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Abstract—Target detection is one fundamental problem in
many sensor network-based applications, and is typically tackled
in two separate stages for sensor deployment and data fusion.
We propose an integrated solution, referred to as SSEM, which
combines 2-level clustering-based sensor deployment and Source
Strength Estimate Map-based data fusion for the detection of a
single static or moving target. SSEM conducts the first level
of clustering to determine a sensor deployment scheme and
the second level of clustering to divide the deployed sensors
into multiple subsets. For each sensor, the source strength is
estimated at each grid point of the entire region based on
a signal attenuation model, and for each subset of sensors,
the target location is estimated using a strength distribution
map-based statistical analysis method. A final detection decision
is made by thresholding the clustering degree of the target
location estimates computed by all subsets of sensors. Compared
with traditional grid-based target detection methods, SSEM
significantly reduces the computation complexity and improves
the detection performance through an integrated optimization
strategy. Extensive simulation results show the performance
superiority of the proposed solution over several well-known
methods for target detection.

Index Terms—Sensor networks; source detection; sensor de-
ployment; cluster analysis.

I. INTRODUCTION

Sensor networks have found pervasive applications in many
agricultural, civil, industrial, and military domains for various
purposes [1], [2], [3], [4], [5]. Target (or signal source)
detection is considered as one of the fundamental problems
in such sensor network-based applications and has been the
focus of research for decades. Most of the existing research
efforts on target detection are focused on one single technique
through either data fusion or sensor deployment, and have
met with considerable success in various contexts. However,
combining multiple techniques from both aspects to improve
runtime efficiency and detection performance still remains
largely unexplored.

Several methods for target detection exemplified by Maxi-
mum Likelihood Estimation (MLE) [6] employ a grid-based
data fusion approach. In such grid-based detection methods,
the key idea is to construct a grid map of the entire region,
use the signal probability density function to formulate a
statistical framework at each grid point, and make a detection
decision at the grid point with the highest probability. These
traditional grid-based methods have won a good reputation
with a satisfactory detection performance, but are generally
computationally very expensive due to the complexity of
the likelihood function, especially at high resolutions. More
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precisely, the detection performance of these methods highly
depends on the accuracy of the likelihood function, which
in turn determines the complexity of computation. There are
cases where the likelihood function may be too complicated
to calculate, e.g., in the radiation detection and localization
problem with significant randomness in the source signal and
background noise [7], [8]. In many cases for such problems,
we may only be able to derive an approximate solution.

Sensor deployment has been another active research area
for target detection (or region coverage) in many sensor
network-based applications. Most of the conventional sensor
deployment strategies consider two deployment objectives: 1)
minimize the deployment cost, which is generally determined
by the number of sensors to be deployed in the region;
and ii) maximize the detection performance such that the
entire detection region is covered with the maximum signal
strength [9], [10], [11].

In this paper, we propose an integrated solution, referred
to as SSEM, to the detection of a single static or moving
target through 2-level clustering-based sensor deployment and
Source Strength Estimate Map-based data fusion. SSEM con-
ducts the first level of clustering, where each grid point is a
clustering object and each sensor is considered as a clustering
center, to determine a sensor deployment scheme, and the
second level of clustering to divide the deployed sensors into a
number of subsets. For each sensor, the source signal strength
is estimated at each grid point of the entire region based on
a signal attenuation model, and for each subset of sensors,
the target location is estimated using a distribution map-
based statistical analysis method. A final detection decision
is made by thresholding the clustering degree of the target
location estimates computed by all subsets of sensors. Com-
pared with traditional grid-based target detection methods,
SSEM significantly reduces the computation complexity and
improves the detection performance through an integrated
optimization strategy. Extensive simulation results illustrate
the performance superiority of the proposed integrated solution
over several commonly used methods for target detection in
practice.

The rest of this paper is organized as follows. Section II
conducts a survey of related work. Section III formulates
the target detection problem. Section IV proposes the SSEM
detection method with the integration of sensor deployment
and data fusion. Section V evaluates the performance of SSEM
through simulations. Section VI concludes our work.



II. RELATED WORK

A detection algorithm infers the presence or absence of a
target or a signal source based on sensor measurements col-
lected by a single or multiple sensors. In absence of noise and
measurement errors, a detection can be made when the sensor
receives a measurement that differs from the background
profile. Unfortunately, in practice, sensor measurements are
subject to statistical variations of the signal intensity and
changes in the background noise.

