
SharP Unified Memory Allocator: An

Intent-based Memory Allocator for

Extreme-scale Systems

Ferrol Aderholdt⇤1, Manjunath Gorentla Venkata1, and Zachary W. Parchman2

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
email: {aderholdtwf1,manjugv}@ornl.gov

2 Tennessee Technological University, Cookeville, TN 38501, USA
email: zwparchman42@students.tntech.edu

Abstract. The pre-exascale systems will soon be deployed with a deep,
complex memory hierarchy composed of many heterogeneous memories.
This presents multiple challenges for users including: how to allocate
data objects with locality between memories and devices for the vari-
ous memories in these systems, which includes DRAM, High-bandwidth
Memory (HBM), and non-volatile random access memory (NVRAM),
and how to perform these allocations while providing portability for
their application. Currently, the user can make use of multiple, disjoint
libraries to allocate data objects on these memories. However, it is di�-
cult to obtain locality between memories and devices when using libraries
that are unaware of each other. This paper presents the Unified Memory
Allocator (UMA) of the SHARed data-structure centric Programming
abstraction (SharP) library, which provides a unified interface for mem-
ory allocations across DRAM, HBM, and NVRAM and is extensible to
support future memory types. In addition, the SharP UMA allows for
portability between systems by supporting both explicit and implicit,
intent-based memory allocations. To demonstrate the ease of use of the
SharP UMA, we have extended both Open MPI and OpenSHMEM-X to
support SharP. We validate this work by evaluating the performance im-
plications and intent-based approach with synthetic benchmarks as well
as adaptations of the Graph500 benchmark.

1 Introduction

Many current extreme-scale systems have a deep, complex memory hierarchy
composed of heterogeneous memories including DRAM and high-performance

⇤This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

graphics DRAM. The memory hierarchy is becoming deeper with the inclusion
of HBM and NVRAM in many current and soon to be deployed systems. With
this trend of a deeper and more complex memory hierarchy continuing into the
exascale era, it is important that users are able to achieve high-performance from
each system executing their scientific or analytic applications.

Currently, for each memory and device in the system, there exists API calls
and libraries capable of allocating data objects on their particular memories.
These include libraries such as malloc in libc for DRAM, CudaMalloc in the
CUDA library for HBM memory on Graphical Processing Units (GPUs), and
the PMEM library for allocating memory on NVRAM. However, for each of these
memories, the libraries are not knowledgeable of the other libraries in the system,
which can create challenges for users who are attempting to obtain locality and
a�nity with their memory allocations.

These challenges and the deepening of the memory hierarchy have caused
many in industry and the research community to develop new memory alloca-
tors capable of e�ciently allocating memory on the newly included memories,
such as the memkind allocator [3]. The memkind allocator is capable of allo-
cating memory on both DRAM and HBM (i.e., MCDRAM on Intel KNL) and
presents itself to the user as an extensible interface, which can support future
heterogeneous memories. However, applications making use of memkind are not
portable between systems as the allocations of data objects are completed in an
explicit manner, which requires systems to have both identical memories and
a�nities between devices and memories.

To alleviate the User from needing architectural knowledge of the machine,
with respect to allocating memory, the User ’s intent could be captured and in-
terpreted to perform the proper memory allocation. Capturing User intent is a
challenging task. The question that needs to be answered is: How do we abstract
the system architecture from the user while still providing accurate memory al-
locations? Abstracting the system while forcing the User to know latency and
bandwidth characteristics of the underlying memory accomplishes little unless
these are used as thresholds for acceptable performance.

This paper presents a higher-level approach to solving this challenge with
the UMA of the SharP library [14]. The UMA is a unified memory allocator ab-
stracting the memories of the system and the allocators for those memories. This
is achieved through an internal, extensible interface that utilizes the excellent
memory allocators for memories such as DRAM, HBM, and NVRAM including
the memkind, CudaMalloc, and PMEM allocators. This allows the user to lever-
age existing allocators while having SharP coordinate memory allocations and
provide data locality and a�nity for the User .

