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Abstract—Target detection is one fundamental problem in
many sensor network-based applications, and is typically tackled
in two separate stages for sensor deployment and data fusion.
We propose an integrated solution, referred to as SSEM, which
combines 2-level clustering-based sensor deployment and Source
Strength Estimate Map-based data fusion for the detection of a
single static or moving target. SSEM conducts the first level
of clustering to determine a sensor deployment scheme and
the second level of clustering to divide the deployed sensors
into multiple subsets. For each sensor, the source strength is
estimated at each grid point of the entire region based on
a signal attenuation model, and for each subset of sensors,
the target location is estimated using a strength distribution
map-based statistical analysis method. A final detection decision
is made by thresholding the clustering degree of the target
location estimates computed by all subsets of sensors. Compared
with traditional grid-based target detection methods, SSEM
significantly reduces the computation complexity and improves
the detection performance through an integrated optimization
strategy. Extensive simulation results show the performance
superiority of the proposed solution over several well-known
methods for target detection.

Index Terms—Sensor networks; source detection; sensor de-
ployment; cluster analysis.

I. INTRODUCTION

Sensor networks have found pervasive applications in many

agricultural, civil, industrial, and military domains for various

purposes [1], [2], [3], [4], [5]. Target (or signal source)

detection is considered as one of the fundamental problems

in such sensor network-based applications and has been the

focus of research for decades. Most of the existing research

efforts on target detection are focused on one single technique

through either data fusion or sensor deployment, and have

met with considerable success in various contexts. However,

combining multiple techniques from both aspects to improve

runtime efficiency and detection performance still remains

largely unexplored.

Several methods for target detection exemplified by Maxi-

mum Likelihood Estimation (MLE) [6] employ a grid-based

data fusion approach. In such grid-based detection methods,

the key idea is to construct a grid map of the entire region,

use the signal probability density function to formulate a

statistical framework at each grid point, and make a detection

decision at the grid point with the highest probability. These

traditional grid-based methods have won a good reputation

with a satisfactory detection performance, but are generally

computationally very expensive due to the complexity of

the likelihood function, especially at high resolutions. More

precisely, the detection performance of these methods highly

depends on the accuracy of the likelihood function, which

in turn determines the complexity of computation. There are

cases where the likelihood function may be too complicated

to calculate, e.g., in the radiation detection and localization

problem with significant randomness in the source signal and

background noise [7], [8]. In many cases for such problems,

we may only be able to derive an approximate solution.

Sensor deployment has been another active research area

for target detection (or region coverage) in many sensor

network-based applications. Most of the conventional sensor

deployment strategies consider two deployment objectives: i)

minimize the deployment cost, which is generally determined

by the number of sensors to be deployed in the region;

and ii) maximize the detection performance such that the

entire detection region is covered with the maximum signal

strength [9], [10], [11].

In this paper, we propose an integrated solution, referred

to as SSEM, to the detection of a single static or moving

target through 2-level clustering-based sensor deployment and

Source Strength Estimate Map-based data fusion. SSEM con-

ducts the first level of clustering, where each grid point is a

clustering object and each sensor is considered as a clustering

center, to determine a sensor deployment scheme, and the

second level of clustering to divide the deployed sensors into a

number of subsets. For each sensor, the source signal strength

is estimated at each grid point of the entire region based on

a signal attenuation model, and for each subset of sensors,

the target location is estimated using a distribution map-

based statistical analysis method. A final detection decision

is made by thresholding the clustering degree of the target

location estimates computed by all subsets of sensors. Com-

pared with traditional grid-based target detection methods,

SSEM significantly reduces the computation complexity and

improves the detection performance through an integrated

optimization strategy. Extensive simulation results illustrate

the performance superiority of the proposed integrated solution

over several commonly used methods for target detection in

practice.

