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ABSTRACT 

 Connected and automated vehicles (CAVs) are increasingly being discussed as 
the basis for shared mobility and on-demand services to replace privately owned 
vehicles. The rapid growth of Transportation Networking Companies (TNCs) and their 
increasing investment in automated vehicle (AV) technologies attests to this. 
Combining the concepts of TNCs, with AV and on-demand transit services, the term 
“automated mobility district” (AMD) describes a district-scale implementation of CAV 
technology to realize the full benefits of a shared, fully automated vehicle service 
within a confined region. This research effort provides a modeling architecture for 
AMDs along with a preliminary analysis to quantify the mobility and energy benefits 
of such districts. A customized open-source microscopic mobility simulation toolkit 
built on the Simulation of Urban Mobility (SUMO) platform is implemented for AMD 
performance evaluation. Experimental scenarios are tested with different combinations 
of operational variables to provide insights on energy and mobility gains that can be 
realized in AMDs. 

INTRODUCTION 

Major disruptive technologies that are set to redefine the way in which people 
view travel include connected and automated vehicles (CAVs), and shared mobility 
made possible through transportation networking companies (TNCs) enabled by 
smartphone applications. Automated vehicles (AVs) will change the way in which a 
driver interacts with a vehicle and increase productivity during travel. Shared mobility, 
on the other hand, brings economic and system efficiencies. Economic efficiencies may 
be realized by less vehicle ownership and more vehicle “usership” (where one vehicle 
is shared by multiple persons/families as and when the need arises). System efficiencies 
will be manifested through lesser vehicle miles traveled on the road, due to the sharing 
of a vehicle by multiple passengers for a single trip. To maximize the gains in personal 
productivity, economic, and system efficiencies, automation and shared mobility 
should go hand in hand, rather than as separate technological developments. Many 
companies are already exploring avenues for shared automated mobility as a way of 
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the future (Waymo, 2017; Afshar, 2017). Along these lines, a concept called automated 
mobility districts (AMDs) has emerged which describes a district-scale implementation 
of CAV technology to realize the full benefits of an AV-shared-mobility service within 
a confined geographic region or district. In an AMD, autonomous fleets of shuttles 
(electric or gasoline) serve the majority of the mobility needs of people in the district. 
Personal vehicle(s) use within the district may be discouraged through parking 
availability and pricing, or prohibited by disallowing physical access by private 
vehicles, such as recreational parks and some university campuses. Recently, Young et 
al. (Young et al., 2017) outlined a fundamental modeling framework for AMDs along 
with a comprehensive summary of related work. Figure 1 depicts the basic concept and 
the modeling structure of an AMD.  

 

Figure 1. Sketch of an automated mobility district (AMD) (Young et al., 2017). 

The concept of having automated mobility in dense activity centers is gaining 
much attention in the context of smart cities. Bill Gates recently acquired land in 
Arizona to develop a smart city and one of the facets of this smart city is transportation 
through AVs (Buono, 2017). In the U.S., the Federal Highway Administration (FHWA) 
has recently announced funding for the first-ever deployment of automated taxi shuttles 
in three neighborhoods in Greenville, South Carolina (FHWA, 2017). Many automated 
shuttle manufacturers are conducting early-stage demos to test the commercial viability 
of on-demand automated shuttle services to complement as well as augment traditional 
transit services (Bo-gyung, 2017; Hawkins, 2017).  

From a historical perspective, systems such as personal rapid transit (PRT), 
automated transit networks (ATN), or group rapid transit (GRT) may be synonymous 
to the mobility service delivery concept of an AMD, it should be noted that AMDs do 
not require additional infrastructure (such as separate lanes, or elevated guideways, 
etc.,) for operation. In an AMD, automated fleets of electric shuttles can be deployed 
on existing roadways to serve the passengers “on-demand.” This not only saves capital 
costs (avoiding guideway construction) but also provides users with a door-to-door 
service which transit systems such as PRT, ATN, and GRT fail to provide. With low-
speed automated electric shuttle demonstrations conducted in several urban 
environments across the U.S., and policy movements in cities to reduce vehicle speed 
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(“twenty is plenty”) to return the urban street to pedestrians, viable deployment paths 
are emerging for the fledgling AV technology to provide service in attraction-dense 
districts. AMDs are not unlike areas termed as “special generators” in existing 
transportation demand models (TDMs). Areas such as airports, large university 
campuses, and central business districts (CBDs) frequently have their own sub-models 
to reflect their unique characteristics. The AMD modeling effort, termed the AMD 
toolkit, provides a special generator sub-model to be exercised within existing TDM 
frameworks. 

