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Abstract—We abstract the accuracy performance of any fuser
into a fusion quality measure that is within the range [0, 1] and
monotonically decreases with increasing errors. Although there
are many possible ways to map the actual error to this quality
measure, we adopt a mapping function consisting of both concave
and convex regions and its parameters can be tuned based on
system design requirements. The effect of communication loss
over the links from the sensors, where estimates are generated,
to the fuser is then considered, and based on the variations of the
quality measure with loss, we define the overall fuser utility that
characterizes the resilience of a fuser with increasingly adverse
communication constraints. Tracking examples are shown to
demonstrate the comparative quality and utility performances
of several closed-form fusers.

I. INTRODUCTION

We consider a network of sensors with sensing and commu-
nication capabilities, which collect information on targets and
generate their state estimates, such as position and velocity.
The sensors send these state estimates to a remote fusion center
periodically, which then combines them to generate global
state estimates for the targets of interest. In reality, due to
the often adverse communication conditions over the network,
for example, the long distances in long-haul networks, the
low propagation speed in underwater acoustic networks, or
the blockage and fading effects in airborne networks, etc., the
messages from the sensors may suffer from random delays
and losses, which could negatively impact the accuracy of
the fused result. Although information fusion is a viable
means to improve the overall target tracking performance, with
increasing loss, the total amount of sensor data arriving at
the fusion center in a timely manner is increasingly reduced,
which would lead to degraded fusion performance.

There have been existing efforts in the literature to address
the information loss in tracking and state estimation. In [3]
and [11], performances under generic estimation and fusion
settings using Kalman filters under variable packet loss rates
have been studied. Various approaches have been proposed
in our earlier works, notably information-based selective fu-
sion [9], retransmission [10], staggered scheduling [8], and
learning-based fusion [6], to counteract the effect of lost or
incomplete sensor data. A number of error metrics can de-
scribe the accuracy performance, such as the trace of the error
covariance matrix, the determinant of the error covariance
matrix, or the root-mean-square error (RMSE) of the position

component estimate, among others. In this work, instead of
evaluating fuser performance using these metrics, we propose
an abstraction of the tracking error performance using a fusion
quality measure QF ∈ [0, 1] that is a monotonically decreasing
function in any of the above tracking error metrics.

A number of high-level quality-measure abstractions can
be pursued in information fusion [2], although we focus on a
unifying approach that maps well-known tracking accuracy
metrics onto the same scale for easy and fair evaluations
of the accuracy performance among possibly diverse system
configurations. We show that the mapping rule from the actual
tracking error E to its associated measure QF (E) should
be designed to satisfy the system requirements and also
considerations such as the penalties for increasing errors in
different operating regions. In particular, we favor a mapping
function that consists of both concave and convex regions so
that the effect of the most “critical” part in the overall fusion
performance corresponds to the steepest descent in QF . In
addition, we show that the overall convex function E(p) with
respect to the loss rate p results in expanded concave regions in
the constructed quality-loss map, and a more resilient fuser has
a comparatively wider concave region. Finally, we use a single
utility metric UF to capture the overall tracking performance
with increasing loss and compare among different fusers.

The rest of the paper is organized as follows. In Section II,
we describe in detail the formulation of the problem and
investigate the chosen function that maps the actual error to
the quality measure. In Section III, we carry out monotonicity
and concavity analysis of the derived quality-loss map, and
define the overall utility measure based on the map. After
briefly reviewing a few closed form fusers, we show in
Section IV the tracking error, quality measure, and utility
measure performances with these fusers using two tracking
examples. The paper concludes in Section V.

II. MAPPING OF ERROR METRICS TO QUALITY MEASURES

Let E represent the actual tracking error metric, for example,
the root-mean-square error (RMSE) of the fused position
estimate, and QF (E) be the mapping function that maps E
to the quality measure QF ∈ [0, 1]. In this section, we
describe how to select an appropriate mapping function based
on the system requirement on overall tracking accuracy and
also design considerations such as the penalty for increasing
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Fig. 1. Candidate mapping functions: (a) linear + zero; (b) convex; (c) concave
+ zero; (d) one + linear + zero; (e) one + convex; (f) concave + convex

errors. In particular, we investigate monotonicity and concavity
conditions of the chosen mapping function and selection of
appropriate parameters.