The rest of this paper is organized as follows. Section II

conducts a survey of related work. Section III formulates

the target detection problem. Section IV proposes the SSEM

detection method with the integration of sensor deployment

and data fusion. Section V evaluates the performance of SSEM

through simulations. Section VI concludes our work.



II. RELATED WORK

A detection algorithm infers the presence or absence of a

target or a signal source based on sensor measurements col-

lected by a single or multiple sensors. In absence of noise and

measurement errors, a detection can be made when the sensor

receives a measurement that differs from the background

profile. Unfortunately, in practice, sensor measurements are

subject to statistical variations of the signal intensity and

changes in the background noise.

Many methods and frameworks have been proposed and

developed for target detection in different contexts, mainly

in two categories: one is localization-based and the other is

grid-based [6]. The methods in the first category include i)

triangulation-based detection [12], [13], ii) Ratio of Squared

Distance (RoSD)-based detection [14], and iii) time difference

of arrival (TDoA)-based detection [15], [16], [17]. In general,

these localization-based detection methods follow a similar

3-step procedure: a) use a certain signal attenuation model

to build the relation between the source location and the

signal strength; b) construct an equation system to solve for

the source location; and c) use the estimated source location

to make a detection decision. The main advantage of these

methods is that there may exist a fast closed-form solution to

the equation system, which makes it very efficient. However,

if solving the equation system itself is prohibitively expensive

or there are distractive solutions (e.g., “phantom” real roots or

even imaginary roots) to the equation system, the robustness of

a localization-based method would significantly decrease. The

detection methods in the second category build a grid map of

the entire region, use the signal probability density function

to formulate a statistical framework at each grid point, and

make a detection decision at the grid point with the maximum

likelihood [18], [19], [20]. These methods are able to produce

a robust and satisfactory detection performance but at the

cost of expensive computation due to the complexity of the

likelihood function or the high resolution of the grids.

Considering the pros and cons of the aforementioned tra-

ditional methods, this work combines a two-level clustering-

based method for sensor deployment and a statistical analysis

method with source location estimate distribution for data

fusion to achieve a robust detection performance without

involving complex optimization modeling or equation solving.

III. PROBLEM FORMULATION

We consider the problem of deploying a given set of sensors

in a two-dimensional (2D) continuous surveillance region R
with an arbitrary shape to detect the existence of a potential

static or moving target T . At each time step, a detection

decision has to be made based on the sensor measurements.

This problem consists of two major components: sensor

deployment that determines where to place sensors in the

region and data fusion that determines how to integrate the

measurements from individual sensors to make a global de-

tection decision at each time step under two hypotheses: i)

H0: there is no target present, and ii) H1: there is one target

present. Under H0, we wish to minimize the false alarm rate

(FR), defined as the percentage of time steps that provide a

false positive decision. Under H1, we wish to minimize the

missed detection rate (MR), defined as the percentage of time

steps that provide a false negative decision.

In this typical passive target detection problem, we consider

a generic signal attenuation model defined as a function f of

the Euclidean distance d between each sensor and the target

or source emitting the signal. The signal strength m emitted

by a target T and received by the k-th sensor is calculated as

mk =
A

f(dk)
+Bk, (1)

where A is the original signal strength of the target and Bk

denotes the background noise observed by the k-th sensor

under a certain probability distribution. Note that different

targets (signal sources) such as radioactive, infrared, and

acoustic sources feature different forms of signal attenuation.

For example, in radiation detection, f(·) is typically modeled

as a quadratic function. However, our proposed method is

generic to tackle any form of f(·).

Obviously, on a 2D plane, there are at least two unknowns in

Eq. 1, i.e., A and dk (suppose that the background noise could

be reasonably estimated from historical data). After replacing

dk and temporarily ignoring the background noise, we can

rewrite Eq. 1 as

mk =
A

f(
√

(xk − xT )2 + (yk − yT )2)
, (2)

where xk and yk are the coordinates of the k-th sensor, and

xT and yT are the coordinates of the signal source or target

T . If a sensor deployment scheme is given, we would know

the location of each sensor. Hence, in Eq. 2, there are three

unknowns, i.e., A, xT , and yT .

