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A Nanoscale Science Research Center (NSRC)
focused on advancing the understanding of
nanostructure integration
The User Community:

. Access to capabilities from two world-renowned National laboratories,
Los Alamos and Sandia

- Free access for the research community via a proposal process!
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Polymer Science at CINT

we develop strategies to enable hierarchical assembly of
nanoconstituents to harness their collective/emergent behaviors

fiT=0.089 * Polymer Melts and Networks
- » Responsive Polymer Interfaces
-~  * Polymer Nanocomposites
. » Coated Nanoparticle Assembly

* Polymer Brushes
* lonic and Charged Polymers
* Polymersomes
* Biopolymers
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CINT Scientists with Polymer Research

theory/modeling experiment

George Bachand Millie irestone

Mark Stevens

Dale Huber Jen Martinez Wally Paxton
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Highlights

coarse-graining polymer simulations

mixed polymer brushes

robust polymersomes

acid and ion-containing polymers
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Computational Challenges in Polymers

 Longest relaxation time t~ N3

« Chains are Gaussian coils — R ~ N!/2

— Number of chains must increase as R3 ~ N32so polymer
chains do not to see themselves through periodic boundary
conditions

* Double chain length — cpu required increases by at
least a factor of 24°~ 23
— 1 month simulation becomes 2 years




Coarse-Graining of Polymers

* To reach larger length/time scales, new coarse graining
methods are an active area of research

yacx.  All-atom « Reduced number of degrees of
freedom, simpler interaction
potentials, reducing the overall
computational effort

% Bead-spring * Larger time steps (10-20x)

» Reduced effective bead friction
due to lower energy barriers
and/or a smoother energy
landscape

Coarse-grained,
retain chemical
information

« Back-mapping to fully atomistic
model



Degree of Coarse Graining
Polyethylene

e Largest lengths scales of
polymer dynamics are
controlled by entanglements
e Shortest time and length
scales required to resolve
dynamic properties not
obvious

e Probe the degree of

coarse graining (CGing)

required to simultaneously
CgsH104 Chain with increasing retain significant atomistic
degree of coarse graining detail and access large

K M Salerno et al, Phys Rev Lett 116, 058303 (2016): length and time scales
B. Peters et al, J. Chem Theory Comp 13, 2890 (2017)




Coarse-Graining Methodology

All-atom Melt MD
simulation — LAMMPS*

Define Beads

Bonded Interactions by
Boltzmann Inversion

Nonbonded Interactions by
Iterative Boltzmann
Inversion (IBI)

*http://lammps.sandia.gov/



Coarse-Grained Potentials
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* Average bond length increases, bond distribution broadens
as level of CGing increases
* Non-bonded potential softens as level of CGing increases
* Time step increases from 1 fs to 10 -20 fs for A =2 3
 Surprisingly for A = 6, chain can cut through each other

- extra non-crossing constraint




Chain Mobility

CG2 i
CG3
CG4
CG6
atomistic

time [ns] time [ns] (scaled)

* Dynamics of Coarse Grained models 6-12 times faster
 Consistent scaling factor for n = 96 — 1920




Stress Relaxation

107 g

10° 1 0 > 2 3
10 10 10 10 10
time [ns] (scaled)

Longer, more entangled chains form progressively more

distinct plateau region
« Plateau modulus in good agreement with experiment

* Time and length scales not accessible by atomistic models

B. Peters et al, . Chem Theory Comp 13, 2890 (2017)
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Mixed Polymer Brushes
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Mixed Polymer Brushes ) o
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Price et al., Macromolecules 45, 510 (2012)




« ternary polymer brush

Ternary Polymer Brushes

PMMA, PS, and P4VP
Strongly segregating system
* Npspuma =18

* XNpmma-pavp = 65
* XNpg.payp = 320

M.: 56 — 130 kDa
brush thicknesses: 2.6 - 6 R,
grafting density: 0.14 — 0.44 chains/nm?

AFM phase contrast
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Experimental Phase Behavior ) e,

.. 207 PMMA

Increasing
PMMA

49% PMMA 35% PMMA
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Self-Assembly: Mixed Polymer Brushes

experimental images 1x1 um
simulation images 50x50 R,

« strong lateral phase separation in mixed brushes
« qualitative agreement between theory and experiments

Simocko, Frischknecht, and Huber, ACS Macro Lett., 5, 149 (2016)
I ——————
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Mixed brushes on nanoparticles

* A, B homopolymers on nanoparticle in solvent
« mean field theory (SCFT): phase diagram
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Fluctuations de-stabilize complex phases

Re = (1/3)R, Re =R,

mean field theory .
(SCFT) -

fluctuating field s ’ ' ‘
theory

Thermal fluctuations de-stabilize the formation of complex phases

Koski and Frischknecht, in preparation
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Mimicking Biological Membranes

L|posomes Can we incorporate or mimic properties and

3 functions of biological cells to create robust
§ advanced materials?

o OH ;
O§ é
3
2 Major Challenges: xl \

~
o

Limited Chemical and Mechanical Stability
Limited Modification Chemistries

Polymersomes
1 e
OH L g ~ o Discher DE, Ahmed F. 2006.
—?- Pesesy ki Annu. Rev. Biomed. Eng. 8:323-41
PEO g

P2904 - RITC

Polymersomes Can Help
Enhanced Chemical and Mechanical Stability
Unlimited Modification Chemistries
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Exploit organometallic
interactions to create
membranes that are both

\ robust and dynamic. )

- Los Alamos

Capable Crosslinks: Polymersomes Reinforced with
Catalytically Active Metal-Ligand Bonds

H,O + MeOH crosslinked
MeOH vesicles

surfactant

S

3¢

mixed uncrosslinked
micelles vesicles

Henderson, |. M., Quintana, H. A., Martinez, J. A., & Paxton, W.
F. (2015). Chemistry of Materials, 27(13), 4808—4813.
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Forming Cross-linked Vesicles
W|th Pt and PEO-PBd

g 6Pt 4400 alkenes (6%) % 100 alkenes
X 1 Y Lty + 1 .., wh £
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Pulling Nanotubes from Polymersomes

Can the collective force from kinesin motors extract
nanotubes from polymersomes?

