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ABSTRACT

Recent developments in cutting-edge live microscopy and image analysis provide a unique
opportunity to systematically investigate individual cell’s dynamics as well as simula-
tion-based hypothesis testing. After a summary of data generation and analysis in the ob-
servation and modeling effortsrelated to C. eegansembryogenesis, we develop a systematic
approach to model the basic behaviors of individual cells. Next, we present our ideas to
modd cell fate, division, and movement using 3D time-lapse images within an agent-based
modeling framework. Then, we summarize preliminary result and discuss effortsin cell fate,
division, and movement modedling. Finally, we discuss the ongoing efforts and future direc-
tions for C. elegans embryo modeling, including an inferred developmental landscape for
cell fate, a quasi-equilibrium model for cell division, and multi-agent, deep reinforcement
learning for cell movement.

1. INTRODUCTION

Caenorhabditis élegansis a mode organism widely studied in developmental biology. It is the first
multicellular organism with known and invariant lineage [1]. In aroom temperature, its embryos take on-
ly 13 hours to develop from 1 to 558 cells. C. @egans embryos are transparent and cylinder-shaped with
roughly 50 um long and a diameter of 30 um, which is easily accessible by microscopy. Genetic perturba-
tion experiments can be as simple as feeding them with commercially available bacteriato target any gene.
With all these ad-vantages, C. éegans alows us to ask various bio-logical questions by generating
large-scale microscopic data. We acquire two-channel 4D confocal images of live embryos on a Zeiss Axio
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Observer microscope frame with Zeiss 40X objective. The embryos are genetically modified with one fluo-
rescence protein marking histone for tracking nuclei, and with an-other fluorescence protein providing
additional biological information, such as protein localization and promoter activity. In our live-imaging
system, we can perform three batches of experiments per day with 20 - 30 embryos per batch. During im-
age acquisition, embryos are shot every 1 minute and in 30 dicesto achieve high temporal and spatia res-
olution. In total, about 9000 two-channe images can be accumulated daily, each of which contains 30 dlic-
es of double 512 * 512-pixel data. We have developed efficient algorithms to automatically trace every sin-
gle cell over the course of early embryogenesis [2]. More importantly, powerful computational algorithms
are needed to concentrate and extract information from the huge volumes of data, which is particularly
challenged because many biological patterns are not intuitive to be formatted into a computer problem. A
picture from a previous publication [3] is used here (Figure 1) to illustrate the data variety and
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Figure 1. An illustration of data generation and usage in experiments. (a) Data collection strategy.
(b) Heat map showing how many genes were expressed differently. (c) Expression patterns orga-
nized by hierarchical clustering. The original graph was published in [3].
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complex in thelaboratory experiments.

To facilitate the examination of cellular decisions in the developing nervous system of the nematode
C. degans a consortium of biologists, computer scientists, and microscopists have worked together to
create a novel systems-level resource for global understanding of C. éegans embryogenesis. A dynamic
system, named Worm-GUIDES was developed [4] to analyze the C. éeganslineage tree information on
wild-type embryos or the embryos after gene mutation & manipulation. Worm-GUIDES also allow access
to and visualize the connectome, the complete neural connectivity record which is uniquely available for
C. élegans More technical details on algorithm and applicationsrelated to WormGUIDES can be found in
reference[5, 6]. Figure 2 shows major functions and data streams used in WormGUIDES

2. AN OBSERVATION-DRIVEN ANALYSIS AND SIMULATION SYSTEM
2.1. Agent-Based Modeling Framework with Direct Data Assimilation

The massive 3D time-lapse live microscopy images alow biologists to systematically track individual
cells in complex tissues and quantify celular behavior over extended time windows. Therefore, it is not
surprise that agent-based modeling (ABM) approach was adopted to study the embryogenesis. In an ABM
framework, an individua cell can be modeled as an agent that contains a variety of information on itsfate,
size, division time, and group information. For an early stage C. eganssimulation, the cell fate, division,
and movement can be directly derived from predefined observation datasets or represented by mathemat-
ical models (see the following sections). An example of thiskind of agent-based model can befound in [7].

2.2. Cell Developmental Landscape for Cell Fate Modeling

C. deganshas a small number of somatic cells whose position and morphology are aimost invariant
from animal to animal. Because C. @egansis virtualy transparent, cells can be identified in live animals
using asimple bright-field microscopy technique, Nomarski differential interference contrast (DIC), or by
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Figure 2. The major functions and data streams of Worm GUIDES The original picture was pub-
lished in [4].
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expression of transgenic fluorescent reporter genes [8]. Snce the 3D time-lapse imaging now used for im-
aging of metazoan embryo-genesis in different model organisms and tracking of individual cells, we can
now directly track the whole cell lineage of C. éegans The information can be directly used for the cdll
fate modeling of wild-type C. éegans Furthermore, by combining automated lineage with tissue-maker
expression-based assessment of cell types, we have recently shown that progenitor cell fates can be syste-
matically assayed [9]. With the help of sequencing techniques, we can measure the mRNA content of indi-
vidual cells that provide a more robust assay of cdl types than using limited markers, with the apparent
scalability to many cells. This research lead to a publication on how genes and gene networks shape the
regulatory landscape and drive cells through the different trajectories of differentiation. It also provides a
developmental landscape to model cell fate in complicated cases that involve gene mutation and manipu-
lation.

