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AM — Selective laser melting process @

Advantages of Laser-based AM Process:

e  Agility and flexibility in design/fabrication
of intricate components

e  Quick turn-around time for
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Z direction — Laser
beam direction

manufacturing and critical in-mission 2\ AL or build
repair = direction

e Conservation of source materials

e  Reduction in manufacturing footprint and
ancillary tooling requirement

Y

e Unique physical properties: non- XY direction — ,  yyipjane

equilibrium state in-plane direction

o XZ plane

O S u pe r|0 r h |g h h d rd n eSS-'- Modified from Edelstahl Rosswag Engineering

O  High strength and cycle fatigue
resistance*

T A. Martens et al., 26" SSF symposium , 1007-1016 (2005)

*E. Brandl et al., Mater Des, 34 159-169 (2012) and ....
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AlSi10Mg — Light weight, good strength, hardnes:sJ
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as well as dynamic and thermal properties
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Presenter
Presentation Notes

Si – enhance castablity, weldability, improve corrosivion resistance
Mg – strengthen ahd harden, improve mechanical property, lower CTE and improve corrosion resistance.

Based on microstructure and published data from Lavernai et al.,  a cooling rate was estimated to be 8.8 X 105 K/s±1 X 105 K/s.





Thermoelectromotive Force (TEMF)


Objectives ) .

= Compare microstructure and thermal properties of as-built
and thermally annealed AM fabricated parts to highlight the
differences imparted by a non-equilibrium process

= Correlate the microstructure evolution and thermal
properties and compare with a first order calculation to shed
light on thermophysical changes in AM fabricated AlSi10Mg
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Things which affect heat transfer @

Phonon gas and collisions
Hot

2 = | Cold Hot =~ | Cold
Conservation of momentum: K; + K, = K; + G

G =0: Normal processes — no collision
« G #0: Umklapp processes — collision and scattering

e Anharmonicity vibration
In lattice and scattering

Things can affect electron and

phonon scattering:

(1) Bulk — contact interfaces, residual
stresses

(2) Microstructure — boundaries (EZ, grain,
cellular), porosity

(3) Atomic level — lattice defects, foreign
atoms (alloying), dislocations, ...

(4) Soft phonon modes, ..., etc.
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Bulk - Re5|dualstressmduced scattering. ) .

AI (111) AI (200) __ AI (111) AI (200) o or

(lﬂ

1 0051

XY (in-plane), as-received Z (out-of-plane), as-received’

015 1 -0.15 1

¥
) y
" 3 y
" .'# i .'~
X .
3
b _—
¥

£
E r 1 021
= e = — [ — 5 'OZW 0.
| | c'\a 0251 | {1 025 |
:§ . ;1 - %: . %: . :3: Standard Deviation = 0.022 :3: Standard Deviation = 0.012
» XY samples have a typical (200) \/W
out of plane orientation, while the Z _ ]
samples show a (200) rolling g1 XY(in-plane) | .| Z(out-of-plane)
texture @ 450°C, 30 min. : 450°C, 30 min.
. o\ 025F 1 025
« The compressive in-plane strains 3} SencardDevaton< 0026 1 0 Sndart Deaton 0021
presented in the as-built samples are '

o4l L s L L L s L s L ' A 04
0 30 60 90 120 150 180 210 240 270 300 330 0 30 60 90 120 150 180 210 240 270 300 330

initially significant, with values in the ¢ (degree) ¢ (degree)

-0.18% for the XY samples and -0.13 _ _
to -0.17% for the Z samples. Heat AM process introduces crystalline texture
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Change in grain size ) B,
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Dissolution of silicon () .
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* Below 150°C, excess Si forms nano-clusters in the alloy.
« Coarsening of Si nanoclusters is observed above 240°C. 240°C, 15 min.
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Thermomechanical response and density (p) ([ &%
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Hardness and Elastic Constants ) .
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15t order calculation of thermal properties

Sandia
National
Laboratories

Room Temperature Properties for Aluminum and Al Sil0Mg Alloy from Literature* and Calculation.

