benefit of using a microgrid for local power relia-
bility during grid outages and emergencies is well known.
Networked microgrids, defined as an aggregation of intercon-
nected adjacent microgrids, offer a new, more efficient and re-
silient alternative to traditional individual microgrids. Because
of the benefits they offer, networked microgrids have attracted
growing attention in recent years [1]-[5]. Normally, a two-layer
energy management strategy is used for networked microgrid
scheduling in distribution systems. In the inner layer, each
microgrid schedules its own generation resources and loads,
while outer layer optimization coordinates the power sharing
among all microgrids. From a control perspective, P-Q based
primary control with droop characteristics for facilitating en-
ergy transactions of the microgrids and maintaining voltage
and frequency stability under disturbances is presented in [6].

In the existing literature, research on networked microgrids
focuses primarily on optimal energy transaction strategies to
meet economic objectives. However, the resiliency of micro-
grids and networked microgrids is rarely considered as an
aspect of optimization. In fact, the most important feature of a
microgrid is its ability to separate itself from the distribution
utility during outages and continue to supply all or selected
critical loads in its own islanded portion. Therefore, the eco-
nomic benefits of networked microgrids cannot be validated
without considering their system resiliency.

In view of the shortcomings of existing networked microgrid
scheduling strategies, this paper develops a new schedul-
ing strategy for both networked microgrid and independent
microgrid operation considering probabilistic constraints of
successful islanding. Considering the uncertainty of renewable
generation and power at the point of common coupling (PCC),
a new concept— probability of successful islanding (PSI)—
is proposed to indicate the probability that a microgrid is
maintaining adequate up- and down-spinning reserve to meet
local demands and accommodate local renewable generation
after instantaneously islanding from the main grid in [7].

The networked microgrids and independent microgrids are
scheduled with specified PSI. The main contributions of this
study are as follows:

1) Validates the benefit of economics and resiliency of
networked microgrids compared with independent mi-
crogrids, and

2) Performs a sensitivity analysis to demonstrate the im-
pacts of correlation coefficients among the renewable
generation and loads of adjacent microgrids.

This paper is organized as follows. In Section II, a micro-
grid scheduling strategy with chance-constrained islanding
capability is presented. The model is expended to networked
microgrids in Section III. A case study and conclusions are
provided in Sections IV and V, respectively.

II. MICROGRID SCHEDULING WITH
CHANCE-CONSTRAINED ISLANDING CAPABILITY

A. Component Models

The microgrid considered in this paper consists of dis-
tributed generators (DGs; e.g., diesel generators, microtur-
bines, and fuel cells), renewable generation (e.g., wind turbines
and photovoltaic [PV] panels), energy storage (e.g., battery
systems), and local demands. The distributed generators are
considered dispatchable units that can be controlled by a
microgrid master controller to provide both power and reserve.
Depending on the unit type, dispatchable units are subject to
various constraints, such as capacity limits, minimum power
output limits, ramping rates, and minimum on/off times. In
contrast, renewable generators, such as wind turbines and PV
panels, are considered nondispatchable units that depend on
the meteorological conditions of wind speed, temperature,
and solar irradiance. Thus, renewable generation is subject
to variability. Extensive research has been done on wind and
PV power forecasting [8], [9]. For simplicity, we assume that
both wind and PV power forecast error can be modeled as
independent, normally distributed random variables [10]. The
load forecast error is assumed to follow a normal distribution
and to be independent of renewable generation forecasts [11].
Because of the limited sizes of microgrids, relatively large
standard deviations are used for both renewable generation
and load forecast errors.

B. Problem Formulation

This subsection describes the model of a microgrid schedul-
ing strategy with chance-constrained islanding capability. In
the context of microgrids with dispatchable and undispatch-
able generation and electrical energy storage (e.g., battery)
integration, the objective is to minimize the total operating
costs—including generation and spinning reserve costs—of
local resources as well as the cost of purchasing energy from
the main grid. The objective function is shown in Eq. (1).
Specifically, the first and second lines are the fuel costs of the
DGs (including DG startup costs); the third line is the energy
purchasing/selling cost/benefit from the distribution grid; the
fourth line is the battery degradation cost; and the fifth and
sixth lines are the costs of up- and down-spinning reserve from



both DGs and batteries. All terms are in mixed-integer linear
form except the DG startup cost (line 2), which can be recast
into mixed-integer linear form as in [12].
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The objective function is subject to the following constraints:

Z pir(m) + uyg P™™ Vi, Vi )

0< pith) < p*(m) Vi, Vt,Vm (3)
PPy < Py < PPy Vi, Vi 4)
Ry, < P, — Py Vi, Vi (5)
RY < wuyRY™7 Vi, Vi (6)

RE < Py — P™y, Vi, Vit 7)
RY <wuyRP™7 Vi, Vit (8)

