
Continuous-Energy Monte Carlo on GPUs in Shift1

Steven P. Hamilton, Thomas M. Evans, and Stuart R. Slattery

Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN
hamiltonsp@ornl.gov, evanstm@ornl.gov, slatterysr@ornl.gov

INTRODUCTION

Continuous-energy Monte Carlo offers the most accurate
solutions to the radiation transport equation. However, the
high computational cost associated with Monte Carlo methods
often leads to the need for large-scale computing resources in
order to perform simulations of physical systems of interest.
To deliver high computational performance with lower energy
requirements, most supercomputers have turned to GPUs or
other vectorized computing architectures for the majority of
their capability. For this reason, there has been interest in
recent years in developing algorithms to perform Monte Carlo
transport on GPUs.

Vectorized Monte Carlo was first introduced in the 1980s
in response to early vector computers [1]. These methods had
largely fallen out of favor until renewed interest in recent years
spurred by the introduction of GPUs for scientific comput-
ing. To date, the only studies considering continuous-energy
Monte Carlo neutron transport on GPUs involve the WARP
code [2, 3]. While these studies offer considerable insight into
the challenges associated with performing transport on GPUs,
the implementation lacks many features that are necessary for
a production neutron transport solver. In particular, (1) some
cross section mechanisms such as S (α, β) and probability ta-
bles are not implemented, (2) all operations are performed in
single- rather than double-precision arithmetic, (3) no variance
reduction is implemented, and (4) only a minimal set of tal-
lies is supported (no cell- or mesh-based tallies are available).
Other recent studies have provided algorithmic comparisons
for multigroup transport problems [4, 5] without considering
the continuous-energy problem.

This paper describes the implementation and preliminary
numerical results for continuous-energy Monte Carlo on GPUs
within the Shift radiation transport code [6]. This paper ex-
pands on previous studies in the literature in several areas. To
our knowledge, it is the first study in the literature describing
continuous-energy neutron transport on GPUs within a pro-
duction transport package. The full set of features available
in the GPU solver will be described in the next section. In
addition, this is the first study offering a performance compari-
son of CPU and GPU implementations within the same code
base. Ref. [3] compared GPU performance in WARP with
CPU implementations in other code bases having substantially

1Notice: This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for US govern-
ment purposes. DOE will provide public access to these results of fed-
erally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

different feature sets. Finally, this is the first study comparing
history- and event-based implementations of continuous-energy
transport on GPUs.

GPU ALGORITHMS IN SHIFT

Both history-based and event-based GPU algorithms have
been implemented in the Shift radiation transport code [6]
using Nvidia’s CUDA programming language [7]. The full
set of cross section evaluations present in Shift are available,
including standard tabular interpolation, S (α, β), probability
tables, and on-the-fly elastic scattering. Both fixed source and
k-eigenvalue (criticality) problem modes are available. Avail-
able geometry options are a Cartesian mesh geometry and a
reactor toolkit (RTK) geometry optimized for pressurized water
reactors. The standard version of Shift additionally supports
SCALE and MCNP5 geometries. Support for arbitrary geo-
metric configurations within the GPU solver using the SCALE
input specification is planned. In addition to a k-effective tally,
energy-integrated flux and reaction rate tallies are available over
spatial cells (or collections of cells) as well as on an overlaid
Cartesian mesh. As with the standard implementation in Shift,
these tallies all use path-length estimators. Shannon entropy
and spatial moment tallies can be used as diagnostics of fission
source convergence for eigenvalue calculations.

One significant deviation from Shift’s standard implemen-
tation is the calculation of tally statistics. The history-based
variance calculation used in the CPU version of Shift requires
non-trivial memory allocations for each individual particle his-
tory. Due to the large number of particles that are active at one
time in the GPU algorithm, batch statistics were determined to
be a more appealing approach. The OpenMC [8] and MC21
[9] codes always use batch statistics in their calculations, so
the switch to batch statistics was not deemed to be a substantial
sacrifice. Implicit capture (survival biasing) combined with
Russian roulette is used for variance reduction. The GPU im-
plementation shares a significant amount of code with the CPU
version of Shift. Most of the pre- and post-processing steps,
including all input/output and tally processing capabilities, are
shared between the two solvers. Therefore, the total amount of
code that had to be rewritten or duplicated to support the GPU
algorithms represents a very small percentage of the overall
code base in Shift.