We formally define a passive target detection problem

involving both sensor deployment and data fusion, referred

to as PTD-SDDF, as follows.

Definition 1: PTD-SDDF: Given a set of n sensors S =
{s1, s2, . . . , sn}, a potential target T of signal strength A with

an attenuation model defined by Eq. 2, we wish to determine

a sensor deployment scheme for the sensor set S and a data

fusion scheme to integrate the measurement mi from each

individual sensor si, i = 1, 2, . . . , n, at a certain time step

such that the following detection performance is optimized:
{

H0 : min(FR), there is no target present,
H1 : min(MR), there is one target present.

(3)

The difficulty of PTD-SDDF mainly arises from the fact

that the source measurements under H1 and the background

noise under H0 are comparable quantities and both contain

significant random components in real environments especially

outdoors, which rule out any deterministic optimal solution.

IV. CLUSTER-BASED TARGET DETECTION

We propose a two-level clustering-based solution using

source strength estimate map, referred to as SSEM, which

integrates sensor deployment and data fusion for the detection

of a single static or moving target. We first present the overall

structure of SSEM, and then details the rational behind the

choice of methods for sensor deployment and data fusion.



A. Design of SSEM

The key steps of the proposed SSEM algorithm are provided

in Alg. 1.

Algorithm 1 SSEM

Input: a set of n sensors si to be deployed in region R and the

corresponding received signal strength mi of each deployed

sensor, i = 1, 2, . . . , n.

Output: a sensor deployment scheme and a detection decision

on the existence of a potential source.

1: Divide the region R into p × q uniform contiguous grids, each
of which is indexed by a pair of (i, j), i = 1, 2, . . . , p, j =
1, 2, . . . , q.

2: Partition the grids into n clusters using the first-level k-means
method and deploy one sensor at the center of each cluster.

3: Partition the deployed sensors into w non-overlapping subsets
SS using the second-level k-means method.

4: At each time step, based on each sensor’s measurement mi, build
a source strength estimate map by estimating the source strength
at each grid according to the attenuation model.

5: For each subset SS of sensors, estimate the source location at the
intersection grid of the source strength estimate maps produced
by all sensors in the same subset.

6: Calculate the clustering degree or compactness of the source
location estimates by all subsets of sensors obtained in Step 5.

7: Compare the clustering degree in Step 6 with a threshold: if the
clustering degree is higher than the threshold, there is a source;
otherwise, there is no source.

In Step 1, similar to many other grid-based detection

approaches, the number of grids is determined by the re-

quirements on the grid resolution and the constraint on the

computational overhead.

In Step 2, we conduct the first-level clustering to decide a

deployment scheme for the given sensors. In Step 3, we need

to choose an appropriate value for the number w of subsets,

which in turn determines the number of sensors in each

subset. Having more sensors in the subset would gather more

information about the source, but also increase the overhead

of computation. In practice, we choose a value for w based on

our empirical study such that the average number of sensors

in each subset n
w ≥ 5. When n is small, we may exhaust the

combinations of w subsets to form
n/w
∑

i=1

Ci
n/w new subsets.

In Step 4, at each time step, based on the measurement of

each deployed sensor, we build a source strength estimate map

by estimating the source strength at each grid according to the

signal attenuation model.

In Step 5, for each subset SS of sensors, we estimate the

source location (xT , yT ) to be the intersection grid of the

source strength estimate maps produced by all sensors in the

same subset, i.e., the grid (i, j) with the minimum variance of

the source strength estimates, i.e.,

(xT , yT ) = argmin
(xi,yj)∈R

(

1

|SS|
·
∑

∀sl∈SS

(Âl − Ā)2

)

, (4)

where (xi, yj) are the coordinates of each grid (i, j) within

region R, Âl is obtained in Step 4, i.e., the estimated signal

strength calculated by Eq. 2 with the measurement ml of

sensor sl in the sensor subset under the assumption that the

source is located within the current grid (i, j), and Ā is the

average signal strength estimate at (i, j) over the sensor subset.