Many methods and frameworks have been proposed and
developed for target detection in different contexts, mainly
in two categories: one is localization-based and the other is
grid-based [6]. The methods in the first category include i)
triangulation-based detection [12], [13], ii) Ratio of Squared
Distance (RoSD)-based detection [14], and iii) time difference
of arrival (TDoA)-based detection [15], [16], [17]. In general,
these localization-based detection methods follow a similar
3-step procedure: a) use a certain signal attenuation model
to build the relation between the source location and the
signal strength; b) construct an equation system to solve for
the source location; and c) use the estimated source location
to make a detection decision. The main advantage of these
methods is that there may exist a fast closed-form solution to
the equation system, which makes it very efficient. However,
if solving the equation system itself is prohibitively expensive
or there are distractive solutions (e.g., “phantom” real roots or
even imaginary roots) to the equation system, the robustness of
a localization-based method would significantly decrease. The
detection methods in the second category build a grid map of
the entire region, use the signal probability density function
to formulate a statistical framework at each grid point, and
make a detection decision at the grid point with the maximum
likelihood [18], [19], [20]. These methods are able to produce
a robust and satisfactory detection performance but at the
cost of expensive computation due to the complexity of the
likelihood function or the high resolution of the grids.

Considering the pros and cons of the aforementioned tra-
ditional methods, this work combines a two-level clustering-
based method for sensor deployment and a statistical analysis
method with source location estimate distribution for data
fusion to achieve a robust detection performance without
involving complex optimization modeling or equation solving.

III. PROBLEM FORMULATION

We consider the problem of deploying a given set of sensors
in a two-dimensional (2D) continuous surveillance region R
with an arbitrary shape to detect the existence of a potential
static or moving target 7. At each time step, a detection
decision has to be made based on the sensor measurements.

This problem consists of two major components: sensor
deployment that determines where to place sensors in the
region and data fusion that determines how to integrate the
measurements from individual sensors to make a global de-
tection decision at each time step under two hypotheses: 1)
Hy: there is no target present, and ii) H;: there is one target
present. Under Hy, we wish to minimize the false alarm rate

(FR), defined as the percentage of time steps that provide a
false positive decision. Under H;, we wish to minimize the
missed detection rate (MR), defined as the percentage of time
steps that provide a false negative decision.

In this typical passive target detection problem, we consider
a generic signal attenuation model defined as a function f of
the Euclidean distance d between each sensor and the target
or source emitting the signal. The signal strength m emitted
by a target T' and received by the k-th sensor is calculated as

A
my = T + Bk, (D

where A is the original signal I;trength of the target and Bj
denotes the background noise observed by the k-th sensor
under a certain probability distribution. Note that different
targets (signal sources) such as radioactive, infrared, and
acoustic sources feature different forms of signal attenuation.
For example, in radiation detection, f(-) is typically modeled
as a quadratic function. However, our proposed method is
generic to tackle any form of f(-).

Obviously, on a 2D plane, there are at least two unknowns in
Eq. 1, i.e., A and dj, (suppose that the background noise could
be reasonably estimated from historical data). After replacing
dj, and temporarily ignoring the background noise, we can
rewrite Eq. 1 as

A

= S0 (2)
F(V/ (@ —27)? + (y — y7)?)
where xj and yj are the coordinates of the k-th sensor, and
zr and yr are the coordinates of the signal source or target
T. If a sensor deployment scheme is given, we would know
the location of each sensor. Hence, in Eq. 2, there are three
unknowns, i.e., A, 7, and yr.

my =

We formally define a passive target detection problem
involving both sensor deployment and data fusion, referred
to as PTD-SDDF, as follows.

Definition 1: PTD-SDDF: Given a set of n sensors S =
{51, 82, ..., 8n}, a potential target T of signal strength A with
an attenuation model defined by Eq. 2, we wish to determine
a sensor deployment scheme for the sensor set S and a data
fusion scheme to integrate the measurement m; from each
individual sensor s;, 7 = 1,2,...,n, at a certain time step
such that the following detection performance is optimized:

{Ho : min(F R), there is no target present, 3)
H, : min(M R), there is one target present.

The difficulty of PTD-SDDF mainly arises from the fact
that the source measurements under H; and the background
noise under H, are comparable quantities and both contain
significant random components in real environments especially
outdoors, which rule out any deterministic optimal solution.