This study is motivated by the necessity for a flexible and easy-adopt 
methodology and toolkit to quantify the mobility and energy benefits anticipated from 
AMDs, which can be considered as shared AVs (SAVs) deployed in a district-scale. 
While there have been a few research efforts that looked at the mobility benefits of 
SAVs (Fagnant et al., 2015; Zhang et al., 2015), to the best knowledge of the authors, 
no research has been done on quantifying the energy benefits of AMDs. To accomplish 
this, an open source tool was developed utilizing both the Simulation of Urban Mobility 
(SUMO) and the Future Automotive Systems Technology Simulator (FASTSim). 
SUMO (Krajzewicz et al., 2012) is a microscopic and continuous road traffic 
simulation package to quantify the mobility benefits of an AMD. FASTSim (Brooker 
et al., 2015) is an energy analysis tool to quantify the energy expenditure of vehicles 
given highly granular (second-by-second) trajectory information combined with 
vehicle operating parameters. Utilizing this AMD toolkit, this research aims to test 
various operational configurations of AMDs (fixed route, on-demand, mixed services), 
and develop performance metrics for AMDs focusing on its mobility and energy 
benefits at the system level. 

While the larger research theme here is to develop an AMD modeling and 
simulation toolkit informed by real-world AMD deployments, such as the one in the 
Greenville, SC, this paper presents scenario-based analyses to quantify the energy 
impacts of an AMD implementation based on a reasonable set of assumptions. Travel 
demand (trips between different origins and destinations) is expected to be defined 
external to the toolkit, and the toolkit will simulate the travel for various operational 
and market penetration scenarios of automated shuttles in a small network in order to 
quantify the mobility and energy benefits of an AMD. The toolkit is flexible, allowing 
an analyst to experiment with distinct sets of assumptions. In this paper, only travel 
within an AMD is modeled to quantify the intra-district impacts of an AMD. Future 
research efforts will embed the AMD into a region model as a special generator and 
focus on travel between and AMD and the rest of the region, and on travel between 
multiple AMDs in a region to evoke to the inter-regional impacts.  

LITERATURE REVIEW 

To date, a few studies evaluated the benefits of using the autonomous vehicle 
(AV) for on-demand services based on simulation tools. Fagnant and Kockelman 
(Fagnant and Kockelman, 2015, 2016) assessed the mobility and environmental 
benefits of shared autonomous vehicles (SAVs) by modeling the movement of travelers 
in a grid-based urban area using an agent-based simulation model. The International 
Transport Forum (International Transport Forum, 2015) explored potential impacts 
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resulting from the deployment of a shared and fully AV fleet by simulating the 
interaction of travelers, fleet, and dispatchers in the city of Lisbon, Portugal. Zhang et 
al. (Zhang et al., 2015) included a ridesharing component in an agent-based model to 
investigate the performance and potential benefits of a SAV system. Boesch et al. 
(Boesch et al., 2016) researched on the relationship between AV fleet size and travel 
demand in Zurich, Switzerland. Dia and Farid (Dia and Farid, 2017) designed and 
applied an agent-based simulation model on a small road network in Melbourne, 
Australia to understand the travel demand under different scenarios of autonomous on-
demand shared mobility. Chen et al. (Chen et al., 2016) developed an agent-based 
simulation environment to examine the operation of shared autonomous electric 
vehicles (SAEVs) under scenarios with different vehicle ranges and charging 
infrastructures. The focus of the majority of the studies in SAV literature so far has 
been on quantifying the mobility impacts of advanced vehicle technologies. There is 
limited literature, if any on quantifying the energy impacts of SAVs, much less in the 
context of district-scale deployments, such as building blocks that impact regional 
travel. 