In Step 6, there are different ways to calculate the clustering

degree for measuring the compactness of all source estimates

obtained in Step 5 [21], [22]. In this work, the clustering

degree is reflected by the sum of the distances between the

source estimates and their centroid. A higher clustering degree

means a more dense (or compact) distribution of the calculated

source estimates.

We would like to point out that SSEM does not involve any

complex optimization model. The time complexity of SSEM

is O(p · q · n+ w), where w is the number of sensor subsets,

excluding the standard k-means method in Steps 2 and 3,

which can be done offline. Moreover, since the signal strength

estimation at each grid for each sensor is independent of each

other, the algorithm framework of SSEM can be parallelized

for higher runtime efficiency.

B. Sensor Deployment for Target Detection

Sensor deployment is an important component of SSEM.

We employ a clustering-based sensor deployment strategy with

the following considerations:

i) If there is no source, the deployment scheme should

lead to a low clustering degree of the estimated source

locations computed by all subsets of sensors; otherwise,

it should lead to a high clustering degree. If the sensors

are deployed too close to each other, they would produce

similar measurements regardless of the existence of a

source. In this case, no matter how subsets are divided,

the source locations estimated by all sensor subsets would

be close to each other, leading to a high clustering degree

and hence making it hard to determine whether or not

there is a true source.

ii) The received signal strength of each sensor should be

high enough to resist the background noise at each pos-

sible source location. Since the received signal strength

depends on the distance between the sensor and the

source, each possible source location, i.e., each grid point,

should be close enough to some sensors to produce a high

received signal strength.

The above two considerations are aligned well with those in

a typical clustering problem: i) within each cluster, the objects

should be as close to the corresponding cluster center as pos-

sible; while ii) the distance between two cluster centers should

be as far as possible. Therefore, we model the sensor deploy-

ment problem as a clustering problem, where the number of

clusters is the number of sensors to be deployed. There exist

many algorithms for this type of semi-supervised clustering

problem, including the k-means method. By applying the k-

means clustering model to our sensor deployment problem,

we have the following optimization objective:

min

n
∑

i=1

∑

(pj ,qj)∈Ci

wj · (‖pj − ui‖
2 + ‖qj − vi‖

2), (5)

where pj and qj denote the location of the j-th grid point,

ui and vi denote the location of the i-th sensor, k is the



X−coordinate 
Y

−
c
o

o
rd

in
a

te
 

(a)

X−coordinate 

Y
−

c
o

o
rd

in
a

te
 

(b)

X−coordinate 

Y
−

c
o

o
rd

in
a

te
 

(c)

Fig. 1. Deployment of six sensors using the k-means method in (a) a square region, (b) a circular region, and (c) a triangular region.

number of sensors and Ci denotes the i-th cluster. The weight

coefficient wi could be used to assign a priority to certain

areas. For illustration purposes, Fig. 1 plots several simple

and representative deployment schemes for a given set of six

sensors, obtained by the k-means method, in which the weight

coefficient wi’s are set to be 1. In addition, different colors

represent different clustering results and the black triangular

marks correspond to the sensor locations. Fig. 1(a)(b)(c) plot

the sensor deployment scheme for target detection in a square,

circular, and triangular region, respectively.

C. Grid-based Data Fusion

In SSEM, the region R is first divided into a number of

uniform contiguous grids, each of which is indexed by a pair

of (i, j). Assuming that a source be located at a certain grid

point, for a given sensor deployment scheme, we can estimate

the signal strength A based on the measurement of each

deployed sensor under a given attenuation model according to

Eq. 2. Obviously, the accuracy of the signal strength estimate

depends on the distance between the grid point where the

source is assumed to exist and the true location of the source:

the closer this grid point is to the true source location, the

higher accuracy the source signal strength estimate has. Hence,

the grid point that is the closest to the true source location

would lead to the most accurate estimates of the true signal

strength. The similarity of such signal strength estimates could

be measured by their variance and used to derive the existence

of a target.