A. Selection of Mapping Function

Fig. 1 shows a list of candidate mapping functions QF (E)
where the horizontal axes represent the error metric E and the
vertical axes represent the quality measure QF . All the candi-
date functions satisfy the following conditions: (i) QF (0) = 1;
(ii) Qf (∞) = 0; and (iii) QF (E) is a non-increasing function
in E . The linear function in Fig. 1a and the concave function in
Fig. 1c both lead to zero quality measure at finite E values; on
the other hand, the convex mapping in Fig. 1b penalizes small
E values since it features the most significant reduction in the
quality measure in that region. Figs. 1d and 1e show modified
linear and convex mapping functions respectively in which
the first portion, corresponding to the smallest errors, stays
at 1; nevertheless, they still do not eliminate the above issues
entirely besides introducing a “kink” in the function where it is
non-differentiable. Finally, Fig. 1f shows a mapping function
that features a concave region followed by a convex region
and overall has the best characteristics: (i) smooth everywhere;
(ii) monotonically decreasing; and (iii) the reduction in QF is
most prominent in the “middle” portion corresponding to the
most precipitous drop, while the quality drops very slowly in
regions with extremely small or extremely large errors.

To select a curve that has the shape of an inverted S-
shape like that shown in Fig. 1f, the most obvious choices
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Fig. 2. Plots of (a) QF and (b) dQF
dE with β = 1 and variable α choices

are modified sigmoid or logistic functions that can indeed
approximate our desired mapping functions. However, those
functions are defined over (−∞,∞), and we instead consider
using a different function that is defined on [0,∞):

QF (E) =
(

1 +
( E
Er

)α)−β
, (1)

where 0 < Er <∞ is a reference error point and both α > 0
and β > 0 are parameters to be determined.

B. Characteristics of Our Mapping Function

Regardless of α and β choices in Eq. (1), one can easily see
that (i) QF (0) = 1; (ii) QF (∞) = 0; and (iii) QF (Er) = 2−β .
To visualize the behavior of the mapping function, we first
plot QF (E) with a number of α choices while β = 1 and
the reference error point is set to be Er = 20. As shown in
Fig. 2a, smaller α values (e.g., 0.5 and 1) lead to entirely
convex profiles whereas increasing α can result in a more
noticeable concave to convex transition and a sharper transition
in quality from one to zero. These can be confirmed by their
respective derivative curves plotted in Fig. 2b, in which the
minimum (between monotonically decreasing and increasing
portions of a curve) indicates the transition from concave to
convex regions. It can be seen that, with increasing α, the
transition point moves closer to the reference error Er. On the
other hand, if we set α = 4 and vary β values, the plots in
Fig. 3 show that with increasing β, the concave to convex
transition point also shifts left, toward smaller E values, and
overall the transition features a sharper drop in QF .

We state the above observations formally in the proposition
below.
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Fig. 3. Plots of (a) QF and (b) dQF
dE with α = 4 and variable β choices

Proposition 1. The mapping function in Eq. (1) is a mono-
tonically decreasing function over [0,∞); when α > 1 and

β ≥ 1, it has a single inflection point at E =
(
α−1
αβ+1

) 1
α Er

where the function switches from being concave to convex,
and this point monotonically increases with α and decreases
with β.

Proof. From Eq. (1), we take the derivative of the mapping
function and have

Q′F (E) =
d

dE
QF (E) =

−αβ
Er

(
1 +

( E
Er

)α)−β−1( E
Er

)α−1

.

(2)
It is apparent that Q′F (0) = 0 and Q′F (Er) = −αβ

Er × 2−β−1.
Let

g(E) =
( E
Er

)α−1

,

and

h(E) =
(

1 +
( E
Er

)α)β+1

.