The allocator is presented to the User through a single interface that ab-
stracts the memories from the User such that the User can perform memory
allocations with high-level Hints and Constraints that describe the user’s intent,
enabling intent-based memory allocations. In addition to high-level Hints and
Constraints, users with expert knowledge of the system may explicitly declare
the memory their data is to be allocated on as a constraint to the SharP UMA.

This work makes the following contributions:

– We classify and design higher-level abstractions for Users to perform mem-
ory allocations on multiple memory types in the system while enabling data
locality and a�nity, which will reduce data movement.

– We design and implement the SharP UMA based on these higher-level
abstractions and demonstrate their ease of use by extending both Open MPI
and OpenSHMEM-X [1] to make use of this memory allocator.

– We demonstrate the e↵ectiveness of this allocator with synthetic micro-
benchmarks on multiple systems, demonstrating the portability of the ap-
proach, as well as porting the Graph500 benchmark to make use of our
extended Open MPI and OpenSHMEM-X.

2 Related Work

There are two main areas of research related to this work. The first is the area
of memory allocation, which has been thoroughly studied over many years for
both single node and distributed allocations. The second area focuses on pro-
gramming models that also use similar abstractions to provide portable memory
allocation across various memories within the system. We will first discuss the
area of memory allocators and then the abstractions enabling portable memory
allocations and memory usage.

There have been many memory allocators developed over the past several
years focused on providing simple interfaces for users to allocate memory. The
majority of the earlier memory allocators such as Doug Lea’s dlmalloc [11],
GNU’s malloc (ptmalloc) [8], Jason Evans’ malloc (jemalloc) [6], and others [2].
In each of these allocators, the primary focus is on allocation performance and the
reduction of fragmentation, as well as the elimination of false-sharing, through
interfaces that leveraged arenas or thread specific memory pools inside their im-
plementations. This allowed for thread-based allocations that remained lock-free
resulting in higher-performance within the critical paths of execution and a re-
duction in false-sharing. Because of jemalloc’s ability to perform fast allocations,
it has been leveraged by other allocators such as the memkind [3] and PMEM
memory allocators [9]. The memkind allocator is an extensible memory alloca-
tor that is designed to provide memory allocations on DRAM and HBM for the
Intel Xeon Phi Knights Landing. It accomplishes this by providing interfaces
for the user to create allocators for each memory kind in the system. If there
are memories other than DRAM and HBM, the user must manually implement
the underlying functionality for those memories. The PMEM memory allocator
focuses specifically on persistent memory and provides multiple methods of al-
locating on these memories including: (i) memory-mapping a file in NVRAM
and using jemalloc to provide memory allocations of that memory, (ii) treating
the memory as a data object allowing the user to modify the object as they see
fit throughout execution, and (iii) giving the user a direct interface to treat the
memory as if its virtual scratch memory with jemalloc.

With respect to abstracting the memories of the system and allowing a user to
allocate memory in a portable fashion, there are multiple works focused on these
areas including UNITY [10] and kokkos [5]. UNITY is a library that abstracts
the memories of the system from the user allowing the user to consider only their
data structures. The abstraction is done so the data objects allocated by the user
are placed in memory and moved automatically based on usage and need. Kokkos
similarly handles data placement for the user based on “traits” of memory, which
are declared by the user in order to allocate memory appropriately.

Based on these works, the SharP UMA is di↵erent from the above works
by not only abstracting the memories of the system like UNITY and kokkos,
but also allow the user the place data in memories based on their intent. More
clearly, the user can implicitly and explicitly allocate memory using the SharP
UMA as well as being able to optimize their algorithms and data placement
beyond the capabilities that are provided by our library.

3 Capturing User Intent

Many of the current extreme-scale systems are composed of CPUs, compute
accelerators, and high-performing NICs. These architectures, while delivering
high-performance, are often dissimilar to other systems with di↵erent a�nities
between devices, memories present, etc. With these di↵ering architectures, it is
di�cult for research scientists to produce high-performing, portable implemen-
tations of their scientific algorithms because the implementation will have to
be optimized for each system. With the increasing complexity of the memory
hierarchy, the changes necessary to optimize an application will grow.