However, even if there is no source present, there still exists

a grid point with the minimum variance of the signal strength

estimates. To resolve this issue, we partition the deployed

sensors into a number of subsets and use each subset of

sensors to find the source location with the minimum variance

of the signal strength estimates. If there is a source present,

each subset of sensors would lead to a similar source location

estimate; otherwise, each subset of sensors would lead to a

different source location estimate. Therefore, we may make a

detection decision based on the clustering degree of the source

location estimates calculated from all subsets of sensors.

V. PERFORMANCE EVALUATION

We conduct a simulation-based performance evaluation and

illustration of the proposed SSEM method in comparison

with several existing methods for passive target detection

widely adopted in real applications. We shall start with a brief

introduction to the methods in comparison.

A. Detection Methods in Comparison

1) Sequential Probability Ratio Test (SPRT)

SPRT is a classical target detection method that makes a

detection decision under two hypotheses (a null hypothesis

H0 and an alternate hypothesis H1) or rejects to make a

decision [23]. SPRT accumulates the measurements m from

n sensors within a time window of t time steps, denoted by

M = {mk
i }, i = 1, 2, · · · , n, and k = 1, 2, . . . , t, and defines a

lower threshold TH(H0) and an upper threshold TH(H1). It

then calculates a probability ratio L = P (M|H1)
P (M|H0)

and compares

it with these two thresholds: if L is below TH(H0) or above

TH(H1), it claims no source present or the presence of a

source; otherwise, it rejects to make a decision. It is worth

pointing out that SPRT has four parameters to be set, i.e.,

the required false alarm rate, the required missed detection

rate, and the received signal strength and the background noise

for each sensor. However, it is generally difficult to set these

parameter values, especially the signal strength. In our ex-

periments, we choose appropriate values for these parameters

based on the models used to generate the measurement data.

2) Majority Vote (MV)

MV is a simple hard fusion method for target detection,

whose key idea is as follows: each sensor makes a local binary

detection decision based on its received signal strength and a

predefined threshold, and a global decision is reached based on

the rule of “majority wins”. There is no systematic guideline

on setting an appropriate threshold for MV. In our experiments,

we set it to be the mean of the background noise to minimize

the missed detection rate.

B. Experiment Set 1 on Manually Generated Data

1) Simulation Settings

In the first set of simulations, we consider a square region

of 10m × 10m, which is divided into a set of grids with an

interval of 0.1 meters along both dimensions. We consider 7

problem sizes based on 15 to 45 sensors with an increment of

5 sensors, available for deployment within the given region.

We run the detection experiments in two cases:

• Case 1: a single static source with weak or strong signal

strength;

• Case 2: a single moving source with weak or strong signal

strength.

In Case 1, the experiment lasts for 2 minutes: in the first 60

seconds, there is no source present, and in the last 60 seconds,

there exists a static source. In Case 2, the experiment lasts for



40 seconds: in the first 20 seconds, there is no source present,

and in the last 20 seconds, there exists a moving source. Under

each case, we repeat the experiments 10 times with different

random seeds and measure the average detection performance.

In the simulation, we manually generate the source signal

strength A and the background noise bk for sensor sk, both

following the Poisson distribution, and adopt a quadratic signal

attenuation model:

mk =
A

d2k
+ bk, (6)

which represents a typical scenario in radiation detection [19],

[24], [25], [26].

In all these experiments, the average strength of the back-

ground noise, i.e., the mean value of the Poisson distribution,

is set to be 200 counts per second. The weak signal strength

is set to be 400 counts per second, and the strong one is set

to be 2000 counts per second. In Case 1, we randomly place

a static source inside an area of 5m × 5m at the center of

the region. In Case 2, we simulate a target with either weak

or strong signal moving from position (30, 30) to position (-

30, -30) across the region at the speed of (−0.1,−0.1)m/s.