In the history-based algorithm, each computing thread is
assigned to transport a separate particle history for its entire
lifetime, closely mirroring the approach used in most CPU-
based Monte Carlo codes. The history-based algorithm in this
study is a straightforward conversion of the CPU algorithm in
Shift to run on GPUs. A few simplifications were made, such
as reducing explicit caching of macroscopic and microscopic
cross section data in order to reduce memory usage. These
simplifications only impact the efficiency and not the accuracy



of the solver. Furthermore, differences in the execution model
on the GPU indicate that optimizations that improve perfor-
mance on the CPU may not be appropriate on the GPU. On
the GPU, the history-based method contains a single large ker-
nel (function that is executed on the GPU) that performs all
aspects of the transport process. This kernel is is long-lived,
as it must continue until all particles have been removed from
the system. Variability in the types of operations that various
particles are performing at a given time as well as variability
in the total length of different particle histories leads to thread
divergence, where threads on the same vector unit on the pro-
cessor are trying to perform different operations. This thread
divergence leads to reduced efficiency because only a subset
of the available threads can be performing useful work at one
time.

In an event-based algorithm, the transport process is per-
formed one step at a time by collecting groups of particles per-
forming the same type of operation or event. The event-based
algorithm closely follows the approach described in Ref. [5].
In particular, three event types are considered: (1) movement
of a particle to its next location (either geometric boundary or
collision site), (2) processing of collisions, and (3) creation
of new particles from the source. The source event type was
introduced in Ref. [5] as an approach to increase occupancy on
the GPU while limiting the number of particles that are active at
one time. Each kernel in the history-based algorithm only per-
forms a single operation; the kernels are therefore much smaller
than in the history-based algorithm. Collecting particles into
different event types before executing kernels allows for much
lower thread divergence relative to the history-based algorithm.
However, the process of assigning particles to different events
introduces some extra computation and movement of data.

The functions that perform cross section evaluations, geom-
etry tracking, and tallying are fully shared between the history-
and event-based algorithms in Shift. Due to the small number
of event types used, the total difference between the history-
and event-based implementations is only a few hundred lines
of code. The event-based algorithm described in Ref. [2] con-
tained a much larger number of events and would therefore
likely require more substantial code modifications in order to
additionally support a history-based implementation. Similar
to our event-based method, the approach described in Ref. [4]
contains three event types, although the particular events are
slightly different.

RESULTS

To evaluate algorithmic performance, the simulation of
a small modular reactor (SMR) core is considered. The core
design is loosely based on the NuScale reactor design and con-
tains 37 fuel assemblies of varying enrichment. Details of the
geometry and materials can be found in Ref. [10]. A Carte-
sian mesh tally is applied with both energy-integrated flux and
the fission reaction rate. The mesh for this tally contains 200
cells in each of the x and y directions, and 10 cells in the z
direction. The CPU architecture for this study is two eight-core
Intel Xeon E5-2630 v3 CPUs operating at 2.4 GHz. The GPU
architectures considered are the NVIDIA Tesla K40 GPU and
the NVIDIA Tesla P100 GPU. Table I displays the particle

TABLE I. Particle tracking rate for SMR problem in thousands
of neutrons per second.

Tracking rate (kn/s)

Architecture Algorithm Inactive Active

Xeon CPU (16 core) History 58.4 50.5
K40 GPU History 21.5 19.4
K40 GPU Event 39.8 36.5
P100 GPU History 59.1 51.9
P100 GPU Event 115.2 96.8

tracking rate achieved using all 16 CPU cores (executing using
16 MPI tasks), as well as the history- and event-based GPU
methods, on the two different GPU models. These calculations
used 3.2 million neutrons per cycle for 10 cycles (5 inactive
and 5 active). While the number of cycles here is insufficient to
appropriately converge the fission source or produce accurate
statistics, it is sufficient to illustrate the performance character-
istics of the methods. On both GPUs, the performance of the
event-based algorithms significantly outperforms the history-
based approach. This is in contrast to the results for multigroup
transport in Ref. [5], where the history-based algorithm offers
far better performance than the event-based approach. The rea-
son for this discrepancy is likely due to a variety of factors, but
we posit that the primary reason is that the increased complex-
ity of computing cross sections in the continuous-energy ap-
proach dramatically increases the amount of thread divergence.
Because the event-based algorithm naturally reduces thread
divergence, it is more successful in the continuous-energy case.
On the P100 GPU, the event-based method achieves a particle
tracking rate approximately double that of the 16 core CPU,
indicating that a single GPU provides the effective capability of
nearly 32 CPU cores. As expected, the particle tracking rate is
slightly lower during the active cycles due to the increased cost
of performing tallies. The percentage by which the tracking
rate decreases during the active cycles is approximately the
same on the CPU and GPU.