Capturing the user’s intent could serve to lessen the changes required for
an application moving from system to system and increase productivity for the
application developer. The challenge of capturing user intent is determining the
required granularity to provide a su�cient amount of performance portability.
While the performance characteristics and programming of particular accelera-
tors may require changes to an application when not using programming models
such as OpenMP or OpenACC, we argue that users should not need to modify
their application when moving from system to system due to architectural dif-
ferences with respect to a�nities and memory types. This is especially true as
we move to systems with an increased heterogeneity of devices.

In general, there are two levels of granularity that could be used to capture
user-intent. These levels include (i) lower-level characteristics and (ii) higher-
level generalizations of the components of the system.

For (i), the lower-level characteristics of the memories used for the storage of
data objects may include performance characteristics or device traits. This can
be demonstrated by having the user specify that a particular data object should
be allocated on a memory with a particular access latency or bandwidth. How-
ever, this requires the user to have a relatively high understanding of the memory
technologies available in the system. Additionally, using specific constraints on
the latency and bandwidth of memories makes the assumption that memory

technologies and their performance will be relatively static. Improving the la-
tency and bandwidth characteristics of memory types could cause previously
assumed values to be incorrect, resulting in an incorrectly behaving application
or a failure at runtime.

In (ii), a higher-level granularity further abstracts the system allowing the
user to know little about the underlying memory other than its general prop-
erties. For example, the user may wish to use HBM on a GPU for their com-
putation, but not know the specific latency and bandwidth measurements of
the HBM. By using a high-level hint, the user would still be able to ensure an
allocation on the proper memory. However, high-level abstractions of the mem-
ory types can produce incorrect results without the coupling of multiple hints
to help describe a�nities to devices or other memory types that may be used.
Using the same example of HBM on a GPU, the user can specify that they wish
to allocate memory on the GPU that is also close to the executing Processing
Element (PE) by combining hints (i.e., a hint for HBM and locality to the PE).

4 SharP Unified Memory Allocator

Based on the discussion in Section 3 and to support the emerging architectures
in extreme-scale systems while providing high-performance and portability, we
have designed an interface to make use of high-level Hints and Constraints to
capture user intent while providing support for memory allocations on various
memories including DRAM, HBM, and NVRAM. In this section, we will discuss
both the capturing of user intent by our unified interface as well as the mapping
from the intent to the underlying allocators.

Unified
Memory
Allocator

CudaMalloc

Memkind

Memkind 0 Memkind 1

Device 0 Device 1

Hints Constraints

Near CPU0 Near CPU1

CPUPMEM

pmem_map

NVRAM GPU

Near GPU0 Near GPU1

Fig. 1: Memory allocation with the SharP UMA.

4.1 Unified Memory Allocator’s Interface

To provide a useful interface for the User , both the system and the allocators
used for the system are abstracted. This abstraction is accomplished by captur-
ing user intent at a high-level with Hints and Constraints and mapping these

correctly to the memories that will use them. To abstract the system and repre-
sent many possible intents the user may have, we provide several Hints specific
to areas such as data (i) usage, (ii) accessibility, and (iii) resilience.

1. Usage: To capture user intent for data usage, we provide various hints
related to usage based on computation. This includes computation on the
Central Processing Unit (CPU) and compute accelerators such as GPUs. In
addition, locality is another aspect of usage that may be described such as
allocation of data objects near the PE and near the NIC.

2. Accessibility: While providing usage hints allows us to narrow a mapping
of intent to a memory, it does not complete it. Coupling usage with acces-
sibility, which describes the properties of the memory with respect to its
accessibility by PEs within a job, we are capable of better defining a map-
ping. Examples of accessibility include memories that are accessible only
within a node, between nodes, and across jobs.

3. Resilience: Resilience is captured from the user and their intent based
on persistence. This allows the user to declare specific data objects need
to be allocated such that the data objects can persist through catastrophic
failures.