IV. CLUSTER-BASED TARGET DETECTION

We propose a two-level clustering-based solution using
source strength estimate map, referred to as SSEM, which
integrates sensor deployment and data fusion for the detection
of a single static or moving target. We first present the overall
structure of SSEM, and then details the rational behind the
choice of methods for sensor deployment and data fusion.



A. Design of SSEM

The key steps of the proposed SSEM algorithm are provided
in Alg. 1.

Algorithm 1 SSEM

Input: a set of n sensors s; to be deployed in region R and the
corresponding received signal strength m; of each deployed
sensor, ¢t =1,2,...,n.

Output: a sensor deployment scheme and a detection decision
on the existence of a potential source.

1: Divide the region R into p X ¢ uniform contiguous grids, each
of which is indexed by a pair of (3,7), i = 1,2,...,p, j =
1,2,...,q.

2: Partition the grids into m clusters using the first-level k-means
method and deploy one sensor at the center of each cluster.

3: Partition the deployed sensors into w non-overlapping subsets
SS using the second-level k-means method.

4: At each time step, based on each sensor’s measurement m;, build
a source strength estimate map by estimating the source strength
at each grid according to the attenuation model.

5: For each subset S'S of sensors, estimate the source location at the
intersection grid of the source strength estimate maps produced
by all sensors in the same subset.

6: Calculate the clustering degree or compactness of the source
location estimates by all subsets of sensors obtained in Step 5.

7: Compare the clustering degree in Step 6 with a threshold: if the
clustering degree is higher than the threshold, there is a source;
otherwise, there is no source.

In Step 1, similar to many other grid-based detection
approaches, the number of grids is determined by the re-
quirements on the grid resolution and the constraint on the
computational overhead.

In Step 2, we conduct the first-level clustering to decide a
deployment scheme for the given sensors. In Step 3, we need
to choose an appropriate value for the number w of subsets,
which in turn determines the number of sensors in each
subset. Having more sensors in the subset would gather more
information about the source, but also increase the overhead
of computation. In practice, we choose a value for w based on
our empirical study such that the average number of sensors
in each subset % > 5. When n is small, we may exhaust the

n/w
combinations of w subsets to form é C’fl Jw NEW subsets.

In Step 4, at each time step, based on the measurement of
each deployed sensor, we build a source strength estimate map
by estimating the source strength at each grid according to the
signal attenuation model.

In Step 5, for each subset S.S of sensors, we estimate the
source location (z7,yr) to be the intersection grid of the
source strength estimate maps produced by all sensors in the
same subset, i.e., the grid (¢, ) with the minimum variance of
the source strength estimates, i.e.,

1 R _
argmin [ ——-— - (Al—A2), @
(z:,y;)ER |SS| VSL;S'S

where (7;,y;) are the coordinates of each grid (7, j) within
region R, A; is obtained in Step 4, i.e., the estimated signal

strength calculated by Eq. 2 with the measurement m; of

(xr,yr) =

sensor s; in the sensor subset under the assumption that the
source is located within the current grid (i, ), and A is the
average signal strength estimate at (¢, j) over the sensor subset.

In Step 6, there are different ways to calculate the clustering
degree for measuring the compactness of all source estimates
obtained in Step 5 [21], [22]. In this work, the clustering
degree is reflected by the sum of the distances between the
source estimates and their centroid. A higher clustering degree
means a more dense (or compact) distribution of the calculated
source estimates.

We would like to point out that SSEM does not involve any
complex optimization model. The time complexity of SSEM
is O(p - q-n+ w), where w is the number of sensor subsets,
excluding the standard k-means method in Steps 2 and 3,
which can be done offline. Moreover, since the signal strength
estimation at each grid for each sensor is independent of each
other, the algorithm framework of SSEM can be parallelized
for higher runtime efficiency.

B. Sensor Deployment for Target Detection

Sensor deployment is an important component of SSEM.
We employ a clustering-based sensor deployment strategy with
the following considerations:

i) If there is no source, the deployment scheme should
lead to a low clustering degree of the estimated source
locations computed by all subsets of sensors; otherwise,
it should lead to a high clustering degree. If the sensors
are deployed too close to each other, they would produce
similar measurements regardless of the existence of a
source. In this case, no matter how subsets are divided,
the source locations estimated by all sensor subsets would
be close to each other, leading to a high clustering degree
and hence making it hard to determine whether or not
there is a true source.

ii) The received signal strength of each sensor should be
high enough to resist the background noise at each pos-
sible source location. Since the received signal strength
depends on the distance between the sensor and the
source, each possible source location, i.e., each grid point,
should be close enough to some sensors to produce a high
received signal strength.