Apparently

Q′F (E) =
−αβ
Er

g(E)

h(E)
.

Now, since limE→∞ g(E) =∞ and limE→∞ h(E) =∞, using

L’Hospital’s Rule, we have

lim
E→∞

g(E)

h(E)
= lim

E→∞

g′(E)

h′(E)

= lim
E→∞

1
Er (α− 1)

(
E
Er

)α−2

1
Erα(β + 1)

(
E
Er

)α−1(
1 +

(
E
Er

)α)β
=

α− 1

α(β + 1)
lim
E→∞

1(
E
Er

)(
1 +

(
E
Er

)α)β
= 0,

and then Q′F (∞) = 0. From Eq. (2), for all E ∈ (0,∞),
Q′F (E) < 0, and hence QF (E) is a monotonically decreasing
function.

To show the concavity/convexity of QF , we consider its
second derivative, which can be calculated as

Q′′F (E) =
d

dE
Q′F (E)

=
αβ

E2
r

(
1 +

( E
Er

)α)−β−2( E
Er

)α−2

×[
(αβ + 1)

( E
Er

)α
− (α− 1)

]
. (3)

From Eq. (3), we can easily obtain Q′′F (0) = 0 and Q′′F (Er) =
αβ
E2r

[α(β− 1) + 2] · 2−β−2. The derivation of Q′′F (∞) is some-
what more involved, although we can still apply L’Hospital’s
Rule as before on both of the expanded terms in Eq. (3), and
obtain Q′′F (∞) = 0.

Now, if we let Q′′F (E) = 0 and solve for E , besides

E = 0,∞, another point ET =
(
α−1
αβ+1

) 1
α

also satisfies the
condition. Moreover, for all E ∈ (0, ET ), Q′′F (E) < 0 whereas
Q′′F (E) > 0 for all E ∈ (ET ,∞). Therefore, ET is an inflection
point of QF at which the function changes from being concave
to convex. Finally, suppose

f(α, β) =
( α− 1

αβ + 1

) 1
α

.

It is easy to show that

∂f

∂β
= − 1

αβ + 1

( α− 1

αβ + 1

) 1
α

< 0;

that is, the inflection point ET = Erf(α, β) monotonically
decreases with β. To calculate the partial derivative of f with
respect to α, we first need to take the logarithms on both sides.
After some algebraic manipulation, we obtain

∂f

∂α
=
( α− 1

αβ + 1

) 1
α
[ 1 + β

α(α− 1)(αβ + 1)
− 1

α2
ln
( α− 1

αβ + 1

)]
.

Now, since α > 1 and β ≥ 1, we have 0 < α − 1 < αβ + 1

so that ln
(
α−1
αβ+1

)
< 0 and in turn ∂f

∂α > 0. In other words,
the inflection point ET monotonically increases with α and in
the extreme cases,

ET (α, β)
∣∣∣
α→1

= 0 and ET (α, β)
∣∣∣
α→∞

= Er.



C. Selection of Appropriate α and β Values

So far we have not considered the detailed setup of α and
β parameters in the mapping function. Recall from the plots
in Figs. 2 and 3 and also the discussions in the previous
subsection, for the same reference error Er, increasing α
and/or decreasing β would lead to sharper transitions from
concave to convex mappings. Now, suppose the reference error
overlaps the highest tracking error that the system tolerates;
i.e., Er = EH . If we let QL denote the lowest quality measure
corresponding to this error, i.e., QL = QF (EH), then from
Eq. (1), we have QL = 2−β , or equivalently

β =
ln
(

1
QL

)
ln 2

. (4)

Typically, we have QL ≤ 0.5 such that β ≥ 1. By setting
the inflection point ET in such a way, we penalize the error
increases leading up to EH by rapidly decreasing QF values.

