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Extreme-scale HPC system architectures introduce a 
number of complexities

 Performance Heterogeneity
 Accelerators

 Thermal throttling

 General system noise

 Responses to transient failures

 Energy Constraints

 Decreased system reliability

 Deep memory hierarchies
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Current imperative programming models and runtime systems 
require mitigation of challenges largely at application-

developer level



AMT research is focused on mitigating system 
complexities at the runtime system-level
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 Abstractions provide a 
separation of concerns

 Removal of system-level specifics 
from application code

 Task parallelism 

 Asynchrony, overlap of 
communication and computation

 Load balancing

AMT models are a shift from an imperative to declarative
programming paradigm



Imperative vs declarative programming: a simple 
example
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DeclarativeImperative
Make me a sandwichGet a piece of bread

If likes mustard
Add mustard

If not vegetarian
Add meat

Add cheese
Add veggies
Put more bread on top
Cut in half

Programmer uses explicit 
statements to control program 

state and prescribe order of 
operations

Programmer expresses logic 
without prescribing control-flow



 Directed acyclic graph (DAG) encodes data-task dependencies

 Enables coarse-grained, distributed memory 
analog of instruction-level parallelism

 Data prefetching

 Out-of-order task execution 
based on runtime dependency analysis

 DAG can be annotated to capture

 Tasks’ read/write usage of data

 Task needs a subset of data

 Additional information enables runtime                                            
to reason more completely about 

 When and where to execute a task

 Whether to load balance

 Existing runtimes leverage DAGs with varying degrees of annotation

data-task graph

subset

reads

Asynchronous many task (AMT) models and runtime 
systems provide a declarative programming approach
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What is DARMA?
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DARMA is a C++ abstraction layer for asynchronous many-task 
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of 
tasking that map to a variety of underlying AMT runtime system 

technologies. 



How does DARMA simplify the shift from imperative to 
declarative programming? 
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Application

DARMA

Runtime

OS/ Hardware

Glue Code
(Specific to each runtime)

(Annotated imperative code)

The application “produces” work. 

Annotated imperative code is

processed by DARMA, which builds

the DAG incrementally at run-time.

The DAG is generalization of a

producer-consumer work queue

The runtime system is in charge of

control-flow and the order in which

it “consumes” tasks off of the DAG.
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What is DARMA?



 SNL is developing a new code base for plasma simulations

 Component based approach using the Trilinos framework

 The PIC component of Empire is the basis for our proxy app work

 Two sets on unknowns, mesh data and particles
 Domain decomposition on the fields and the particles can be out of 

balance

 Calculations are localized so colocation is important

 Work can be created in one location and migrate to a different location 

 Potential solution – over decomposition
 Over decomposition breaks the problem up into more units than you have 

computational cores

 Load balance at a middle level of work

 Overlap computation and communication
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EMPIRE: ElectroMagnetic Plasma In Radiation 
Environments



 MiniPIC is an electrostatic PIC miniapp build on MPI+Kokkos.

 In the scope of this L2, a proxy app SimplePIC was developed, 
serving as a miniapp for MiniPIC.

 SimplePIC is a particle move kernel from MiniPIC on a structured 
mesh build on DARMA. MPI based version of SimplePIC was 
developed for benchmark purposes. 

 The current code design flow is: SimplePIC → MiniPIC → EMPIRE.
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From EMPIRE to MiniPIC and SimplePIC



 Tightly integrated with both EMPIRE and DARMA teams

 Designing and developing SimplePIC proxy app

 SimplePIC and the DARMA backend were built up together this 
year 

 Every single new and experimental feature of DARMA was first 
tested on the SimplePIC (performance/productivity feedback)
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My Role in Co-Design

 Made DARMA a more performant, productive, feature rich 
and robust programming model

 Enabled app developer to look at PIC problem from 
completely new perspectives



SimplePIC Proxy Overview

 SimplePIC includes only particle move kernel 

 Domain Decomposition: 2-level 3D structured grid 
 Px

☓Py☓Pz grid of boxes (patches), nx☓ny☓nz grid within each box

 Computational costs:
 O(Nparticle) computation (memory bound), O(Nparticle

☓ patchsurf/patchvol) 
communication, 

 Proxy goal: serve as test ground for PIC algorithm design and 
development on DARMA
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SimplePIC Proxy Algorithm

• Decompose problem into patches and assign them to processing units

• For every patch initialize the swarm (particles on that patch)

• For each time step do (iteration)
• For each particle in the swarm do

• Advance particle until it reaches the patch interface or time expires

• If time is not expired do

• Put particle in the migrants (a buffer, corresponding to that patch interface) 

• Remove particle from swarm

• Compute the total number of migrants in the entire domain

• While total number of migrants > 0 do (micro-iterations)

• For every patch interface exchange the migrants

• For each interface do

• For each particle in migrants do

• Advance particle until it reaches the patch interface or time expires

• If time expired add particle to swarm, otherwise put in migrants

• Compute the total number of migrants
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Balanced and Unbalanced SimplePIC Studies
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 Balanced use case assesses overheads with respect to MPI-only 
implementation
 Every computational cell has N randomly placed particles (5 - 30), with 

random velocities (|v| = const). 