There are mainly two types of methods that can be used to conduct an energy 
analysis of vehicle systems. Statistical modeling is one approach, which tries to 
establish quantitative relationships between different parameters (such as vehicle 
attributes, average speed) and vehicle energy consumption (Chen et al., 2017; Rakha 
et al., 2012). For this approach, the predicting parameters are usually at the aggregate 
level, such as trip average speed, % of time in idling, etc.  Another widely adopted 
approach is that of a physical movement-based powertrain simulation model. This type 
of model takes vehicular movements as input (at the granularity of a second) and tries 
to estimate energy demand for time-dependent vehicle movements based on physical 
theories and transmission efficiency assumptions. There are several energy estimation 
models that use the second approach for energy analysis (FASTSim, Autonomie, etc.). 
These models usually take second-by-second vehicle speed profiles and estimate the 
fuel consumption at the vehicular level. A vehicle-specific, power-based approach 
along with modal characteristics is more common, such as VT-Micro (Rakha et al., 
2004), Comprehensive modal emission model (CMEM) (Scora and Barth, 2006), and 
the Environmental Protection Agency’s (EPA’s) MOtor Vehcile Emission Simulator 
(MOVES) (EPA, 2017). It is often the choice of the analyst, based on the level of 
resolution needed of the energy impact that is required, that determines the choice of 
the emissions/energy estimate tool. This study adopts the powertrain simulation model 
approach as the traffic microsimulation model is able to provide second-by-second 
vehicle speed profiles.  

MODEL DESCRIPTION  

The proposed automated mobility district (AMD) modeling and simulation 
toolkit builds on the Simulation of Urban Mobility (SUMO)―a microscopic traffic 
simulation suite, and integrates the Future Automotive Systems Technology Simulator 
FASTSim, a powertrain energy economy simulation tool. In tandem, the toolkit is able 
to provide the AMD’s fuel/energy and mobility benefits analysis for designated impacts 
of AMDs under various travel demand scenarios.  
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SUMO (Krajzewicz et al., 2012) is an open-source, microscopic and 
multimodal traffic simulation suite. SUMO can be customized with specialty modules 
to control the network simulation of vehicles. SUMO has been used in several projects 
worldwide to answer research questions, such as evaluating the performance of traffic 
lights, vehicle route choice, traffic forecasts, and vehicular communication. Bjärkvik 
et al. (Bjärkvik et al., 2017) used SUMO to simulate the Drive Me test road traffic 
condition in Gothenburg, Sweden. Tran Ngoc Nha (Tran Ngoc Nha et al., 2012) 
adopted SUMO to conduct a comparative study of vehicle routing algorithms for route 
planning in smart cities. The SUMO simulation platform implicitly provides 
microscopic and multimodal traffic simulation for vehicles, pedestrians and public 
transport, and can be extended to additional modes. The multimodal microscopic traffic 
simulation and simulation interaction capability of SUMO are suitable for 
implementing the advanced travel models and traffic behaviors for shared mobility, on-
demand AV service, which are the pivotal characteristics of AMDs. The detailed 
second-by-second vehicle traces (speed profiles or driving cycles) provided by SUMO 
feed the FASTSim to evaluate and compute the vehicle energy and environmental 
metrics.  

Network setup in SUMO 

A hypothetical network in SUMO with 13 nodes and 48 links is shown in Figure 
2 (a). The network is generated using the netgenerate module from SUMO software. 
The nodes represent the junctions of the road network, and the links represent the 
roadways between the junctions. In SUMO, a link is referred to as an edge. Each edge 
in the network is directional and has two lanes.  

Automated electric shuttles (AESs) operate on the middle loop (shown with an 
arrow in Figure 2 [a]) on the network. Each edge in the circuit has a sidewalk lane (shown 
using grey lanes in Figure 2 [b]) for pedestrians and has an AES stop (denoted as little 
yellow dots on the middle loop of the network). The number at each junction stands for 
the junction ID. In Figure 2 (a), lines with different colors are shown to depict how a trip 
from the same origin (junction “3/3”) to same destination (junction “4/3”) can be 
undertaken using different modes. The blue line indicates the car mode, pedestrian 
paths are depicted using yellow lines, while AES mode is represented by the orange 
lines. While the car mode from 3/3 to 4/3 involves no transfers (indicated by the blue 
line), the AES trip (as it is currently modeled) involves three steps: i) walking to a stop 
(from junction 3/3) to board the AES, ii) travel in the AES, alight in the destination 
AES stop (orange line in the network) and iii) then walk to the final destination 
(junction 4/3). In the first iteration of the SUMO simulation, the AES mode is coded as 
operating on a fixed route. Efforts are underway to relax this assumption, allowing the 
AES to pick up and drop off passengers anywhere in the network.   
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(a)  (b) 

Figure 2. A hypothetic SUMO network (a) and signals (b). 