The above two considerations are aligned well with those in
a typical clustering problem: i) within each cluster, the objects
should be as close to the corresponding cluster center as pos-
sible; while ii) the distance between two cluster centers should
be as far as possible. Therefore, we model the sensor deploy-
ment problem as a clustering problem, where the number of
clusters is the number of sensors to be deployed. There exist
many algorithms for this type of semi-supervised clustering
problem, including the k-means method. By applying the k-
means clustering model to our sensor deployment problem,
we have the following optimization objective:

min» > wi - (lpy —will® + g —vill?), (5)
=1 (p;,q;)€C; . . .
where p; and ¢; denote the location of the j-th grid point,

u; and v; denote the location of the i-th sensor, k is the
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Fig. 1. Deployment of six sensors using the k-means method in (a) a square region, (b) a circular region, and (c) a triangular region.

number of sensors and C; denotes the i-th cluster. The weight
coefficient w; could be used to assign a priority to certain
areas. For illustration purposes, Fig. 1 plots several simple
and representative deployment schemes for a given set of six
sensors, obtained by the k-means method, in which the weight
coefficient w;’s are set to be 1. In addition, different colors
represent different clustering results and the black triangular
marks correspond to the sensor locations. Fig. 1(a)(b)(c) plot
the sensor deployment scheme for target detection in a square,
circular, and triangular region, respectively.
C. Grid-based Data Fusion

In SSEM, the region R is first divided into a number of
uniform contiguous grids, each of which is indexed by a pair
of (i,7). Assuming that a source be located at a certain grid
point, for a given sensor deployment scheme, we can estimate
the signal strength A based on the measurement of each
deployed sensor under a given attenuation model according to
Eq. 2. Obviously, the accuracy of the signal strength estimate
depends on the distance between the grid point where the
source is assumed to exist and the true location of the source:
the closer this grid point is to the true source location, the
higher accuracy the source signal strength estimate has. Hence,
the grid point that is the closest to the true source location
would lead to the most accurate estimates of the true signal
strength. The similarity of such signal strength estimates could
be measured by their variance and used to derive the existence
of a target.

However, even if there is no source present, there still exists
a grid point with the minimum variance of the signal strength
estimates. To resolve this issue, we partition the deployed
sensors into a number of subsets and use each subset of
sensors to find the source location with the minimum variance
of the signal strength estimates. If there is a source present,
each subset of sensors would lead to a similar source location
estimate; otherwise, each subset of sensors would lead to a
different source location estimate. Therefore, we may make a
detection decision based on the clustering degree of the source
location estimates calculated from all subsets of sensors.

V. PERFORMANCE EVALUATION

We conduct a simulation-based performance evaluation and
illustration of the proposed SSEM method in comparison
with several existing methods for passive target detection
widely adopted in real applications. We shall start with a brief
introduction to the methods in comparison.

A. Detection Methods in Comparison
1) Sequential Probability Ratio Test (SPRT)

SPRT is a classical target detection method that makes a
detection decision under two hypotheses (a null hypothesis
Hy and an alternate hypothesis H;) or rejects to make a
decision [23]. SPRT accumulates the measurements m from
n sensors within a time window of ¢ time steps, denoted by
M ={mk},i=1,2,--- ,n,and k = 1,2,...,t, and defines a
lower threshold T'H (Hy) and an upper threshold TH (Hy). It
then calculates a probability ratio L = % and compares
it with these two thresholds: if L is below T H(H,) or above
TH(H,), it claims no source present or the presence of a
source; otherwise, it rejects to make a decision. It is worth
pointing out that SPRT has four parameters to be set, i.e.,
the required false alarm rate, the required missed detection
rate, and the received signal strength and the background noise
for each sensor. However, it is generally difficult to set these
parameter values, especially the signal strength. In our ex-
periments, we choose appropriate values for these parameters
based on the models used to generate the measurement data.
2) Majority Vote (MV)

MV is a simple hard fusion method for target detection,
whose key idea is as follows: each sensor makes a local binary
detection decision based on its received signal strength and a
predefined threshold, and a global decision is reached based on
the rule of “majority wins”. There is no systematic guideline
on setting an appropriate threshold for MV. In our experiments,
we set it to be the mean of the background noise to minimize
the missed detection rate.