Electronic Contribution to Thermal Properties Reference
Al Free electronic density — (e/m?) 1.809 X10%
Fermi Level (Er) at 0 K — (eV) 11.66
Electron velocity at Fermi Level (Ve)— (m/s) 2024917 * Depends on XY or Z plane
Time between collision (t) - (s/i 7.16 X 10 T At 240°C, before wall collapsed
Electron mean-free-path (lc) — (A) (!B ; :
Electrical conductivity* (o) — (Ohm™ cm™) 365X10° REF Average size and distance
Calculated thermal conductivity (o) — (W/m-K) FZ boundary >>0or > 100 um
Thermal conductivity* (Ae) — (W/m-K) NIST  Grain boundary 15 to 65 le*
Al Phonon Contribution to Thermal Properties Cellular wall 442-1650 nm*
Atomic density (atoms/m?®) 6.029 X 10% i +
Mean acoustic velocity* (v) — (m/s) 3666 Kittle ThICkne_SS_ of C wall 64.8+21.3 nm
Debye Temperature* — (K) 155°C (428) Kittle Precipitates’ ~ 100 nm
Averaged phonon mean-free path (34/Cw) — (A) 80.0 Size of precipitatesT <50 nm
AlSi10Mg Longitudinal sound velocity (m/s) 6453 Nanoclusters << 50 nm
Shear sound velocity (m/s) 3119
Average acoustic velocity (v) (m/s) o 3507
Debye temperature (K) 136°C
Thermal diffusivity (aa) — (M?/s) 4.648 X 10°®
Averaged phonon-mean-free Path from (3au/v) — (A) 39.8

» Nanoclusters, precipitates, and cellular structure significantly effect heat transfer at
low temperature before cellular wall collapses.
» After the cellular wall collapses, the heat transfer will be only limited by electron and

phonon mean free paths in the alloy.
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Thermal conductivity (1) )
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National

Conclusion ) i,

« Fast melting and rapid solidification can significantly
Impact the thermal properties of AM fabricated parts.

e Microstructure evolution, including the dissolution of
excess Si, the growth of Si precipitates, and the
collapsing of the cellular structure, has a profound effect
on the thermal transport in AM fabricated AISI10Mg alloy.

* Implications based on this study are important to ensure
thermal performance of AM fabricated, solution treatable
alloys for practical applications.

Summary Pin Yang, 28" SFF, UT Austin 2017
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Thermal calculation ) B,

(1) The mean free path of electron in pure aluminum can be calculated by
|e = VFT

Where | is the man free path, V is the velocity of the electron above Fermi level, and t is the average
time between electronic collisions. The Fermi velocity can be calculated by

V, =J2E, /m,

Where the Er is the Fermi energy and m. is the effective mass of electron (9.11 X 10%%). The Fermi
energy at zero Kevin is given by

h ( 3N J
Er=—|—
2m, \ 82V
Where N/V is the free electron density, and 7 is the Plank’s constant. The average time between collision

 is determined by the mass of the electron, the number of atoms per unit volume, electrical resistivity (o),
and the electron charge (e)

T= M,
pne’

The thermal conductivity K can be estimated by the Wiedemann-Franz law

2
K:i(éj
3\e

Where o is the electrical conductivity and k is the Boltzmann constant.

(2) Phonon calculation
Phonon mean free path (1) above Debye temperature can be estimated by

3 3

| ~—=
P
Cv v

Where, Cy is the volumetric heat capacity, Cy is the volumetic heat capacity, v is the sound velocity in the
medium, dmeasured longitudinal (v.: 6453 m/s) and the shear (vs: 3119 m/s) sound velocities by the
following relationship,

-1/3
(2.1
3Ly v

(3) Debye temperature (6p)

_ v [6N
2k \av
Where k is the Boltzmann constant.
20
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Fig. 9—Silicon precipitates within dendrites m AISiTMg0.2 alloy that has
been extremely slowly cooled from 813 K.

L. Pedersen and L. Arnberg, “The effect of
solution heat treatment and quenching
rates on mechanical properties and
microstructure in AlSiMg Foundry Alloys,”
Metallurgivcal and Materials Transactions A
32A 525-532 (2001)
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