Three traffic signals are assigned at intersections “1,” “4/1,” and “1/1” in the 
network as shown in Figure 2 (b) (an inset of Figure 2 [a]) and their timing 
configurations are set to defaults provided by SUMO.  

Four AES vehicles are running “on-demand” inside the circuit. This means an 
AES will be dispatched to pick up a passenger when a trip request is made by the 
passenger (analogous to most elevator controls). Once an AES is dispatched, it will 
pick up and drop off the passenger at the designated AES stop nearest the traveler’s 
destination. The AES will then wait at that destination stop until another request is 
made for pickup by another traveler. Two AESs operate in the clockwise direction of 
the loop, while the other two serve the demand in the counter-clockwise direction. In 
this study, the AES seat capacity is one, which means each AES can only take one 
passenger at a time.  

For the hypothetical network, the initial simulation is for demand for 300 trips 
distributed across the 13 origin-destination (OD) pairs. Within this district simulation, 
all ODs are within feasible walkable distances, and the walk mode is for door-to-door 
trip completion.  The choice of travel modes set encompasses 1) passenger car, 2) AES, 
3) walking. Traffic demand is distributed according to a bimodal distribution reflecting 
a morning and afternoon peak hour during a typical day.  

Fixed-route on-demand AES service logic 

The fixed-route on-demand AES service logic is comprised of three elements: 
1) passenger, 2) AES, and 3) system controller. The service workflow is illustrated in 
Figure 3. The passengers are the pedestrians who need AES service. Each passenger 
has their trip plans (origin, destination, departure time). As previously described, there 
are four AES vehicles serving the fixed-route, on-demand service, two in each direction 
(clockwise and counter-clockwise). When there is no ride request, AES parks in an 
AES pickup zone, referred to as a stop, and waits for the ride request. The system 
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controller monitors and controls the whole AES service system, serving as a “brain” to 
dispatch the appropriate AES and compute its route.  

 

Figure 3. Fixed-route, on-demand AES service workflow. 

In any trip involving an AES, the passenger must first walk to the closest 
departure AES stop. When a passenger arrives at the stop, he/she makes a ride request 
(such as with the press of a button at the stop, or by using a smartphone to request a 
ride). Ensuing the ride request, the passengers’ trip plan (origin, destination, etc.) 
information is sent to the system controller for AES dispatch and route plan calculation. 
The system controller then dispatches the assigned AES with the route plan for the 
passenger. When the AES reaches the departure stop where the passenger is located, 
the passenger alights, the AES then travels to the destination stop closest to the 
passenger’s final destination, where the passenger disembarks from the AES. The 
passenger then continues walking to the final destination while the AES waits at the 
AES stop for the next ride request.  

FASTSim for Energy Analysis 

FASTSim is used in this study for energy analysis based on the trajectory 
information delivered by SUMO. FASTSim is a publicly available advanced vehicle 
powertrain system analysis model that enables rapid and accurate comparison of 
powertrains and estimates the impact of different technologies and cost improvements 
for light- and heavy-duty vehicles. More information about FASTSim is available at 
(https://www.nrel.gov/transportation/fastsim.html).  

FASTSim inputs include operational details of the AES drivetrain as well as 
vehicle design parameters, such as aerodynamic drag, frontal area, mass, and rolling 
resistance. FASTSim computational results encompass vehicle efficiency, performance 
time to accelerate from 0–60 mph ―cost, and battery life (if applicable). FASTSim can 
model various vehicle types, including internal combustion engine (ICE) vehicles, 
hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery 
electric vehicles (BEVs), compressed natural gas (CNG) vehicles, and fuel cell electric 
vehicles (FCEV). Preloaded vehicle models are included in FASTSim, and the inputs 
can be modified to represent changes in specific vehicle or component attributes. Zhu 
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et al. (Zhu et al., 2017) have applied FASTSim to build a link-based fuel estimation 
model for conventional gasoline vehicles and HEVs.  