Figure 1 shows the tracking rate as a function of particle
count for the CPU and GPU versions of Shift for the same
SMR problem. For both GPU architectures, the tracking rate
for the history- and event-based algorithms is approximately
the same for small particle counts. However, as the number
of particles is increased, the tracking rate for the event-based
method increases substantially, while the rate for the history-
based method is largely flat. This indicates that a larger number
of particles is necessary to saturate the GPU in the event-based
method. This effect is far more pronounced on the newer P100
GPU than on the K40 GPU. It is expected that this trend will
become even more severe on future GPU architectures.

CONCLUSIONS AND FUTURE WORK

This effort implemented a GPU-enabled continuous-energy
Monte Carlo particle transport solver in the Shift code using the
CUDA programming language. This solver currently supports a
significant number of the most commonly used features within
Shift. History- and event-based algorithms are available, with
initial performance testing showing that the event-based method



105 106

Number of histories

0

20

40

60

80

100
Tr

ac
ki

ng
 ra

te
 (k

n/
s)

16 Core CPU
K40 GPU - History
K40 GPU - Event
P100 GPU - History
P100 GPU - Event

Fig. 1. Active cycle particle tracking for SMR core as a function
of history count for different architectures and algorithms.

is capable of delivering nearly twice the performance of the
history-based algorithm. This event-based algorithm achieves
almost twice the particle tracking rate on an NVIDIA P100
GPU relative to a 16-core CPU.

A drawback to the present implementation is that larger
particle counts per GPU are necessary in order to achieve peak
performance. Ongoing work seeks to develop approaches to
reduce the number of active histories needed to fully occupy the
GPU. An additional area of ongoing research is the implemen-
tation of a general-purpose geometry package to supplement
the current reactor-optimized geometry implementation. Future
work will provide the domain decomposition and hybrid Monte
Carlo-deterministic methods currently available in Shift.

ACKNOWLEDGMENTS

This research was sponsored by the Laboratory Directed
Research and Development Program of Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the US Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.
This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Lab-
oratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

REFERENCES

1. F. BROWN and W. MARTIN, “Monte Carlo Methods
for Radiation Transport Analysis on Vector Computers,”
Progress in Nuclear Energy, 14, 3, 269–299 (1984).

2. R. BERGMANN and J. VUJIC, “Algorithmic Choices
in WARP – A Framework for Continuous Energy Monte
Carlo Neutron Transport in General 3D Geometries on
GPUs,” Annals of Nuclear Energy, 77, 176–193 (2015).

3. R. BERGMANN, K. ROWLAND, N. RADNOVIĆ,
R. SLAYBAUGH, and J. VUJIĆ, “Performance and ac-
curacy of criticality calculations performed using WARP –

A framework for continuous energy Monte Carlo neutron
transport in general 3D geometries on GPUs,” Annals of
Nuclear Energy, 103, 334–349 (2017).

4. R. C. BLEILE, P. S. BRANTLEY, M. J. O’BRIEN, and
H. CHILDS, “Algorithmic Improvements for Portable
Event-Based Monte Carlo Transport Using the NVIDIA
Thrust Library,” Transactions of the American Nuclear
Society, 115, 535–538 (2016).

5. S. HAMILTON, S. SLATTERY, and T. EVANS, “Multi-
group Monte Carlo on GPUs: Comparison of history- and
event-based algorithms,” Annals of Nuclear Energy, 113,
506–518 (2018).

6. T. PANDYA, S. JOHNSON, T. EVANS, G. DAVIDSON,
S. HAMILTON, and A. GODFREY, “Implementation, Ca-
pabilities, and Benchmarking of Shift, a Massively Parallel
Monte Carlo Radiation Transport Code,” Journal of Com-
putational Physics, 308, 239–272 (2016).

7. “CUDA C Programming Guide,” Tech. Rep. PG-02829-
001_v7.5, NVIDIA (2015).

8. P. ROMANO and B. FORGET, “The OpenMC Monte
Carlo particle transport code,” Annals of Nuclear Energy,
51, 274–281 (2013).

9. D. GRIESHEIMER ET AL., “MC21 v.6.0 – A continuous-
energy Monte Carlo particle transport code with integrated
reactor feedback capabilities,” Annals of Nuclear Energy,
82, 29–40 (2015).

10. P. ROMANO ET AL., “Monte Carlo full core performance
baseline,” Tech. Rep. ECP-SE-08-36, Exascale Computing
Project (2017).


