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A Nanoscale Science Research Center (NSRC) 
focused on advancing the understanding of 

nanostructure integration

The User Community:
• Access to capabilities from two world-renowned National laboratories, 

Los Alamos and Sandia
• Free access for the research community via a proposal process!
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Polymer Science at CINT
we develop strategies to enable hierarchical assembly of 
nanoconstituents to harness their collective/emergent behaviors

• Polymer Melts and Networks

• Responsive Polymer Interfaces
• Polymer Nanocomposites
• Coated Nanoparticle Assembly
• Polymer Brushes
• Ionic and Charged Polymers
• Polymersomes
• Biopolymers
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Highlights

• coarse-graining polymer simulations

• mixed polymer brushes

• robust polymersomes

• acid and ion-containing polymers



Computational Challenges in Polymers

• Longest relaxation time τ ~ N3

• Chains are Gaussian coils – R ~ N1/2

– Number of chains must increase as R3 ~ N3/2 so polymer 
chains do not to see themselves through periodic boundary 
conditions

• Double chain length – cpu required increases by at 
least a factor of 24.5 ~ 23

– 1 month simulation becomes 2 years



• Reduced number of degrees of 
freedom, simpler interaction
potentials, reducing the overall 
computational effort

• Larger time steps (10-20x)

• Reduced effective bead friction 
due to lower energy barriers 
and/or a smoother energy 
landscape

• Back-mapping to fully atomistic 
model

Coarse-Graining of Polymers   
• To reach larger length/time scales, new coarse graining 
methods are an active area of research 

Coarse-grained,  
retain chemical 
information 

Bead-spring

All-atom 



Degree of Coarse Graining
Polyethylene

C96H194 chain with increasing 
degree of coarse graining

• Largest lengths scales of 
polymer dynamics are 
controlled by entanglements
• Shortest time and length 
scales required to resolve 
dynamic properties not 
obvious

• Probe the degree of 
coarse graining (CGing) 
required to simultaneously 
retain significant atomistic 
detail and access large 
length and time scalesK M Salerno et al, Phys Rev Lett 116, 058303 (2016);

B. Peters et al, J. Chem Theory Comp 13, 2890 (2017)



All-atom Melt MD 
simulation – LAMMPS*

Define Beads

Bonded Interactions by 
Boltzmann Inversion

Nonbonded Interactions by 
Iterative Boltzmann 

Inversion (IBI)

Validation
*http://lammps.sandia.gov/

Coarse-Graining Methodology



Coarse-Grained Potentials

• Average bond length increases, bond distribution broadens 
as level of CGing increases
• Non-bonded potential softens as level of CGing increases
• Time step increases from 1 fs to 10 -20 fs for λ ≥ 3 
• Surprisingly for λ = 6, chain can cut through each other

- extra non-crossing constraint



Chain Mobility

• Dynamics of Coarse Grained models 6-12 times faster

• Consistent scaling factor for n = 96 – 1920

n=1920

t1

t1/4

n=96

n=480



Stress Relaxation

n=96

n=1920

n=480

• Longer, more entangled chains form progressively more 
distinct plateau region

• Plateau modulus in good agreement with experiment

• Time and length scales not accessible by atomistic models

B. Peters et al, J. Chem Theory Comp 13, 2890 (2017)



Highlights

• coarse-graining polymer simulations

• mixed polymer brushes

• robust polymersomes

• acid and ion-containing polymers



Mixed Polymer Brushes
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Mixed Polymer Brushes
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16% PS

38% PS

51% PS
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AFM SCFT



Ternary Polymer Brushes
• ternary polymer brush
• PMMA, PS, and P4VP
• Strongly segregating system

• χNPS-PMMA ≈ 18
• χNPMMA-P4VP ≈ 65
• χNPS-P4VP ≈ 320

Mn: 56 – 130 kDa
brush thicknesses: 2.6 – 6 Rg

grafting density: 0.14 – 0.44 chains/nm2

AFM phase contrast

Anneal

phases predicted by SCFT



Experimental Phase Behavior
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Increasing 
PMMA

8% PMMA

18% PMMA

21% PMMA

35% PMMA

38% PMMA

49% PMMA

50% PMMA
26% PMMA

PMMA
PS
P4VP

Chester Simocko, Amalie L. Frischnecht, Dale L. Huber.  ACS Macro Letters, 2016, 5, 149-153



Self-Assembly: Mixed Polymer Brushes
experimental images 1x1 m
simulation images 50x50 Rg

Simocko, Frischknecht, and Huber, ACS Macro Lett., 5, 149 (2016)

• strong lateral phase separation in mixed brushes
• qualitative agreement between theory and experiments



Mixed brushes on nanoparticles
• A, B homopolymers on nanoparticle in solvent
• mean field theory (SCFT): phase diagram



Fluctuations de-stabilize complex phases

RP = (1/3)Rg
RP = Rg

Thermal fluctuations de-stabilize the formation of complex phases

Koski and Frischknecht, in preparation

mean field theory
(SCFT)

fluctuating field 
theory



Highlights

• coarse-graining polymer simulations

• mixed polymer brushes

• robust polymersomes

• acid and ion-containing polymers
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Mimicking Biological Membranes

Can we incorporate or mimic properties and
functions of biological cells to create robust
advanced materials?