0 < PS < PO™uS, Vb, Vit 9)
0< PR < PP™ub, Wb, vt (10)

uS, +up, <1 Vb, Vit (11)

SOCy = SOCy -1 + Piny At — Pgim Vb, Vt (12)

SOCHN < SOCy, < SOCH™" b, it (13)

Py = PP —PS b, vt (14)

Ry, < PP™ _ Py, Wb, Vi (15)

RY, <P (SOCy — SOCE™) /7 Wb, ¥t (16)

RD < PO™™ 4 Py Vb, Vi (17)

RD < 1/5$ (SOCE=> — SOC) /7 Vb, ¥t  (18)
NG Py + PV 4 PPV 4 PPCC 4 N5 PR

— Y08 PS =00 Py Vt (19)

ffR?fZR < PPCC L ANP < ZR +ZR vt

=1 i=1 b—1 (20)

Z AP — APV — APFV Vit (21)

For DGs, Egs. (2) and (3) approximate the production costs
of DGs by blocks [13]. Constraint (4) forces the output of DG
to be zero if it is not committed. The up-spinning DG reserve
is limited by the difference between their maximum capacity
and current output in Eq. (5) and its ramping rate in Eq. (6).
Similarly, the down-spinning reserve constraints are included
in Egs. (7) and (8). For batteries, Egs. (9) and (10) are the
maximum charging/discharging power of a battery. These two
states are mutually exclusive, which is ensured by Eq. (11).
The battery state of charge (SOC) is defined by Eq. (12) and
the limit of the SOC is enforced by Eq. (13). The output power
of a battery is represented in Eq. (14). Similar to the case for
DGs, the up-spinning reserve of a battery is constrained by
the difference between its current SOC and minimum SOC in
Eq. (15) and the difference between its maximum discharging
power and current output in Eq. (16). In the same way, the
down-spinning reserve constraints of a battery are included
in Egs. (17) and (18). The energy balance is enforced by
Eq. (19). The spinning reserve requirement is Eq. (20), which
guarantees adequate spinning reserve for successful islanding
of the microgrid considering the forecast errors of demand,
wind power, and PV power. The net demand forecast error
ANP is formulated in Eq. (21). Additionally, each unit or
demand is subject to its own operating constraints, such as
minimum up/down time, initial condition, and so on. See [14]
for details about the formulations of these constraints.

As mentioned in subsection II-A, we assume that
wind and PV power forecast error, as well as demand
forecast error, can be modeled as independent, normally
distributed random variables. Thus, the net demand
forecast error  ANP also follows normal distribution,

, ANP ~ N(ut, of). The PSI can be expressed as
Eq (22). The microgrid is considered as successfully
islanded if the net demand forecast error AN D c
[_ ZNG RD NB RD pPCC ZNG RU ZNB RU
—PFCC], where ZNG RY + Zé\fl Ry, — PFCC stands
for the redundant up-spinning reserve after islanding,
and —YN¢ RD — SN RD PPCC  stands  for
the negative of the redundant down-spinning reserve
after islanding. Thus, the PSI can be -calculated by
integrating the probability distribution curve of ANP €
ZNG RD lly\flR PPCC’ ZNG RU 4 Zé\fl R[I)Jt

—Ptpcc} , for each time interval .
Ng Np
P (ZRE ~ > Rp - PfO° < ANP
i=1 b=1
Ng Np
U U PCC
S
i=1 b=1

The formulation of PSI considers probability distributions
of forecast errors of wind, PV, and loads. A multi-interval
approximation of PSI is proposed in [7], which reformulates
PSI into a mixed-integer format. Thus, the chance-constrained
programming model for microgrid scheduling could be solved

PSI, =

(22)
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Fig. 1: Example of networked microgrids

by mixed-integer linear programming. Finally, optimal micro-
grid scheduling with chance-constrained islanding capability
can be formulated by substituting Eqs. (20) and (21) with the
linearized format of Eqgs. (22) and (23).

PSI, > PSI™d ¢ (23)

The proposed chance-constrained programming model ex-
plicitly guarantees that the microgrid has adequate flexibility
to meet local demand and accommodate local renewable
generation after instantaneously islanding from the main grid
with a certain probability specified by the microgrid operator.
Thus, the resiliency of the electricity supply of the microgrid
is clearly defined.

III. NETWORKED MICROGRID SCHEDULING WITH
CHANCE-CONSTRAINED ISLANDING CAPABILITY

Traditionally, each microgrid is an autonomous entity and
schedules its own generation resources and loads to maximize
its own benefit. When the utility grid is faulted, each microgrid
will be disconnected and will perform as an autonomous
island. Although multiple microgrids may be physically con-
nected, the scheduling of the various microgrids is completely
independent. On the other hand, interconnected adjacent mi-
crogrids can be aggregated or networked at the control and
communication layer. An example of a set of four networked
microgrids is shown in Fig. 1. In grid-connected mode, the
central emergency management system will schedule the four
microgrids as a whole. When the upstream utility grid is
faulted, the two switches will be opened and the four mi-
crogrids will form a single island. Networking the adjacent
microgrids is expected to result in better economics and
resiliency compared with four independent microgrids.