AMD Simulation Assumptions 

The following assumptions were made for the prelimiary AMD analysis: 

Network: A hypothetical trapezoidal network (shown in Figure 2) is generated in 
SUMO. When the AMD toolkit is applied to a real-world deployment, the network will 
reflect actual roadway geometry of the district served. Such networks can be imported 
into SUMO from existing Geographic Information System (GIS) shapefiles.  

Travel Demand: The travel demand in the network is exogenous to the model 
(calculated or determined outside the simulation toolkit). For the preliminary analysis, 
hypothetical traffic demand is generated and distributed across the 13 origin-
destination (O-D) pairs in the network. In future iterations, where real-world data will 
inform the model, travel demand can be obtained from the output of the regional travel 
demand model (TDM) where an AMD is deployed. 

Mode Share: This initial study intends to understand the mobility and energy impacts 
of an AMD, so the mode shares are “assumed” for various scenarios. For a real-world 
AMD deployment, the mode shares would reflect observed data once the shuttles run 
for a few months in the field. For planning purposes, mode shares may be generated 
through behavior-based modeling approaches common in regional TDMs. 

AES Fleet: A total of four automated electric shuttles serve the designated demand in 
the AMD. This is not a limiting factor, and the number and the seating capacity of 
shuttles can be increased to cater to additional demand as required. Scenarios that 
utilize different fleet sizes can examine wait time, responsiveness, deadheading, and 
optimal re-distribution of vehicles. This remains a future effort. 

Vehicle Characteristics: The characteristics of the privately driven cars (vehicle make, 
model, body type, acceleration/deceleration profiles) in the simulation reflect that of a 
standard midsize sedan Toyota Camry. This is the most popular sedan by sales volume 
in the United States in the year 20161, and thus representative of an average car. This 
vehicle has a curb weight of 3,240 lbs., a drag coefficient of 0.28, a length of 190 
inches, and an EPA-rated fuel economy of 25 MPG2. The vehicle attributes will 
influence vehicle movements in SUMO simulation and energy consumption in 
FASTSim simulation. For AES fleets, there are two optional powertrains, i.e., gasoline 
or electric vehicle. The 2016 Camry is still selected for a gasoline AES fleet. For 
electric AES fleets, the 2016 Nissan Leaf is chosen, which is one of the major midsize 
electric sedans in the market. The vehicle models and attributes can be easily 
customized to specific vehicles in the future. Future work will incorporate 

                                                 
1 https://www.caranddriver.com/flipbook/sales-tale-these-are-the-25-best-selling-vehicles-of-2016#23 
2 2016 Camry Product Information. 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ah
UKEwivvLGhvOXXAhXGQd8KHSlED-
wQFggpMAA&url=https%3A%2F%2Fpressroom.toyota.com%2Freleases%2F2016%2Btoyota%2Bca
mry%2Bproduct%2Bspecs.download&usg=AOvVaw2XOALtV9m2cO-3epl0D3yZ 
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characteristics of existing automated shuttle vehicles as input into SUMO and 
FASTSim. 

SCENARIO DEVELOPMENT 

Using the assumptions stated above, the following three scenarios presented in 
Table 1 were run using SUMO and FASTSim models to quantify the energy and 
mobility impacts of different travel demand configurations in an AMD.  

Table 1. Travel Mode Share of All Scenarios 

Scenarios Car mode  Walk mode  AES mode  

Baseline 70% 30% 0% 

Transitional 60% 20% 20% 

Optimistic 50% 10% 40% 

In the baseline scenario, there is no AES service, and the mode splits for car 
and walk are assumed as 70% and 30%, respectively. In the transitional scenario, AES 
is assumed to have a mode share of 20% taken evenly from car and walk mode. This 
scenario reflects early adopters for the AES technology, where there is some interest to 
utilize this new mode, but not a major mode shift. In the optimistic scenario, AES is 
expected to gain a significant market share of 40% of total trips.  

The assumption that AES will induce a uniform mode share from car and walk 
was made purely from an operational convenience standpoint. Future efforts will focus 
on testing a wide array of scenarios that reflect alternate adoption scenarios for the AES 
mode, as informed from early demonstrations and deployments of AES service.  