2 Major Challenges:
Limited Chemical and Mechanical Stability
Limited Modification Chemistries

Liposomes

POPC

Polymersomes

Polymersomes Can Help
Enhanced Chemical and Mechanical Stability
Unlimited Modification Chemistries

PEO

PBD
P2904 - RITC
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Capable Crosslinks: Polymersomes Reinforced with 
Catalytically Active Metal-Ligand Bonds

Exploit organometallic 
interactions to create 

membranes that are both 
robust and dynamic.

Pt

Henderson, I. M., Quintana, H. A., Martinez, J. A., & Paxton, W. 
F. (2015). Chemistry of Materials, 27(13), 4808–4813. 
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Forming Cross-linked Vesicles
with Pt and PEO-PBd

60-100 nm vesicles

catalytically active

EO21 – Bd32 (1,2 addition)

Karstedt’s catalyst

6 Pt / 100 alkenes (6%) 9 Pt / 100 alkenes (9%)

Pt

(Karstedt’s
catalyst)

Et3SiH

(Karstedt’s
catalyst)
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Pulling Nanotubes from Polymersomes

Can the collective force from kinesin motors extract 
nanotubes from polymersomes?



Assembly of Polymer Nanotube Networks

PBD-PEO diblock copolymer

Addition of lipid enhances the formation of large extended networks from 
polymersomes. 

Polymer only Polymer + 0.5% lipid

Yes:

PBD-PEO + Texas Red-DHPE 

MTs, even as large as ~90 μm, extracting polymer nanotubes 
display decreased velocity (large opposing force)

Bousxein, et al (2015). Nanoscale, 7(25), 10998–11004. 
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• robust polymersomes

• acid and ion-containing polymers



Ion-Containing Polymers
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polymers with covalently-bonded ionic groups

ionomers
melts! (no solvent)
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PEpAA9.5-Zn56

STEM showing 
aggregates

Seitz et al., J Am Chem Soc 132, 8165 (2010) 

nanoscale phase separation



Model Materials: Precise Ionomers
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O OH p15AAO OH

n
13 (13 mol% AA)

p21AA 

n
14 (9.5 mol% AA)

O OH

(22 mol% AA)

p9AA

p9AA-10%Li p9AA-43%Li p9AA-100%Li

MD simulations show ionic aggregates

coloring by cluster

Bolintineanu, D. S., Stevens, M. J., & Frischknecht, A. L. (2013). Macromolecules, 
46(13), 5381–5392. 



Model Materials: Precise Ionomers
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O OH p15AAO OH

n
13 (13 mol% AA)

p21AA 

n
14 (9.5 mol% AA)

O OH

(22 mol% AA)

p9AA

coloring by cluster

p9AA-10%Li p9AA-43%Li p9AA-100%Li

MD simulations show ionic aggregates

Bolintineanu, D. S., Stevens, M. J., & Frischknecht, A. L. (2013). Macromolecules, 
46(13), 5381–5392. 



X-ray scattering compared to MD simulations
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Buitrago, C. F. et al. Macromolecules 48, 1210–1220 (2015).

need simulations or imaging!



Semi-crystalline precise polymers
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E. B. Trigg, M. J. Stevens, and K. I. Winey, J. Am. 
Chem. Soc., 2017

p21AA forms acid layers in crystals p21SA: Highly ordered, tunable, conductive

H+

Trigg et al, in preparation 

increasing humidity



Morphology and dynamics in PSS
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Agrawal, A., Perahia, D., & Grest, G. S. (2015), Physical Review E, 92(2), 022601. 

polystyrene sulfonate (PSS) with Na+ or Mg2+

Agrawal, A., Perahia, D., & Grest, G. S. (2016), Physical Review Letters, 116(15), 158001.



Novel polymers and assemblies
ionic liquid-PNIPAM conjugate

Network polymer reversibly 
converts from 2D hexagonal to 1D 

lamellar in response to modest 
temperature modulation 

ionic liquid-elastin-
like peptide 
conjugates

Firestone, Martinez, et al

• Elastin-like polymers (VPGIG) prepared 
via genetically-encoded synthesis

• precise control over sequence, 
chain length, architectures, 
dispersity

• Conjugated onto an IL for self-assembly 
and network polymer fabrication

PAPER ID: 2750438
Development of a new class of hybrid, hierarchical polymers that exhibit 
stimuli responsive properties (final paper number: PMSE 368)
DIVISION: Division of Polymeric Materials Science and Engineering
SESSION: Joint PMSE/POLY Poster Session
SESSION TIME: 6:00 PM - 8:00 PM



Biopolymers

force extension of DNA

D.R. Jacobson, D.B. McIntosh, M.J. Stevens, M. 
Rubinstein and O.A. Saleh, Proc. Nat. Acad. Sci., 
2017, 114, 5095. 

Stevens, Grest, Firestone, Martinez

Nanocomposites

Cheng, S., & Grest, G. S. (2016). ACS Macro 
Letters, 5(6), 694–698. 

Ringstrand, B. S. et al, (2016). Nanoscale, 8, 2601–2612

cascade synthesis of gold 
nanoparticle-network polymer 
composite
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Capabilities/Expertise at CINT

theory and modeling

• MD simulation (LAMMPS)
• classical density functional theory (Tramonto)
• polymer field theory

experiment

• synthesis
• surface-initiated polymerization
• microfluidics for controlled NP synthesis

• polymer characterization
• TEM