In this section, we expand the resiliency-constrained
scheduling model of a single microgrid proposed in Section
IT to the case of networked microgrids. First, we need to
substitute PFCC with the summation of PCC power for all
microgrids, i.e., ijfl PPCC where PFCCis the exchanged
power at the PCC for microgrid n at time t. Second, we
need to formulate the PSI of the networked microgrids, As

a precondition, the probability distribution of the net demand
forecast error ANP needs to be calculated. Just as in the
previous section, we assume both wind and PV power forecast
error and demand forecast error in a microgrid can be modeled
as independent, normally distributed random variables with
zero mean. Because of the geographic proximity of networked
microgrids, the wind power forecast errors of any two micro-
grids are correlated. Taking a networked microgrid consisting
of three microgrids, for example, the mean of the total wind
power forecast error is zero, and the deviation of the total wind
power forecast error can be calculated according to Eq. (24),
where o}/ is the standard deviation of wind power forecast
error in microgrid n and p;’ , is the correlation coefficient
between the wind power forecast errors of microgrids n and

T
w w w w
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The standard deviation of the total PV power forecast error
and total demand forecast error can be calculated similarly.
Since the wind and PV power forecast, as well as the demand
forecast, are independent, the total net demand forecast error of
the networked microgrids AN/ follows a normal distribution,
ie, ANP ~ N (u, o), where ofcan be easily calculated
based on the result of Eq. (24). With these two modifications,
the resiliency-constrained scheduling model of a single micro-
grid is adapted to handle the resiliency-constrained scheduling
of a set of networked microgrids.

IV. CASE STUDIES

To test the proposed networked microgrid scheduling strat-
egy with chance-constrained islanding capability, we built a
test system. Three modified microgrids at Oak Ridge National
Laboratory’s Distributed Energy Control and Communication
(DECC) laboratory were connected on the same bus as in
Fig. 1. The three microgrids were identical. All parameters
for generators, forecast wind power, PV power, and demand,
as well as the day-ahead market prices, can be found in
[7]. The forecast errors of wind power and PV power were
assumed to be a Gaussian distribution with zero mean and
a 15% standard deviation. The demand forecast error was
assumed to be a Gaussian distribution with zero mean and
a 3% standard deviation. The analysis was conducted over a
24-hour scheduling horizon, and each time interval was set at
1 hour. All numerical simulations were coded in MATLAB
and solved using the MILP solver CPLEX 12.2. With a pre-
specified duality gap of 0.1%, the running time of each case
was less than 10 seconds on a 2.66 GHz Windows-based PC
with 4 GB of RAM.

A. Comparing the Costs of Networked Microgrids and Inde-
pendent Microgrids at the Same PSI

To show the benefit of networked microgrids, the total
operating costs of a networked set of microgrids and of in-
dependent microgrids under the same resiliency requirements,
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Fig. 3: Comparison of costs of networked and independent
microgrids with different levels of PSI requirements

PSI**? are compared in Fig. 2. As can be seen, the operating
costs of the networked microgrids are always lower than
those of the independent microgrids under the same resiliency
requirements. As the resiliency requirement PSI*? increases,
the economic benefit of the networked microgrids becomes
more significant. The economic benefit of the networked
microgrids decreases as the microgrids become more corre-
lated, i.e., the correlation coefficients between the different
microgrids increase. Nevertheless, the economic benefit of a
networked microgrid is validated.

B. Comparing the PSI of Networked Microgrids and Indepen-
dent Microgrids at the Same Cost

To show the benefit of networked microgrids in improving
system resiliency, the costs of networked and independent
microgrids with different levels of PSI requirements are com-
pared in Fig. 3. As can be seen, at the same operating cost, the
networked microgrids always have a higher resiliency. This
effect is much more obvious when the microgrids are less
correlated. This result clearly validates the resiliency benefit
of networked microgrids.

V. CONCLUSIONS

In this study, we modified the resiliency-constrained
scheduling model of a single microgrid to handle the case of
a set of networked microgrids. The model explicitly defines
the resiliency of a single microgrid and a set of networked
microgrids considering their islanding situations and forecast
uncertainties. Numerical simulations validated the benefits of
networked microgrids, compared with independent microgrids,
in terms of of economics and resiliency . In addition, the
impacts of correlation coefficients among the renewable gen-
eration and loads of adjacent microgrids were studied.
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