RESULTS AND DISCUSSION 

The automated mobility district (AMD) simulation results for the three scenarios 
are illustrated in Table 2. The reported performance metrics for the AMD include:  

 Vehicle Miles Traveled (VMT)―this is the total of all private vehicles and 
automated electric shuttle (AES) mileage for the scenario 

 Vehicle Average Travel Time (VATT)―the average time of travel in vehicle, 
(does not include walking), averaged across private vehicles and AES trips 

 Vehicle Average Travel Distance (VATD)―the average travel distance 
(excluding any pedestrian links), averaged across private vehicle and AES 
trips. 

 Fuel Consumption (FC) in gallons of gasoline across the entire system. 
 

The fuel consumption is separated into two sub-scenarios: “gasoline” AES and 
“electric” AES as previously described. For the electric powered AES sub-scenarios, 
the AES is assumed not to contribute to gasoline consumption.  

 

Table 2. The Simulation Results for AMD Network Performance. 
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Scenario VMT 

(miles) 

VATT 

(seconds) 

VATD 

(miles) 

FC 

(gasoline/EV) 

Baseline 128.8 86.5 0.6 5.9 

Transitional 153.8 124.3 0.8 7.0/5.3 

Optimistic 175.7 168.5 1.1 8.0/4.5 

Compared to the baseline scenario, the transitional and optimistic scenarios 
exhibit an increase in VMT, VATT, and VATD. VMT of transitional and optimistic 
scenarios increase by about 19% and 36% respectively compared to baseline, which 
can primarily be attributed to AES vehicles traveling to the departure stop to pick up a 
passenger (referred to as overheading). Deadheading (or empty vehicle travel) does not 
contribute to VMT in this analysis as the AES vehicles park at an AES stop after 
dropping off a passenger. VATT and VATD also see an increase in transitional and 
optimistic scenarios, again due to overheading. As AES mode share increases, it is 
expected that the decrease in fuel consumption using personal vehicles will more than 
compensate for the increase in VMT due to overheading. If all AES vehicles are 
gasoline-powered, an increase of fuel consumption is observed. However, if all AES 
vehicles are electrified, transitional and optimistic scenarios see a decrease of 10% and 
26% decrease in fuel consumption respectively.  

It should be noted that the initial model is simplistic and does not take into 
account the source of electricity (coal, natural gas, renewables), or end-times associated 
with accessing and parking a private vehicle.  The intent of this effort was to develop a 
basic model, and then add complexity to better reflect real-world conditions. 

CONCLUSIONS AND FUTURE WORK 

As we move into the era of connected and automated vehicles (CAVs), vehicle 
electrification, and shared mobility in transportation, it is critical to identify and explore 
the optimal confluence of these technologies that maximize mobility while minimizing 
energy consumption. One such idea is that of automated mobility districts (AMDs) 
which is a district-scale implementation of CAVs technology to realize the full benefits 
of an on-demand shared automated mobility service within a confined geographic 
region. 

This research develops an AMD modeling and simulation toolkit and reports 
on the preliminary analysis results for hypothetical AMD deployment, exercising the 
toolkit with three scenarios. The AMD toolkit is capable of simulating detailed vehicle 
movements for various operational configurations of automated electric shuttle (AES) 
services including fixed route, on-demand, and mixed services to quantify the mobility 
and energy benefits of AMDs. The simulation results in terms of mobility and energy 
impacts show intuitive trends, which provide a validation check for the tool. 
Transitional and optimistic scenarios see vehicle miles traveled (VMT) increase when 
compared to the baseline scenario (no AES), which can be mainly attributed to the 
overhead miles traveled by the AES vehicles to pick up passengers. The study is a first 
step in the development of a toolkit that can quantify the energy and mobility impacts 
of real-world AMD deployments. Future research will focus on enhancing the toolkit 
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to integrate and implement different operational configurations of AMDs and define 
and quantify various performance metrics for AMDs, as well as for the traditional 
modes in the simulation (vehicles, pedestrians, as well as buses and other traditional 
mass transit). Examples of such metrics include calculating the overheading 
time/distance, service rate, passenger waiting time, etc. The model will also be 
extended to account for parking-related issues (availability and access times).   
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