The list of hints and constraints can be used individually, where a single
hint is satisfactory for an accurate description of usage, access, or resilience, or
the user can compose the hints and form more complex descriptions. For exam-
ple, describing the level of resilience provided may be di�cult for users. While
only persistence may be used to describe the users intent, memory placement
is important. For instance, if the user wished to describe that memory should
be persistent but backed by the parallel filesystem rather than NVRAM, then
the persistence hint is not satisfactory. However, when adding access hints, as
the parallel filesystem will be accessible between jobs, it can be used for persis-
tent data objects. This mapping is the greatest challenge for this type of unified
interface.

To support the mapping between memories and hints, we first abstract the
physical memories of the system and enumerate their capabilities to be stored
internally. We similarly compose the Hints and Constraints provided by the user
into an enumerated element. Thus, we are capable of determining mapping by
creating a list of matching enumerations between the memories and user intent.
After the mapping is completed, an allocator object is returned to the user, which
allows the user to allocate and free memory on the list of memories satisfying
their request. Explicit allocations are accomplished through the same interface
with explicit Hints (e.g., HINT DRAM0, HINT HBM0, HINT HBM1, etc.).

The resulting interface can be seen in Listing 1.1 and a demonstration of
memory allocation with the SharP UMA in Figure 1.

typedef struct sharp_allocator_info_params {

sharp_hint_t allocator_hints;

sharp_constraints_t allocator_constraints;

} sharp_allocator_info_params_t;

sharp_allocator_obj_t * sharp_allocator_init_obj(sharp_allocator_info_params_t * params);

void * sharp_allocator_alloc(sharp_allocator_obj_t * allocator, size_t size);

void * sharp_allocator_alloc_memalign(sharp_allocator_obj_t * allocator,

size_t size,

int alignment);

int sharp_allocator_free(sharp_allocator_obj_t * allocator, void * buffer);

Listing 1.1: Intent-based Interface for SharP’s UMA

5 Extending Existing Programming Model

Implementations

To demonstrate the ease of leveraging SharP for allocating memory, we have
extended two popular programming model implementations: (i) Open MPI and
(ii) OpenSHMEM-X. In both cases, we extended the implementation to provide
the functionality of SharP to the User . However, in the case of OpenSHMEM, the
programming model, rather than just the implementation, had to be extended to
support the memory allocator. In this section, we will describe the modifications
we made to support SharP in both Open MPI and OpenSHMEM-X.

5.1 Extending Open MPI

In an e↵ort to demonstrate the utility of the SharP UMA, we extended the Open
MPI implementation to support intent-based memory allocations on hierarchical
and heterogeneous memories. To do this, we leveraged the MPI Alloc mem func-
tionality available in the Message Passing Interface (MPI) specification. From
the specification, MPI Alloc mem allocates memory for the user with an e↵ort in
allocating e�cient memory for Remote Direct Memory Access (RDMA) opera-
tions [7]. This allows the user to allocate data objects on memories regardless
of whether the usage is purely local (i.e., local computation) or remote (i.e.,
point-to-point and one-sided communication).

To extend the functionality of MPI Alloc mem to support the SharP UMA,
we made use of its info objects. The info object in MPI is an object contain-
ing key-value pairs, which are parsed by functions like MPI Alloc mem with the
information contained in the object being used to provide extra functionality.
This allowed us to extend the function to support the Hints and Constraints
mentioned in Section 3. This allows Open MPI to allocate data objects based
on user intent across heterogeneous memories.

Unfortunately, the interface for the SharP UMA will generate an allocator
object based on the user’s Hints and Constraints. This presents a challenge

as only Open MPI will have access to the object, which means each call to
MPI Alloc mem will generate a new allocator object and can increase overhead if
placed in critical sections. In order to reduce this overhead, we added a caching
mechanism that caches the most recent allocator objects for future memory allo-
cations. This reduces the overhead as allocator objects only need to be generated
if the Hints and Constraints change between allocations.