SPRT and MV are executed for detection based on the sensor

deployment scheme determined by SSEM.

2) Comparison of Detection Performance

We tabulate the average detection performance in terms

of false alarm rate (FR) and missed detection rate (MR) for

MV, SPRT and SSEM in Table I. Since MV compares the

current measurement with the mean of the background noise,

it exhibits a high detection rate (0% missed detection rate) in

the presence of a static or moving target. However, this method

is not practically useful as it is very sensitive with a false alarm

rate of about 50%. Similarly, in SPRT, we adopt the parameters

for simulation data generation, and it performs very well when

there is no target present (0% false alarm rate). However, since

SPRT attempts to accumulate the measurements over time,

there is a delay effect in the detection of a source, hence

resulting in a high missed detection rate. In general, it is

challenging to set suitable parameter values in SPRT, which

limits its practical use. Compared with these two traditional

methods, the proposed SSEM method achieves a reasonable

detection performance in terms of both FR and MR.

3) Illustration of Algorithm Execution

In order to examine the microscopic behaviors of the detec-

tion methods in comparison, we provide a detailed illustration

of each algorithm execution with 20 sensors.

a) Case 1: A Single Static Target with Weak or Strong Signal

We plot the sensor deployment scheme in Fig. 2 and

partition the sensors into w = 4 subsets using the k-means

method. Since the number of subsets is limited, we exhaust

the combinations of these 4 subsets to generate more (partially

overlapping) subsets to calculate the clustering degree.

The experimental results in the static case are shown in

Fig. 3. The detection results obtained by MV with weak and

strong signal are plotted in Fig. 3(a) and Fig. 3(b), respectively,

where the value of ‘1’ means that there is a source and the

value of ‘-1’ means that there is no source (the same below).
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Fig. 2. The deployment of 20 sensors partitioned into 4 subsets in unit of
decimeter.

In these two experiments, the threshold of each sensor is set

to be the average background noise strength, i.e., 200 counts

per second. In Fig. 3(a) and Fig. 3(b), we observe that MV

has an FR of 56.67% and 46.67%, respectively, in the first 60

seconds, and exhibits a good detection performance with an

MR of 0% in the last 60 seconds.

The results obtained by SPRT with weak and strong signal

strengths are plotted in Fig. 3(c) and Fig. 3(d), respectively.

SPRT has the following parameters: a required false alarm rate

of 5%; a required missed detection rate of 5%; a background

noise strength of 150 counts per second with weak signal and

of 250 counts per second with strong signal; a received signal

strength of 250 counts per second with weak signal and of

550 counts per second with strong signal. For an effective

comparison, we choose suitable values for these parameters

based on the models used in the simulation. In Fig. 3(c) and

Fig. 3(d), we observe that SPRT exhibits a good performance

with an FR of 0% in the first 60 seconds. Due to the delay

effect caused by the accumulation of measurements over time,

it does not perform well in the first half period of the last 60

seconds, resulting in an MR of 51.67% and 20%, respectively.

The clustering degree of source location estimates in SSEM

is represented by the average distance between the source

location estimates and their center. The detection patterns with

weak and strong signal strengths are plotted in Fig. 3(e) and

Fig. 3(f), respectively, in which, the horizontal line with the

value of 77 (the same below) represents the threshold of the

average distance: if the average distance is higher than the

threshold line, claim no source; otherwise, claim a source. In

Fig. 3(e), we observe that when the signal strength is weak,

SSEM still exhibits a good performance with an FR of 5%

and an MR of 3.3%. In Fig. 3(f), we observe that with strong

signal strength, the detection pattern is much clearer, resulting

in an FR of 6.67% and an MR of 0%.

The results in Fig. 3 show that in the static case, SSEM

exhibits an overall superior performance over MV and SPRT.

b) Case 2: A Single Moving Target with Weak or Strong Signal

Fig. 4. shows the experimental results of the moving case.