On the other hand, to determine the value of α, the system
can also specify another pair of parameters as a reference
point: EL, the lowest achievable error, and QH , the highest
achievable quality corresponding to this error. Note that due
to system uncertainty, even the best fuser cannot achieve
zero estimation error, or equivalently, a quality measure that
equals one. A statement like “The quality of a 1 m estimation
error is 99 out of 100” is equivalent to EL = 1 m and
QH = 0.99. Plugging (EL, QH) into Eq. (1), we have
QH = (1 + (EL/EH)α)−β ; then α can be solved for as

α =
ln
[(

1
QH

) 1
β − 1

]
ln
(
EL
EH

) =
ln
[(

1
QH

) ln 2

ln

(
1
QL

)
− 1
]

ln
(
EL
EH

) . (5)

Now, since we need α > 1 for initial concave mapping,

from Eq. (5), we have
(

1
QH

) ln 2

ln

(
1
QL

)
− 1 < EL

EH (since both
are within (0, 1) and therefore their logarithms are negative).
Reorganizing this inequality, we have

EL > EH
[( 1

QH

) ln 2

ln

(
1
QL

)
− 1
]
; (6)

or, equivalently,

QH >
(

1 +
EL
EH

)− ln

(
1
QL

)
ln 2

. (7)

III. FUSER QUALITY-LOSS MAP AND UTILITY

In this section, we consider the effect of communication loss
on the fusion quality measure by constructing the quality-loss,
or Q-p map, where p denotes the loss rate. We also propose
the utility measure UF to quantitatively describe the overall
resilience of a fuser against increasing errors.

A. Q-p Map

Let the error performance metric E be a function of the loss
rate p ∈ [0, 1], i.e., E(p). The increase in p corresponds to
increasingly unavailable sensor estimates, upon which a fuser
may exclude the sensor(s) with missing estimates at time of
fusion, or use its own predicted estimates to substitute the
missing ones. Obviously, E(p) is a monotonically increasing
function in p and E(1) =∞ corresponds to the extreme case
where no sensor data are present; in other words, the derivative
of E with respect to p satisfies E ′(p) = dE

dp > 0 for p ∈ (0, 1).
Furthermore, by intuition, the rate of increase in E(p) should
increase with p as well, i.e., E ′′(p) = d2E

dp2 > 0 for p ∈ (0, 1) to
reflect the increasingly adverse effect of missing estimates on
tracking accuracy, as has been evidenced in our earlier studies
and also works such as [3].

In the following discussions, without further specification,
we use the notation “Q” and “QF ” interchangeably to refer
to the quality measure we defined in the previous section. We
now consider the composite function Q(E(p)) : [0, 1] 7→ [0, 1]
that maps E(p) onto the quality measure. We refer to the plot
of QF versus p as the Q-p map, and in the rest of this section,
we qualitatively analyze the behavior of the Q-p map.

First, using the chain rule, we have

dQ

dp
=
dQ

dE
dE
dp

< 0, (8)

for all p ∈ (0, 1); in other words, the fusion quality measure
QF is a monotonically decreasing function with the loss rate
p. Taking the derivatives again on both sides of Eq. (8), using
the chain rule, we have

d2Q

dp2
=
d2Q

dE2

(dE
dp

)2

+
dQ

dE
d2E
dp2

. (9)

We consider the following cases:

• When E(p) < ET , from the previous section, we have
d2Q
dE2 < 0. In addition, in Eq. (9),

(
dE
dp

)2
> 0, dQ

dE < 0,
and due to the convexity of E(p), d

2E
dp2 > 0. As a result, we

have d2Q
dp2 < 0; i.e., for p ∈ (0, pET ) where E(pET ) = ET ,

the Q-p map is concave.
• When p = pET , E(p) = ET , and we have d2Q

dE2 = 0; then
from Eq. (9), d2Q

dp2 = dQ
dE

d2E
dp2 < 0. In other words, at

p = pET , the Q-p map is still concave.
• For p ∈ (pET , 1), the associated errors are in the convex

zone when mapped to QF ; i.e., d2Q
dE2 > 0. And Eq. (9),

now the sum of positive and negative terms, does not lead
directly to a definite sign of d