Freeing allocated memory is accomplished by making use of MPI Free mem,
which only takes in a pointer to an allocated data object. In order to correctly
free the memory, we keep track of allocated memories in a list that is traversed
to determine if the memory is from SharP. If it is, then SharP will free the
memory.

5.2 Extending OpenSHMEM-X

Unlike the extension of Open MPI, which leveraged interfaces already present in
the MPI specification, OpenSHMEM uses a di↵erent memory model. In Open-
SHMEM, memory is allocated on DRAM in the symmetric heap, which is a
memory heap where all PEs allocate data objects with a symmetric address.
This means, new interfaces must be created such that OpenSHMEM may sup-
port the heterogeneous memories present in many extreme-scale systems.

To provide the necessary support in OpenSHMEM, we created a set of new
interfaces that both create a heap on a particular memory and allow future
symmetric memory allocations on these memories. For simplicity, the addressing
in these generated heaps are asymmetric. The new interfaces are as follows:

– shmemx hhm create: Creates a new heterogeneous memory region for future
memory allocations. This interface takes the Hints and Constraints from the
user along with a size parameter defining how large the heap should be. This
will generate an allocator object, which is stored internally and associated
with the memory region, which we refer to as a partition similar to Cray
SHMEM [12].

– shmemx partition malloc: Allocates memory on the newly created parti-
tion, which interfaces with the allocator object from the SharP UMA. There
are similar allocation interfaces for realloc, aligned memory allocations,
and freeing memory, and, for brevity, they are not listed here.

6 Experimental Evaluation

To evaluate this work, we will validate both the performance characteristics of
the allocator and the correctness of the allocator’s ability to provide intent-based
allocations. To show the performance characteristics of the allocator, we will
only measure the overhead of performing allocations as the allocators ability to
handle fragmentation and other characteristics are already known as the SharP
UMA is leveraging known allocators. To validate the correctness, we make use
of micro-benchmarks to measure the bandwidth and message rate of one-sided

Put operations. We also study the overhead of using the extended program-
ming model implementations from Section 5 with applications by porting and
evaluating the Graph500 benchmark.

The testbeds we used for the evaluation include multiple systems at ORNL
and the Oak Ridge Leadership Computing Facility (OLCF). These include Tur-
ing, a small 16 node cluster comprised of two Intel Xeon processors, 128 GB
of RAM, and a ConnectX-4 EDR interconnect per node, and Rhea, a 512 node
cluster similarly comprised of two Intel Xeon processors, 128 GB of RAM, and a
Connect-X 3 FDR interconnect per node. These two systems are very similar in
composition but have separate a�nities with respect to the NIC, which should
give us a good understanding of the ability of intent-based memory allocation.

6.1 Performance

To determine the overhead of the SharP UMA interface for both Open MPI and
OpenSHMEM-X, we will perform a series of memory allocations and frees with
70% of the operations being allocations and 30% being free operations. This is
completed on increasing sizes of allocations from 8 byte allocations up to 2 MB
huge page allocations with the evaluation of each size being comprised of 20,000
operations. For this benchmark, we made use of the Turing cluster. The results
of this benchmark can be seen in Figure 2.

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Allocation Size in Bytes

SharP UMA
MPI

(a) Open MPI

 0

 5x109

 1x1010

 1.5x1010

 2x1010

 2.5x1010

 3x1010

 3.5x1010

 4x1010

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Allocation Size in Bytes

SharP UMA
SHMEM

(b) OpenSHMEM-X

Fig. 2: Memory allocations and frees using the extended (a) Open MPI and (b)
OpenSHMEM-X versions with the SharP UMA with 70% of operations being
memory allocations. Higher is better.