B. Experiment Set 1 on Manually Generated Data
1) Simulation Settings

In the first set of simulations, we consider a square region
of 10m x 10m, which is divided into a set of grids with an
interval of 0.1 meters along both dimensions. We consider 7
problem sizes based on 15 to 45 sensors with an increment of
5 sensors, available for deployment within the given region.

We run the detection experiments in two cases:

o Case 1: a single static source with weak or strong signal

strength;

« Case 2: a single moving source with weak or strong signal

strength.

In Case 1, the experiment lasts for 2 minutes: in the first 60
seconds, there is no source present, and in the last 60 seconds,
there exists a static source. In Case 2, the experiment lasts for



40 seconds: in the first 20 seconds, there is no source present,
and in the last 20 seconds, there exists a moving source. Under
each case, we repeat the experiments 10 times with different
random seeds and measure the average detection performance.

In the simulation, we manually generate the source signal
strength A and the background noise by for sensor s, both
following the Poisson distribution, and adopt a quadratic signal
attenuation model:

my = dé + bi, (6)
which represents a typical scen:frio in radiation detection [19],
[24], [25], [26].

In all these experiments, the average strength of the back-
ground noise, i.e., the mean value of the Poisson distribution,
is set to be 200 counts per second. The weak signal strength
is set to be 400 counts per second, and the strong one is set
to be 2000 counts per second. In Case 1, we randomly place
a static source inside an area of 5m x 5m at the center of
the region. In Case 2, we simulate a target with either weak
or strong signal moving from position (30, 30) to position (-
30, -30) across the region at the speed of (—0.1, —0.1)m/s.
SPRT and MV are executed for detection based on the sensor
deployment scheme determined by SSEM.

2) Comparison of Detection Performance

We tabulate the average detection performance in terms
of false alarm rate (FR) and missed detection rate (MR) for
MYV, SPRT and SSEM in Table I. Since MV compares the
current measurement with the mean of the background noise,
it exhibits a high detection rate (0% missed detection rate) in
the presence of a static or moving target. However, this method
is not practically useful as it is very sensitive with a false alarm
rate of about 50%. Similarly, in SPRT, we adopt the parameters
for simulation data generation, and it performs very well when
there is no target present (0% false alarm rate). However, since
SPRT attempts to accumulate the measurements over time,
there is a delay effect in the detection of a source, hence
resulting in a high missed detection rate. In general, it is
challenging to set suitable parameter values in SPRT, which
limits its practical use. Compared with these two traditional
methods, the proposed SSEM method achieves a reasonable
detection performance in terms of both FR and MR.

3) Illustration of Algorithm Execution

In order to examine the microscopic behaviors of the detec-
tion methods in comparison, we provide a detailed illustration
of each algorithm execution with 20 sensors.

a) Case 1: A Single Static Target with Weak or Strong Signal

We plot the sensor deployment scheme in Fig. 2 and
partition the sensors into w = 4 subsets using the k-means
method. Since the number of subsets is limited, we exhaust
the combinations of these 4 subsets to generate more (partially
overlapping) subsets to calculate the clustering degree.

The experimental results in the static case are shown in
Fig. 3. The detection results obtained by MV with weak and
strong signal are plotted in Fig. 3(a) and Fig. 3(b), respectively,
where the value of ‘1’ means that there is a source and the
value of ‘-1’ means that there is no source (the same below).
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Fig. 2. The deployment of 20 sensors partitioned into 4 subsets in unit of
decimeter.

In these two experiments, the threshold of each sensor is set
to be the average background noise strength, i.e., 200 counts
per second. In Fig. 3(a) and Fig. 3(b), we observe that MV
has an FR of 56.67% and 46.67%, respectively, in the first 60
seconds, and exhibits a good detection performance with an
MR of 0% in the last 60 seconds.