2Q
dp2 . Due to the continuity of

the individual derivatives in Eq. (9), however, d2Q
dp2 must

be initially negative; in addition, from Eq. (8), in order for
QF to continue decreasing monotonically, it must switch
to convex at a certain point so that QF will remain strictly
positive for all p < 1. Therefore, the concave to convex
transition point of the Q-p map pT must occur here and
we have pT > pET and E(pT ) > ET .
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B. Fuser Utility

The discussions above have assumed the fact that a fuser
is good enough to yield a quality measure QF at zero
loss, namely, well within the concave region of the mapping
function; for example, Q(E(0)) should be reasonably close to
QH in Eq. (7). In addition, we showed that the Q-p map has
an extended concave region in terms of the tracking error at
the transition point.

We now consider the two Q-p map profiles shown in
Fig. 4. Both start with identical lossless quality measures at
QF = 0.95. Compared to the curve labeled as Q1, the Q2-p
map exhibits an expanded concave region, where the transition
occurs around pT = 0.5 as opposed to that around 0.4 for the
Q1-p map. The profile of the Q2-p map is more desirable
since the quality measure QF sustains longer with increasing
loss due to its expanded concave region. We account for the
overall profile of the Q-p maps by defining its fuser utility
measure UF as

UF =

∫ 1

p=0

Q(p)dp, (10)

which is simply Q̄, the mean of QF , or the area under the
curve in the Q-p map. This utility measure enables us to
quantitatively compare the performance of two fusers in terms
of their resilience against increasing loss; with comparable
lossless error performances, a more resilient fuser typically
exhibits a longer concave region, thereby leading to a higher
UF value.

IV. FUSER QUALITY AND UTILITY PERFORMANCE

In this section, we investigate the QF and UF performances
of three closed-form fusers in two target tracking scenarios: (i)
a simple target whose motion is approximately along a straight
line; and (ii) a motion-constrained maneuvering target that
moves along an elliptical track. In particular, we compare the
accuracy performances among the three fusers in either case
and use the utility measure UF to demonstrate their respective
resilience against increasing link-level loss.

A. Fusers

Without loss of generality, we focus on two-sensor fusion
scenarios in the rest of the paper, although the results can be
readily extended to cases involving more sensors.

1) Average Fuser: The simplest average fuser (AF) calcu-
lates the arithmetic mean of the sensor estimates as the fuser
output:

PGk =
1

2
(P1

k + P2
k), (11)

x̂Gk =
1

2
(x̂1
k + x̂2

k), (12)

in which the superscript “G” denotes the global estimate at
the fusion center.

2) Simple Track-to-Track Fuser: The simple track-to-track
fuser (T2TF) is a convex combination of the sensor estimates
as follows [1]:

(PGk )−1 = (P1
k)−1 + (P2

k)−1, (13)

x̂Gk = PGk
(
(P1

k)−1x̂1
k + (P2

k)−1x̂2
k

)
. (14)

It is well known that the common process noise results in cor-
relation in the error cross-covariance across sensor estimates.
However, it is generally difficult to derive the exact cross-
covariances over time; as a result, one may assume that the
cross-covariance is negligible in order to apply this simplified
fuser, even though the result will be suboptimal.