The results for both the extended Open MPI and OpenSHMEM-X versions
were as expected. For Open MPI, the performance of the extension with SharP
UMA is very poor due to the constant checking of Hints and Constraints to de-
termine if an appropriate allocator object has been created yet. However, the av-
erage time per memory allocation of a page size (i.e., 4 KB) and lower is roughly

-12
-10

-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
Pe

rfo
rm

an
ce

 %

Allocation Size in Bytes

Rhea
Turing

(a) Open MPI

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
Pe

rfo
rm

an
ce

 %

Allocation Size in Bytes

Rhea
Turing

(b) OpenSHMEM-X

Fig. 3: Bandwidth results on two systems with di↵ering a�nities to the NIC.
Higher is better.

-20

-15

-10

-5

 0

 5

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
Pe

rfo
rm

an
ce

 %

Allocation Size in Bytes

Rhea
Turing

(a) Open MPI

-15

-10

-5

 0

 5

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
Pe

rfo
rm

an
ce

 %

Allocation Size in Bytes

Rhea
Turing

(b) OpenSHMEM-X

Fig. 4: Message rate results on two systems with di↵ering a�nities to the NIC.
Higher is better.

7 microseconds, which means the extension is still useful so long as it used out-
side of critical paths. On the other hand, the extension of OpenSHMEM-X is
more favorable with many allocation times being within 5% of the unmodified
shmem malloc timings. This is because the extension for OpenSHMEM-X does
not require a check to determine if a new allocator object needs to be created.
Instead, memory can be allocated from an already allocated pool.

6.2 Correctness

To validate the correctness, we will perform a series of micro-benchmarks in
which we measure the bandwidth and message rate of Put operations on two
systems, Rhea and Turing, which have di↵erent a�nities between DRAM and
the NIC. Thus, if we attempted to allocate memory near the NIC on one system
using the SharP UMA, then we would expect for the memory to be allocated

near the NIC on the other system without any code changes as the memory
should be allocated based on user intent.

For bandwidth and message rate, we increased the message size from 8 bytes
to 1 MB with 10,000 operations being completed for each message size. For the
evaluation of each size, we took the median result. For both systems and both
Open MPI and OpenSHMEM-X, the Unified Communication X (UCX) commu-
nication library [13] was used with short messages used for message sizes up to
128 bytes, bu↵ered messages used for sizes between 128 bytes and 8 KB, and
zero-copy used afterwards. The relative results for each test can be seen in Fig-
ures 3 and 4. In both, the relative performance is normalized based on memory
allocated near the calling PE with both communicating PEs being located with-
out a�nity to the NIC. This particular configuration was chosen as PEs without
a�nity to the NIC su↵er from lower network performance than PEs near the
NIC.

As expected, the relative results for both systems under test follow a similar
path, with an increased amount of similarity when messages are large enough to
make use of zero-copy. For Open MPI, the similarity is less pronounced as the
overhead of bu↵ered messages is quite large on the Turing cluster as compared to
the Rhea cluster. This suggests that as applications move large amounts of data,
the allocation of memory near the NIC is beneficial for PEs without a�nity to
the NIC.

6.3 Graph500

For the Graph500 benchmark, we made use of the one-sided MPI implementation
and the OpenSHMEM adaptation [4]. In each, we modified the implementations
to make use of the interfaces described in Section 5 and allocate memory near
the PE and near the NIC. We used a scale of 16 and evaluated the strong scaling
of the application up to 256 PEs on the Turing cluster. The relative results can
be seen in Figure 5, with the results normalized based on memory allocated near
the PE.

The results of this evaluation are relatively similar showing no significant
improvement in performance by allocating memory near the NIC. However, the
takeaway from these results is that we can now allocate the data objects used
in Graph500 across any memory with a�nities to di↵erent devices. In addition,
the overhead of the allocator for Open MPI does not significantly impact the
performance of the application, which is promising.

7 Conclusion

In this paper, we presented the SharP UMA, an intent-based memory alloca-
tor with a unified interface for allocating memory across DRAM, HBM, and
NVRAM. We presented the interface of the SharP UMA in Section 4 and demon-
strated its simplicity by extending well known programming model implementa-
tions, Open MPI and OpenSHMEM-X, to support the SharP UMA in Section 5.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 16 32 64 128 256

Re
la

tiv
e

Pe
rfo

rm
an

ce
 %

Number of PEs

OpenSHMEM-X
Open MPI

Baseline

Fig. 5: Results of the Graph500 benchmark with results normalized based on
memory allocated near the calling PE. Higher is better.