The results obtained by MV with weak and strong signal

strengths are plotted in Fig. 4(a) and Fig. 4(b), respectively.

In these two experiments, the threshold of each sensor is also

set to be the average background noise, i.e., 200 counts per



TABLE I
COMPARISON OF DETECTION PERFORMANCE OF MV, SPRT, AND SSEM USING MANUALLY GENERATED DATA.

Prob Size MV (%) SPRT (%) SSEM (%)
(Number Static Source Moving Source Static Source Moving Source Static Source Moving Source

of Sensors) FR MR FR MR FR MR FR MR FR MR FR MR

15 50.00 0 54.00 0 0 63.00 0 72.00 3.67 9.00 1.50 38.00

20 47.67 0 44.00 0 0 56.00 0 79.00 8.30 0.67 5.50 20.00

25 45.67 0 59.50 0 0 37.33 0 75.50 8.00 1.30 5.50 22.50

30 46.00 0 50.00 0 0 46.33 0 71.50 5.00 2.30 8.00 18.00

35 58.67 0 54.00 0 0 48.67 0 74.00 0 6.70 8.50 23.00

40 48.00 0 51.50 0 0 38.67 0 70.00 2.50 0 2.50 23.50

45 56.00 0 54.00 0 0 34.33 0 75.00 0.60 1.67 9.50 19.50
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Fig. 3. The detection results in the static case: (a) MV with weak signal
strength, (b) MV with strong signal strength, (c) SPRT with weak signal
strength, (d) SPRT with strong signal strength, and the detection patterns of
(e) SSEM with weak signal strength, and (f) SSEM with strong signal strength.

second. We observe that the performance of MV in the moving

case is similar to that in the static case with an FR of 45%.

The detection results of SPRT with weak and strong signal

strengths in the moving case are plotted in Fig. 4(c) and

Fig. 4(d), respectively. We choose the values for the four

parameters of SPRT as follows: a required false alarm rate

of 5%, a required missed detection rate of 5%, a background

noise strength of 180 counts per second with weak signal and

200 counts per second with strong signal, and a received signal

strength of 400 counts per second with weak signal and 2000

counts per second with strong signal. In these experiments, we

observe that SPRT achieves a good detection performance as

in the static case when there is no source present, but has a

missed detection rate of 60% and 50% with weak and strong

signal strength, respectively, in the presence of a moving

source.

The detection patterns (i.e., the average distance between

the source estimates and their center) in SSEM with weak and

strong signal strengths are plotted in Fig. 4(e) and Fig. 4(f),

respectively. The threshold of the average distance is again set

to be 77 using the same subsets of sensors as in the static case.

In Fig. 4(e), we observe that SSEM achieves a false alarm rate

of 20% and a missed detection rate of 15% with a weak signal

strength. In Fig. 4(f), we observe that the detection pattern is

much clearer with strong signal strength, resulting in a false

alarm rate of 0% and a missed detection rate of 20%. It is

worth pointing out that the detection pattern in the moving case

in the presence of a source exhibits a quadratic curve, whose

lowest point corresponds to the moment when the source is

approaching the center of the detection region such that every

sensor is receiving a certain amount of signal. As the source

is moving away from the center of the detection region, the

sensors receive a smaller amount of signal, hence leading to

a larger average distance or a lower degree of clustering.

The above results show that SSEM exhibits an overall

superior performance over MV and SPRT in the moving case.

4) Illustration of SSEM under Different Resolutions

The performance of SSEM depends on the grid resolution.

Fig. 5 shows the clustering pattern of the source estimates

for target detection in SSEM under different resolutions. Fig.

5(a)(c)(e) plot the degree of clustering in the static case

under the resolutions of 1m, 0.5m, and 0.2m, respectively, and

Fig. 5(b)(d)(f) plot the degree of clustering in the moving case

under the resolutions of 1m, 0.5m, and 0.2m, respectively. The

detection pattern becomes clearer as the resolution increases.