3) Fast Covariance Intersection Fuser: Another fusion
method without knowledge of the cross-covariance informa-
tion is the covariance intersection (CI) algorithm. The intuition
behind this approach comes from a geometric interpretation
of the problem. If one were to plot the covariance ellipses for
PF (defined as the locus of points {y : yTP−1

F y = c} where
c is some constant), the ellipses of PF are found to always
contain the intersection of the ellipses for P1 and P2 for all
possible choices of P12 [5]. The method is characterized by
the weighted convex combination of sensor covariances:

(PGk )−1 = ω1(P1
k)−1 + ω2(P2

k)−1, (15)

x̂Gk = PGk
(
ω1(P1

k)−1x̂1
k + ω2(P2

k)−1x̂2
k

)
, (16)

where ω1, ω2 > 0 (ω1 +ω2 = 1) are weights to be determined
(e.g., by minimizing the determinant of PGk ). A fast CI
algorithm is proposed in [12] where the weights are found
based on an information-theoretic criterion so that ω1 and ω2

can be solved for analytically as follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
, (17)

where D(pA, pB) is the Kullback-Leibler (KL) divergence
from pA(·) to pB(·), and

ω2 = 1− ω1. (18)

When the underlying estimates are Gaussian, the KL diver-
gence at time k can be computed as

Dk(pi, pj) =

1

2

[
ln
|Pjk|
|Pik|

+ dTk,i→j(P
j
k)−1dk,i→j + Tr(Pik(Pjk)−1)− n

]
,

(19)

where dk,i→j = x̂ik− x̂jk, n is the dimensionality of the state,
and | · | denotes the determinant.



B. Tracking Scenario #1: Straight-Line Target

In the first example, we show tracking error performance of
a 2D target whose trajectory is approximately a straight line.

1) Discretized Continuous White-Noise Acceleration
(CWNA) Model: The discretized CWNA model is a simple,
commonly used model in which an object moving in a
generic coordinate system ξ − η is assumed to be traveling at
a nearly constant speed. The discrete-time state equation is
given by xk+1 = Fxk + wk, where (dropping the time index
k), x = [ξ ξ̇ η η̇]T is a vector (with “T” denoting the
transpose) consisting of the position and velocity components
in both coordinates. The transition matrix F is given by

F =


[
1 T
0 1

]
02×2

02×2

[
1 T
0 1

]
 , (20)

where T is the sample period. The covariance of the discrete-
time process noise wk is

Q =

q̃ξ
[
T 3/3 T 2/2
T 2/2 T

]
02×2

02×2 q̃η

[
T 3/3 T 2/2
T 2/2 T

]
 . (21)

where q̃ξ and q̃η are respectively the power spectral densities
(PSDs) of the underlying continuous-time white stochastic
process along either coordinate.

2) Generating Target States and Sensor Estimates: The
state space is initialized as

[ξ0 ξ̇0 η0 η̇0]T ∼ N ([260 60 260 60]T ,

diag{625, 100, 625, 100})
x0 = [ξ0 ξ̇0 η0 η̇0]T

and the process noise PSDs q̃η and q̃η is set to be 0.02 m2/s3

with a sampling period of T = 2 s. Two sensors are used to ob-
serve the target motion where the direct position measurements
are generated with the standard deviations of the measurement
errors being 40 m and 25 m respectively. Kalman filters are run
recursively to generate the state estimates.

3) Quality and Utility Performance: Table I lists the posi-
tion estimate root-mean-square errors (RMSEs) of both sen-
sors and various fusers, where for the latter the communication
links between the sensors and the fusion center have been
assumed to be lossless. Note the track-to-track fuser (T2TF)
outperforms the covariance-intersection (CI) fuser, which in
turn slightly outperforms the average fuser (AF). On the other
hand, Fig. 5 plots their errors with increasing link loss rates,
where one can easily observe the overall convexity of the
error curves. Once the loss rate exceeds a certain level, the
effect of error divergence (e.g., due to prediction) will become
more prominent. To map these errors to an appropriate quality
measure QF , in Table II, we list two options, both with EH ,
the highest tolerable error, set to be 20 m. The QL values for
this reference error are set to be 0.5 and 0.3 respectively for
the two cases, reflecting the more stringent requirement of

TABLE I
POSITION ESTIMATE ROOT-MEAN-SQUARE ERROR (RMSE)

PERFORMANCE (IN m)

sensor/fuser Sensor 1 Sensor 2 AF T2TF CI
RMSE 20.9 14.0 13.3 12.3 13.1
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Fig. 5. RMSE performance of fused position estimates with loss rates