2.3. Physical Model for Cell Division

There are many efforts that look into the mechanics of metazoan cdl division using the C. éegans
embryo as a powerful model system [10]. For example, some study used RNA to control the protein turn-
over that in turn influence the cel division. These mechanics happened as very fine scale and in afinite
time period and our 3D time-lapse images are normally taken at much large time intervals (/. minutes).
Therefore, we assume that mechanics plays an important role in regulating embryonic development. Many
mathematical models have been developed to understand how the shape and growth of the embryo are
influenced by various mechanical forces[11-14].

2.4. Machine Learning Model for Cell Movement

Cdl movement in the early phase of C. éegansdevelopment is guided by gradients of various chemi-
cal signals, physical interactions at the cell-substrate interface and other mechanisms. If we treat the cellu-
lar movements as results of inherited and genetically controlled behavior regulated by inter- or intracellu-
lar signals, and these cell movements are also congtricted by the neighbor cells and the eggshell, then we
can use machine learning method to characterize the movement of individual cells within an embryonic
system from 3D time-lapse images directly. This approach can be used to modeling the cell movement
path in the early stage of C. éegans development where the regulation mechanisms are not well studied.
We further assume that movement path of an individual cell is an optimal path that a cell can use to mi-
grate under acollection of regulation networks and/or constraintswithin a physical environment. Then we
transform the cell movement problem into a path optimization problem constrained by observation and
predefined rules. An application of this approach to single cell direction movement is described in the fol-
lowing Section 3.3.

3. CURRENT RESULTS AND DISCUSSION
3.1. Cell Fate Representation for Wild-Type C. elegans

In our recently modedling efforts [7, 15], the lineage of wild-type C. eegans (shown in Figure 3) are
used to represent the fate of individual cells during the developmental process. Under these circumstances,
the fate and also the division time are al predefined from the observation datasets from the 3D time-lapse
liveimages.

3.2. A Simplified Physical Model for Cell Division

A simple physical model was first developed to model the cell division direction. In an early attempt,
we only consider three mgjor components. 1) The direction of dominant cell polarity in the dividing cell;
2) The composition of cell-cell squeezes direction of force between the dividing cell and its neighbors|[16];
and 3) The cell-eggshell squeeze direction force between the dividing cell and the eggshdll (if there exists)
[17]. As shown in Figure 4, we build a model for each part and get a number of samples. Each sample
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Figure 3. The illustration of lineage tree of wild type C. éegans The color on branches represent
when and where five tissue markers for pharynx (red), neuron (yellow), hypodermis (blue), muscle
(cyan) and gut (magenta) are expressed in wild-type animalsin a stereotypical manner. The division
timeisremoved in the picture for a simple presentation. The graph was originally published in [9].
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Figure 4. An illustration of the three components of the cell division direction and the actual obser-
vational direction.

contains three 3D vectors that represent the three directions. We assign each vector a coefficient K asthe
parameter in the combined model. We transfer it into an optimization problem by minimizing the sum of
the angle differences between the composition of the three simulation direction vectors and the actual ob-
servational division directions of cells.

3.3. Directional Single Cell Movement Simulation

In one recently work, we developed a method to model cdlular movement using time-lapse images
and deep neura networks to simulate the directiona single cell movement within an agent-based model-
ing framework [15]. Directional cell locomotion is critical in many physiological processes during C. e
gans development, including morphogenesis, structure restoration, and nervous system formation. We
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adopted deep neura networks to characterize the movement of individua cells within an embryonic sys-
tem from 3D time-lapse images directly. We tested our model through two scenarios within real develop-
mental processes, including a case of the anterior movement of the Cpaaa cell via intercalation, shown in
Figure 5. The left graph shows the observation data (live image) and the simulation results of Cpaaa cell
movement. Theright graph showsthe migration paths of Cpaaa. The smulation path isan average over 50
runs, and the shaded region indicates arange of one standard deviation greater/lessthan the average value.
Wefound that the movement path of Cpaaaisconsistent with that in the 3D time-lapse images.