The results obtained by SPRT with weak and strong signal
strengths are plotted in Fig. 3(c) and Fig. 3(d), respectively.
SPRT has the following parameters: a required false alarm rate
of 5%; a required missed detection rate of 5%; a background
noise strength of 150 counts per second with weak signal and
of 250 counts per second with strong signal; a received signal
strength of 250 counts per second with weak signal and of
550 counts per second with strong signal. For an effective
comparison, we choose suitable values for these parameters
based on the models used in the simulation. In Fig. 3(c) and
Fig. 3(d), we observe that SPRT exhibits a good performance
with an FR of 0% in the first 60 seconds. Due to the delay
effect caused by the accumulation of measurements over time,
it does not perform well in the first half period of the last 60
seconds, resulting in an MR of 51.67% and 20%, respectively.

The clustering degree of source location estimates in SSEM
is represented by the average distance between the source
location estimates and their center. The detection patterns with
weak and strong signal strengths are plotted in Fig. 3(e) and
Fig. 3(f), respectively, in which, the horizontal line with the
value of 77 (the same below) represents the threshold of the
average distance: if the average distance is higher than the
threshold line, claim no source; otherwise, claim a source. In
Fig. 3(e), we observe that when the signal strength is weak,
SSEM still exhibits a good performance with an FR of 5%
and an MR of 3.3%. In Fig. 3(f), we observe that with strong
signal strength, the detection pattern is much clearer, resulting
in an FR of 6.67% and an MR of 0%.

The results in Fig. 3 show that in the static case, SSEM
exhibits an overall superior performance over MV and SPRT.

b) Case 2: A Single Moving Target with Weak or Strong Signal

Fig. 4. shows the experimental results of the moving case.
The results obtained by MV with weak and strong signal
strengths are plotted in Fig. 4(a) and Fig. 4(b), respectively.
In these two experiments, the threshold of each sensor is also
set to be the average background noise, i.e., 200 counts per



TABLE I

COMPARISON OF DETECTION PERFORMANCE OF MV, SPRT, AND SSEM USING MANUALLY GENERATED DATA.

Prob Size MV (%)

SPRT (%)

SSEM (%)

(Number Static Source | Moving Source

Static Source

Moving Source

Static Source

Moving Source

of Sensors) FR MR FR MR FR

MR

FR

MR

FR

MR
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MR

15 50.00 0 54.00

63.00

72.00

3.67
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38.00
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20.00
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Fig. 3. The detection results in the static case: (a) MV with weak signal
strength, (b) MV with strong signal strength, (c) SPRT with weak signal
strength, (d) SPRT with strong signal strength, and the detection patterns of
(e) SSEM with weak signal strength, and (f) SSEM with strong signal strength.
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second. We observe that the performance of MV in the moving
case is similar to that in the static case with an FR of 45%.
The detection results of SPRT with weak and strong signal
strengths in the moving case are plotted in Fig. 4(c) and
Fig. 4(d), respectively. We choose the values for the four
parameters of SPRT as follows: a required false alarm rate
of 5%, a required missed detection rate of 5%, a background
noise strength of 180 counts per second with weak signal and
200 counts per second with strong signal, and a received signal
strength of 400 counts per second with weak signal and 2000
counts per second with strong signal. In these experiments, we
observe that SPRT achieves a good detection performance as
in the static case when there is no source present, but has a
missed detection rate of 60% and 50% with weak and strong

signal strength, respectively, in the presence of a moving
source.

The detection patterns (i.e., the average distance between
the source estimates and their center) in SSEM with weak and
strong signal strengths are plotted in Fig. 4(e) and Fig. 4(f),
respectively. The threshold of the average distance is again set
to be 77 using the same subsets of sensors as in the static case.
In Fig. 4(e), we observe that SSEM achieves a false alarm rate
of 20% and a missed detection rate of 15% with a weak signal
strength. In Fig. 4(f), we observe that the detection pattern is
much clearer with strong signal strength, resulting in a false
alarm rate of 0% and a missed detection rate of 20%. It is
worth pointing out that the detection pattern in the moving case
in the presence of a source exhibits a quadratic curve, whose
lowest point corresponds to the moment when the source is
approaching the center of the detection region such that every
sensor is receiving a certain amount of signal. As the source
is moving away from the center of the detection region, the
sensors receive a smaller amount of signal, hence leading to
a larger average distance or a lower degree of clustering.