TABLE II
SELECTION OF TWO MAPPING FUNCTIONS

case (EH , QL) (EL, QH) β α ET
1 (20, 0.5) (5, 0.98) 1 2.142 15.3
2 (20, 0.3) (3, 0.99) 1.373 2.714 12.8

the latter. Meanwhile, from the table, another reference point,
namely, the (EL, QH) pair, is set to be (5, 0.98) and (3, 0.99)
respectively. From these system parameters, we can calculate
the α and β values for the desired mapping functions and
can also derive the error corresponding to the inflection point
according to Proposition 1, as listed in the table.

Once we have the mapping function, then the Q-p map for
that particular function can be drawn. Figs. 6a and 6b show
the maps for the above two cases respectively. The overall
lower QF profiles in the latter demonstrate the more stringent
requirement in the system parameters (i.e., higher penalty for
the same error). Besides, one can notice the predominantly
concave profiles followed by convex profiles when the loss rate
becomes high. The transition points pT from being concave
to convex are observed to be around 80% to 90% loss range,
whose corresponding errors (> 20 m) are all well above the ET
values in Table II, as we have discussed in Section III. Finally,
the composite utility UF bar graph in Fig. 6c shows the overall
utility of the fusers as calculated according to Eq. (10). All
three fusers, despite performance differences, yield UF values
of over 0.5 in the first case, while those values are all below
0.5 for the second case stemming from the lower QL choice
for the latter.

C. Tracking Scenario #2: Constrained Maneuvering Target

In this tracking example, we consider a maneuvering target
whose motion is constrained by a known ellipse. Due to the
nonlinearity of the target trajectory, we adopt the nonlinear
coordinated turn (CT) model to describe target state evolution.
Extended Kalman filters (EKFs) are run by the sensors to
generate state estimates. Moreover, due to the presence of the
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Fig. 6. Performance of fused position estimates with two different mapping functions

constraint, after fusing sensor estimates, the fuser may carry
out an additional projection step so that the unconstrained
fused estimates can be projected onto the elliptical constraint.

1) Coordinated Turn (CT) Model: A maneuver usually
follows a coordinated turn (CT) pattern characterized by a
near constant turn rate and near constant speeds along both
coordinates. If we add the turn rate component Ω to the
state vector: x =

[
ξ ξ̇ η η̇ Ω

]T
, the state evolution is

described by the following discretized CT model [1]:

xk+1 = Fkxk + wk

=


1 sin ΩkT

Ωk
0 − 1−cos ΩkT

Ωk
0

0 cos ΩkT 0 − sin ΩkT 0

0 1−cos ΩkT
Ωk

1 sin ΩkT
Ωk

0

0 sin ΩkT 0 cos ΩkT 0

0 0 0 0 1

xk + wk,

(22)

where the covariance matrix of the process noise wk is given
by

Qk =


q̃ξ

[
T 3/3 T 2/2
T 2/2 T

]
02×2

0
0

02×2 q̃η

[
T 3/3 T 2/2
T 2/2 T

]
0
0

0 0 0 0 q̃ΩT

 ,
(23)

in which q̃Ω is the noise PSD of the turn rate component.
2) Generating Target States and Sensor Estimates: Suppose

the target trajectory satisfies the following elliptical constraint:

(ξk − ξc)2

a2
+

(ηk − ηc)2

b2
= 1, (24)

where (ξc, ηc) is the center of the ellipse, a and b are
respectively the radii along the ξ and η axes, and for simplicity,
the major and minor axes of the ellipsis are aligned with the
ξ and η axes. Taking the derivative of the position constraint,
we have the constraint on the velocity as

ξk − ξc
a2

ξ̇k +
ηk − ηc
b2

η̇k = 0. (25)

We can generate target states that satisfy the above con-
straints in two steps: (1) generate states constrained by the
unit circle ξ2 + η2 = 1; (2) transform these states to their
elliptical constrained counterparts by means of translation and
non-uniform scaling. In particular, for the first step, a method
is proposed in [4] that utilizes the traveled distance along
the circular track and its change rate to generate constrained
position and velocity components. More detailed discussions
can be found in [7].