 Imbalanced use case assesses benefits of overdecomposition
and load balancing
 Initially place 80% of particles into the 20% of the domain creating load 

imbalance in the system. 

 The computational experiment was designed such that the system will 
reach to a fully balanced state in 500 iterations and come to the initial 
state in 1000 iterations. 

 In all studies we kept CFL number to a value of 0.96, which 
translates into at most 2 micro-iterations per time step. 



SimplePIC CPU binding and affinity study to determine 
proper settings
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Strong scaling of balanced SimplePIC 
up to 131K cores/2K nodes (KNL)
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1.4B particles
143M cells

138B particles
4.6B cells

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 DARMA overhead with respect to MPI is -5-24%.

 On 2K cores, grain size is too small and, hence, 
degraded scaling.

 MPI scaling degradation is likely due to MPI only 
launch on KNL. 

 DARMA scales super-linearly up to 131K 
cores. 



Strong scaling of balanced SimplePIC 
up to 32K cores/2K nodes (Haswell)
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4.2B particles
141M cells

136B particles
4.5B cells

Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)

 DARMA scales consistently good on up to 
32K cores. 

 Slight overheads can be explained by the 
small problem size on higher core counts. 

 DARMA overhead with respect to MPI is 12-
19%.

 On 2K cores, grain size is too small and, 
hence, DARMA does not have perfect linear 
scaling.

 MPI scales ideally on up to 2K.



Strong scaling of imbalanced SimplePIC
DARMA up to 131K cores/2K nodes (KNL)
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1.8B particles
55M cells
ODF = 8

40B particles
3.4B cells
ODF = 4

Mutrino (KNL, 2K cores) Trinity (KNL, 131K cores)

 For lower core counts, load balancing 
provides around 50% speedup.

 For higher core counts, at least at this 
overdecomposition level, speed up due to a 
load balancer is 20%. 

 These trends are similar for Haswell. 

 Similar trends are present on Trinity at 
these higher scales. 



20

Time Profile Graph of Balanced SimplePIC DARMA on 
2k Cores/64 nodes (Haswell) for 3 Iterations

 x-axis is time and 
y-axis are 
different cores

 Most of the time 
is spent executing 
application tasks

 There is a small 
amount of idle 
time (white) at 
the end of each 
iteration

ODF=1

ODF=8
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Percentage Utilization Graph of Balanced SimplePIC
DARMA on 2k Cores/64 nodes (Haswell) for 3 Iterations

ODF=1

ODF=8

 x-axis is time and y-axis is the 
proportional aggregate of work 
type spent across the worker 
cores

 With an overdecomposition 
factor of 8 (ODF=8) the data 
transfer time is slightly increased

 The idle time at the end of the 
iteration is slightly reduced with 
ODF=8 because the system is 
able to overlap communication 
with computation
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Time Profile Graph of Balanced SimplePIC DARMA on 
2k Cores/64 nodes (Haswell) for last 2 micro iterations

ODF=1

ODF=8

 Processor utilization for 2 micro 
iterations 

 Note the scale: this is 25 
milliseconds

 Overdecomposition increases 
the execution time because data 
transfer is increased (note the 
increase in green and blue area) 

 More particles must cross the 
boundaries with smaller boxes

 Overall processor utilization is 
increased because there is more 
overlap with communication



Projection views of imbalanced SimplePIC 
DARMA on 2K cores (Haswell)
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 Significant improvement 
in load imbalance with 
more frequent calls to 
load balancer. 

 The overhead (cost) of 
load balancer is 
essentially constant. 

 Over 50% CPU utilization 
increase after the first 
load balancer call (in both 
cases).



Conclusions on SimplePIC Performance Study

 Balanced SimplePIC study stressed DARMA overheads with 
respect to MPI. In the worst cases we are off by 25%. 

 Balanced SimplePIC also showed an excellent scalability on 
131K cores.

 Imbalanced SimplePIC demonstrated the benefits of 
overdecomposition and load balancing on 131k cores, while 
maintaining strong scalability.
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Lessons learned on productivity for SimplePIC proxy

 Manual (dynamic) overdecompositon and load balancing in 
MPI can be very tedious and error prone task even for 
structured PIC. For unstructured case, the situation is very 
complex. 

 Data decomposition in DARMA provides intuitive mechanisms 
for work load balancing, while runtime handles scheduling.

 DARMA abstractions are fairly intuitive and provide a 
productive environment for code design and development. 
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From SimplePIC to MiniPIC (and to EMPIRE)

 As designed, SimplePIC served as a test ground for a algorithmic 
exploration for MiniPIC (EMPIRE).

 MiniPIC was further simplified (Kokkos and MPI dependences 
were removed) and move kernel was DARMA-tized.

 DARMA-tization of the DSMC kernel is in progress.

 The prerequisites for DARMA to move forward (towards EMPIRE 
code base) are: Kokkos and MPI interoperability
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Future Work

 Focus on DARMA 
 Interoperability

 Hardening/Tuning

 Productivity tools (timers, performance profilers, debugging aides)

 Devops, documentation, and testing

 Focus on SimplePIC and MiniPIC
 Incorporate a collide kernel in SimplePIC

 DARMAtize MiniPIC completely
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