Additionally, we validated this work through an evaluation that examined the
performance implications of the intent-based allocator and the correctness of
the allocator while moving from system to system. We found the SharP UMA
provides minimal overhead in OpenSHMEM-X, but does provide overhead for
allocations of memory in Open MPI, which can be mitigated by not placing
memory allocations in critical sections. We also showed the movement of our
micro-benchmarks between systems with di↵ering device a�nities without re-
compilation produced similar results, demonstrating the correctness of our im-
plementation. In addition, we ported the Graph500 benchmark to make use of
the extensions we made to Open MPI and OpenSHMEM-X and found relatively
similar performance while having greater control of the allocated memory.

Acknowledgment

This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE O�ce of Science User Facility supported under Contract DE-
AC05-00OR22725.

References

1. Baker, M., Aderholdt, F., Venkata, M.G., Shamis, P.: Openshmem-ucx: Evaluation
of ucx for implementing openshmem programming model. In: Gorentla Venkata,
M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM and Related
Technologies. Enhancing OpenSHMEM for Hybrid Environments. pp. 114–130.
Springer International Publishing, Cham (2016)

2. Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: A scalable
memory allocator for multithreaded applications. SIGPLAN Not. 35(11), 117–128
(Nov 2000), http://doi.acm.org/10.1145/356989.357000

3. Cantalupo, C., Venkatesan, V., Hammond, J., Czurlyo, K., Hammond, S.D.:
memkind: An extensible heap memory manager for heterogeneous memory plat-
forms and mixed memory policies. Tech. rep. (3 2015)

4. D’Azevedo, E.F., Imam, N.: Graph 500 in OpenSHMEM, pp. 154–163. Springer
International Publishing, Cham (2015)

5. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Jour-
nal of Parallel and Distributed Computing 74(12), 3202 – 3216 (2014),
http://www.sciencedirect.com/science/article/pii/S0743731514001257, domain-
Specific Languages and High-Level Frameworks for High-Performance Computing

6. Evans, J.: A scalable concurrent malloc (3) implementation for freebsd. In: Proc.
of the BSDCan Conference, Ottawa, Canada (2006)

7. Forum, M.P.: Mpi: A message-passing interface standard. Tech. rep., Knoxville,
TN, USA (1994)

8. Gloger, W.: Wolfram gloger’s malloc homepage, http://www.malloc.de/en
9. Intel: Intel nvm library, http://pmem.io/nvml/libpmem

10. Jones, T., Brim, M.J., Vallee, G., Mayer, B., Welch, A., Li, T., Lang, M.,
Ionkov, L., Otstott, D., Gavrilovska, A., Eisenhauer, G., Doudali, T., Fer-
nando, P.: Unity: Unified memory and file space. In: Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomput-
ers ROSS 2017. pp. 6:1–6:8. ROSS ’17, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3095770.3095776

11. Lea, D., Gloger, W.: A memory allocator (1996)
12. Namashivayam, N., Cernohous, B., Kandalla, K., Pou, D., Robichaux, J., Dinan,

J., Pagel, M.: Symmetric memory partitions in openshmem: A case study with
intel knl. In: Gorentla Venkata, M., Imam, N., Pophale, S. (eds.) OpenSHMEM
and Related Technologies. Big Compute and Big Data Convergence. pp. 3–18.
Springer International Publishing, Cham (2018)

13. ORNL: UCX: Unified Communication X. http://www.openucx.org (2015)
14. Venkata, M.G., Aderholdt, F., Parchman, Z.W.: Sharp: Towards programming

extreme-scale systems with hierarchical and heterogeneous memory. In: Proceed-
ings of the 6th International Workshop on Heterogeneous and Unconventional Clus-
ter Architectures and Applications (Aug 2017)