The center of the elliptical track is set at (ξc, ηc) =
(2000, 1000) m with radii along the axes a = 1500 m and
b = 800 m. The initial state of the target is generated around
x0 = (ξc + a, ηc, 0, v0, v0/a) where v0 = 25 m/s; that is,
the initial position is centered around (ξc + a, ηc) and the
mean magnitude of the initial velocity is v0. To account
for the system nonlinearity, both sensors are initialized with
sufficiently large error covariances and run EKF on top of
the CT model with appropriately tuned parameters, i.e., the
process noise PSDs q̃ξ, q̃η , and q̃Ω that reflect the level of
process noise in the target state generation. For direct position
measurements, in contrast to the previous linear tracking case,
measurement mean standard deviations along both axes are set
to be 20 m and 15 m respectively for the two sensors.

3) Generating Projected Fused Estimate: After the sensors
send their state estimates to the fusion center, the fuser first
combines them to generate a fused unconstrained estimate;
then, this unconstrained estimate can be projected onto the
known constraint by certain distance-based criteria. For ex-
ample, in [7], we proposed finding the point on the ellipse
that is closest to the unconstrained estimate by solving a
quartic equation, where the real solution with the smallest
absolute value corresponds to the minimum-distance point on
the ellipse. Such constrained fused estimates have been shown
to outperform their unconstrained counterparts in terms of
overall tracking accuracy.

4) Quality and Utility Performance: Similar to the linear
tracking case, we first investigate the error performance in
Fig. 7a, in which both unconstrained and constrained (shown
as “-proj” cases in the plots) fused position estimate RMSEs
are plotted. Compared to the results shown in Fig. 5, here
the errors start to increase more rapidly at medium loss
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rates, reflecting the overall higher convexity of the E(p)
curves compared to those in the former case. Besides, for
either unconstrained or constrained errors, the same order of
performance is seen: the T2TF performs best, followed by the
CI fuser and AF.

For the mapping function, suppose we have again selected
the reference error EH to be 20 m and α = 4, β = 1 based
on system quality requirements. The one-step projection can
reduce the errors variably by 30-40% compared to their uncon-
strained counterparts. As can be seen from another perspective
in Fig. 7b, for either the unconstrained or constrained group,
the T2TF Q-p map exhibits the longest concave region and
is therefore the most sustained in its quality with increasing
loss rates. Finally, Fig. 7c shows the sorted utilities of the
various fuser setups, in which one can see the lowest UF of
the unconstrained AF output is just above 0.25, whereas the
highest UF can be achieved by the constrained T2TF at over
0.6. Generally speaking, a higher UF value indicates a better
sustained Q-p map and later transition point pT . From Fig. 7b,
the worst-performing unconstrained AF already has a convex
Q-p map at 40% loss, whereas the same does not happen for
the constrained T2TF until 80% loss.

V. CONCLUSION

In this work, we proposed ways to map the actual tracking
errors to a quality measure that is defined on [0, 1] based
on required system accuracy performance. We showed the
monotonicity and concavity properties of the selected mapping
function. In particular, the transition from concave to convex
profiles in the chosen mapping function enable us to highlight
the most critical performance region, thereby selecting a fuser
that yields estimates of better quality and is robust against in-
creasing communication loss. The proposed Q-p map and the
overall utility measure can quantitatively describe and compare
the overall resilience performance of various fusers in the
presence of increasingly adverse communication constraints.

Future work may include incorporation of other communi-
cation constraints such as delay into the quality measure. Also
of interest are ways to utilize predicted quality measures based
on error covariances for making decisions such as the selection
of sensors and/or estimates and also adaptation of estimation

and fusion mechanisms and their parameters to yield fused
estimates that match required system quality performance.
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