C. Experiment Set 2 on Synthetic Radiation Data

1) Simulation Settings

We run the second set of experiments on synthetic radiation

data generated by the method in [27] in the same square region

of 10m× 10m, divided into 100× 100 grids with an interval

of 0.1 meters along both dimensions. The average background

noise is set to be 250 counts per second. Similar to the static

case in Experiment Set 1 on manually generated data, each

experiment lasts for two minutes: no source during the first

minute and a radiation source with a strength of 500 counts per

second is placed at the center grid (50, 50) during the second

minute. Again, the number of sensors is increased from 15 to

45 with an interval of 5 sensors, and in each run of SSEM,
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Fig. 4. The detection results in the moving case: (a) MV with weak signal
strength, (b) MV with strong signal strength, (c) SPRT with weak signal
strength, (d) SPRT with strong signal strength, and the detection patterns of
(e) SSEM with weak signal strength, and (f) SSEM with strong signal strength.

TABLE II
COMPARISON OF DETECTION PERFORMANCE OF SPRT AND SSEM

USING SYNTHETIC DATASETS.

Number SPRT (%) SSEM (%)
of Sensors FR MR FR MR

15 0 17.39 5.88 7.56

20 0 21.70 6.72 4.20

25 0 11.30 7.56 1.68

30 0 9.56 5.88 2.52

35 0 7.80 3.36 3.36

40 0 10.40 4.20 2.52

45 0 6.95 3.30 0.84

these sensors are partitioned into 5 subsets. The parameter

values of SPRT remain the same as those in Experiment Set 1.

2) Performance Comparison

The performance comparison in terms of both FR and MR

between SPRT and SSEM is tabulated in Table II. The MV

method is not included for comparison in these experiments

as it tends to yield a high FR if the threshold is set to be the

mean of background noise as in the first set of experiments,

and also a high MR when the majority of the sensors fail

to detect the source when they are far away from it with an

increased threshold. We observe that SPRT still performs well

in terms of FR but yields a high MR as in Experiment Set

1. These results show that SSEM exhibits an overall superior

detection performance on the synthetic radiation datasets.
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Fig. 5. The detection patterns in SSEM under different grid resolutions: the
circles represent the situations without a source, and the pluses represent the
situations with a static or moving source.

Fig. 6. Grid partitions for the deployment of 45 detectors after the first-level
k-means clustering.

3) Illustration of SSEM

Fig. 6 shows the region partitioning for the deployment

of 45 sensors produced by the first-level k-means clustering.

These sensors are almost evenly distributed across the entire

region. Fig. 7 shows the distribution maps of source strength

estimates calculated based on the measurements of three

sensors. We observe that these three distribution maps create

a small intersection area, and the grid within this intersection

area corresponding to the source location has the minimum

variance of source strength estimates. Fig. 8 plots the variation

of clustering degrees in SSEM with no source in the first 60

seconds and with a source in the last 60 seconds. Obviously,

we are able to place a threshold line to separate these two

scenarios for target detection.

VI. CONCLUSION

Target detection is one fundamental problem in many sen-

sor network-based applications. We proposed an integrated
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Fig. 8. The variation of clustering degrees in SSEM with no source in the
first 60 seconds and with a source in the last 60 seconds.

method that combines both sensor deployment and data fusion

for the detection of a single static or moving target. Extensive

experimental results show that, under the considered scenarios,

the proposed solution is more effective than several well-

known methods for target detection in a static or moving case.

Similar to other threshold-based detection methods, the

threshold used in SSEM has a critical impact on the detection

performance. Instead of deriving a threshold based on the

footprint of the sensor deployment, it is of our interest to

develop a systematic approach to decide the threshold. Also,

we will compare the time complexity with other grid-based

detection methods and determine an appropriate resolution to

meet the time requirement of the application.
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