The above results show that SSEM exhibits an overall
superior performance over MV and SPRT in the moving case.
4) Illustration of SSEM under Different Resolutions

The performance of SSEM depends on the grid resolution.
Fig. 5 shows the clustering pattern of the source estimates
for target detection in SSEM under different resolutions. Fig.
5(a)(c)(e) plot the degree of clustering in the static case
under the resolutions of 1m, 0.5m, and 0.2m, respectively, and
Fig. 5(b)(d)(f) plot the degree of clustering in the moving case
under the resolutions of 1m, 0.5m, and 0.2m, respectively. The
detection pattern becomes clearer as the resolution increases.
C. Experiment Set 2 on Synthetic Radiation Data
1) Simulation Settings

We run the second set of experiments on synthetic radiation
data generated by the method in [27] in the same square region
of 10m x 10m, divided into 100 x 100 grids with an interval
of 0.1 meters along both dimensions. The average background
noise is set to be 250 counts per second. Similar to the static
case in Experiment Set 1 on manually generated data, each
experiment lasts for two minutes: no source during the first
minute and a radiation source with a strength of 500 counts per
second is placed at the center grid (50, 50) during the second
minute. Again, the number of sensors is increased from 15 to
45 with an interval of 5 sensors, and in each run of SSEM,
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Fig. 4. The detection results in the moving case: (a) MV with weak signal
strength, (b) MV with strong signal strength, (c) SPRT with weak signal
strength, (d) SPRT with strong signal strength, and the detection patterns of
(e) SSEM with weak signal strength, and (f) SSEM with strong signal strength.

TABLE II
COMPARISON OF DETECTION PERFORMANCE OF SPRT AND SSEM
USING SYNTHETIC DATASETS.

Number SPRT (%) SSEM (%)
of Sensors | FR MR FR MR
15 0 17.39 | 588 | 7.56

20 0 21.70 | 6.72 | 4.20

25 0 11.30 | 7.56 | 1.68

30 0 9.56 5.88 | 2.52

35 0 7.80 336 | 3.36

40 0 10.40 | 4.20 | 2.52

45 0 6.95 330 | 0.84

these sensors are partitioned into 5 subsets. The parameter
values of SPRT remain the same as those in Experiment Set 1.

2) Performance Comparison

The performance comparison in terms of both FR and MR
between SPRT and SSEM is tabulated in Table II. The MV
method is not included for comparison in these experiments
as it tends to yield a high FR if the threshold is set to be the
mean of background noise as in the first set of experiments,
and also a high MR when the majority of the sensors fail
to detect the source when they are far away from it with an
increased threshold. We observe that SPRT still performs well
in terms of FR but yields a high MR as in Experiment Set
1. These results show that SSEM exhibits an overall superior
detection performance on the synthetic radiation datasets.
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Fig. 5. The detection patterns in SSEM under different grid resolutions: the
circles represent the situations without a source, and the pluses represent the
situations with a static or moving source.
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Fig. 6. Grid partitions for the deployment of 45 detectors after the first-level
k-means clustering.

3) Illustration of SSEM

Fig. 6 shows the region partitioning for the deployment
of 45 sensors produced by the first-level k-means clustering.
These sensors are almost evenly distributed across the entire
region. Fig. 7 shows the distribution maps of source strength
estimates calculated based on the measurements of three
sensors. We observe that these three distribution maps create
a small intersection area, and the grid within this intersection
area corresponding to the source location has the minimum
variance of source strength estimates. Fig. 8 plots the variation
of clustering degrees in SSEM with no source in the first 60
seconds and with a source in the last 60 seconds. Obviously,
we are able to place a threshold line to separate these two
scenarios for target detection.

VI. CONCLUSION

Target detection is one fundamental problem in many sen-
sor network-based applications. We proposed an integrated
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Fig. 7. The distribution of source strength estimates calculated based on each
sensor (three sensors are used for illustration).

Clustering degree
B

0 20 40 60 80 100 120
Time points

Fig. 8. The variation of clustering degrees in SSEM with no source in the
first 60 seconds and with a source in the last 60 seconds.

method that combines both sensor deployment and data fusion
for the detection of a single static or moving target. Extensive
experimental results show that, under the considered scenarios,
the proposed solution is more effective than several well-
known methods for target detection in a static or moving case.

Similar to other threshold-based detection methods, the
threshold used in SSEM has a critical impact on the detection
performance. Instead of deriving a threshold based on the
footprint of the sensor deployment, it is of our interest to
develop a systematic approach to decide the threshold. Also,
we will compare the time complexity with other grid-based
detection methods and determine an appropriate resolution to
meet the time requirement of the application.
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