4. ONGOING EFFORTS AND FUTURE DIRECTIONS
4.1. Inferred Developmental Landscape for Cell Fate Representation

In another previous work [9], a strategy to automatically infer mechanistic models of cell fate diffe-
rentiation based on live-imaging data was developed using genetic perturbation experiment. We use cdll
lineage tracing and combinations of tissue-specific marker expression to assay progenitor cell fate and
detect fate changes upon genetic perturbation. The anaysis of the 3D time-lapse live images using cell li-
neage tracing and tissue-specific marker led to the construction a model for how fate differentiation
progresses in progenitor cells and predict cell-specific gene modules and cdll-to-cell signaling events that
regulate the series of fate choices. By perturbing 20 genes in over 300 embryos, the experiments provided
insightsinto gene function and regulated fate choice, including an unexpected self-renewal. Asaresult, an
inferred mechanistic model of development was presented to elucidate how genes and gene networks
shape the regulatory landscape and drive cellsthrough the different trajectories of differentiation. Figure 6
shown apicture of an inferred developmental landscape for cdl fate through gene mutation and manipu-
lation of C. éegans embryos. This kind of developmental landscape then can be incorporated into our
modeling framework to predict the cell fate under specific gene manipulation cases.

4.2. A Quasi-Equilibrium Model for Cell Division

Currently, we are developing a novd, smplified modeling approach to account for mechanica interactions
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Figure 5. The observation and simulation result of Cpaaa cell movement (left) and the migration
path of Cpaaa cell movement (right). The original pictureswere submitted in [15].
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Figure 6. Inferred mechanistic model of development. This graph was originally published in [9].

among the cells during C. éegansembryonic development. Secifically, we represent each cell as a point
mass and represent the interactions between neighboring cells by spring forces. This simplified modd isa
versatile setup that can be conveniently integrated into the overal agent-based modeling framework.
Moreover, the simplified modeling assumption allows us to explicitly track individual cells and easily ac-
count for the birth and migration of new daughter cells. Under this assumption, the embryo can be
represented by a network of mass points connected to one another through springs. To first order ap-
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proximation, we further assume that inertial forces and damping forces are negligible compared to the
spring forces. Recall that, during the experiment, microscopic images are collected every minute to moni-
tor the shapes and positions of the cells. Snce the evolution of the network structure is a much slower
process compared to the observation period, we assume the spring-mass network is in quasi equilibrium
on the time scale of observation. To determine the positions of the cells, we calculate the potential energy
of the mass-spring network. Snce the network isin equilibrium, the cell positions will alow the network
to possess minimum potential energy. Thus, at any given time instant, the positions of the cells can be de-
termined by minimizing the potential energy of the system. Once a new daughter cdll is produced, the
original equilibrium balance is broken, and a new equilibrium can be calculated by minimizing the poten-
tial energy in the updated mass-spring network. Therefore, this process allows us to predict the migration
of the cellsthrough the embryonic development procedure.

4.3. Multi-Agent Cell Movement Simulation

Our previous effort has shown the capability of deep reinforcement learning for modeing cell move-
ment within an agent-based model [15]. Snce the developmental phase in the early stage of C. degans
embryogenesisisregulated by acomplex set of regulatory mechanism at various scales, the previous model
that utilize the observational destination as a predefined dominant rule for the cell movement is a very
strong regulation observed in the 3D live images. As an example, the Cpaaa cell migration path contains
several phases, each is achieved viathe establishment of a special biological pattern, called Rosette, with its
neighbor cells along the path. With the above observations, we are working on a hierarchical deep rein-
forcement learning cell movement model in which the cdll is controlled hierarchically by a set of sub-goas
(Figure 7). Future plans for the cell movement modeling also include the design of multi-agent reinforce-
ment learning [18] for the function group or even whole embryo, continuous control for output actions
[19] of individua cdlls, division timing synchronization between the individual cells, as well as high per-
formance simulation on parallel computing platform using asynchronous distributed mode! [20].

5. CONCLUSION

We presented a systematic approach to model the basic behaviors of individual cells, including cell
fate, divison, and movement, using 3D time-lapse images within an agent-based modeling framework. We
summarized preliminary result and discussed the ongoing efforts and future directions for C. éegans

(a) (b) (c) (d)

Figure 7. A hierarchical deep reinforcement learning modd for the Cpaaa cell movement with four
sub-goals, that is, to establish four special structure (Rosette) sequentially with its special neighbor
cells (sub-goal cells) along the path. The white circle in each graph represents the observed destina-
tion of Cpaaa cell when the sub-goals are achieved sequentially. Red, yellow, and green cells
represent the Cpaaa cell (in the training process), sub-goal cells at each migration phase, and other
cellsin images.
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embryo modeling, including an inferred developmental landscape for cell fate, a quasi-equilibrium mode
for cdl division, and multi-agent, deep reinforcement learning for cell movement. The approach is a good
fit for systematically investigation on individual cell'sdynamics and simulation-based hypothesistesting.
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