0
: o O%OM:SZ
'—) — yﬁjﬁ t\’ HN,n,NH
PBd PEO biotin ©

polymer
bilayer

T kinesin motor proteins

e streptavidin
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Assembly of Polymer Nanotube Networks

Yes: Addition of lipid enhances the formation of large extended networks from
polymersomes.

Polymer Qn'lvf Polymer + 0.5‘7"'"'Ii.|‘5id

PBD-PEO diblock copolymer | BD-PEO + Texas Red-DHPE

MTs, even as large as ~90 um, extracting polymer nanotubes
display decreased velocity (large opposing force)

Sandia
. ﬂ'l National
Bousxein, et al (2015). Nanoscale, 7(25), 10998-11004. Laboratories




Highlights

coarse-graining polymer simulations

mixed polymer brushes

robust polymersomes

acid and ion-containing polymers

U.S. DEPARTMENT OF Office of m Sandia

a
o LosAIamos EN ERGY Science

AAAAAAAAAAAAAAAAA

National _
Laboratories




lon-Containing Polymers ) B,

polymers with covalently-bonded ionic groups

. melts! (no solvent
ionomers w " Y ( )
P(E-AA) Gb 0] ‘ ‘
@ P(S-SS) sof) @

nanoscale phase separation

DRI EY STEM showing
W IR oaregates

Seitz et al., J Am Chem Soc 132, 8165 (2010)




Model Materials: Precise lonomers =

e s g U O S B SO

(22 mol% AA (13 mol% AA (9.5 mol% AA)

MD simulations show ionic aggregates

POAA-10%Li POAA-43%Li PO9AA-100%Li

coloring by cluster

Bolintineanu, D. S., Stevens, M. J., & Frischknecht, A. L. (2013). Macromolecules,
46(13), 5381-5392.




Model Materials: Precise lonomers =

e s g U O S B SO

(22 mol% AA (13 mol% AA (9.5 mol% AA)

MD simulations show ionic aggregates

POAA-10%Li POAA-43%Li PO9AA-100%Li

coloring by cluster

Bolintineanu, D. S., Stevens, M. J., & Frischknecht, A. L. (2013). Macromolecules,
46(13), 5381-5392.




X-ray scattering compared to MD simulations 5

need simulations or imaging!
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Buitrago, C. F. et al. Macromolecules 48, 1210-1220 (2015).




Semi-crystalline precise polymers k=

p21AA forms acid layers in crystals p21SA: Highly ordered, tunable, conductive

Nafion 117
p21SA
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E. B. Trigg, M. J. Stevens, and K. |. Winey, J. Am.
Chem. Soc., 2017 Trigg et al, in preparation




Morphology and dynamics in PSS

polystyrene sulfonate (PSS) with Na* or Mg?*
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Agrawal, A., Perahia, D., & Grest, G. S. (2016), Physical Review Letters, 116(15), 158001.
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Novel polymers and assemblies

ionic liquid-PNIPAM conjugate

Br o
-~ + S
A

Network polymer reversibly
converts from 2D hexagonal to 1D
lamellar in response to modest
temperature modulation

ionic liquid-elastin-
like peptide
conjugates

Br
R= W N Ay (VPBIG)—COOH
\—/ H

» Elastin-like polymers (VPGIG) prepared
via genetically-encoded synthesis
« precise control over sequence,
chain length, architectures,
dispersity
» Conjugated onto an IL for self-assembly
and network polymer fabrication

PAPER ID: 2750438

Development of a new class of hybrid, hierarchical polymers that exhibit
stimuli responsive properties (final paper number: PMSE 368)
DIVISION: Division of Polymeric Materials Science and Engineering
SESSION: Joint PMSE/POLY Poster Session

SESSION TIME: 6:00 PM - 8:00 PM

Firestone, Martinez, et al




Biopolymers

force extension of DNA

A4000— I S
| (DNA)

3600

3200 -

X (nm)

2800

2400

2000 """1lo ' ' T
Jopp (PN)

Sunff Sun S

7/ /

Y Fo /ot f,

D.R. Jacobson, D.B. Mcintosh, M.J. Stevens, M.

Rubinstein and O.A. Saleh, Proc. Nat. Acad. Sci.,

2017, 114, 5095.

Nanocomposites

solvent solvent
evaporation evaporation
—_—

weak strong
NP/polymer |8 NP/polymer
interaction [ e fl interaction

Cheng, S., & Grest, G. S. (2016). ACS Macro
Letters, 5(6), 694—698.

cascade synthesis of gold
nanoparticle-network polymer
composite

Polymer Composite

Lobsggpes

’Th A AUCLE + =off\«°J(/LcJ:f\«°}e

R = H ar Acrylate

Reduction
Free-radical
Initiated Polymerization / Oxidation
Crosslinking Digestion

-Ol\r"’ o

Ringstrand, B. S. et al, (2016). Nanoscale, 8, 2601-2612

Stevens, Grest, Firestone, Martinez
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Capabilities/Expertise at CINT

theory and modeling

* MD simulation (LAMMPS)
 classical density functional theory (Tramonto)
» polymer field theory

experiment

* synthesis

 surface-initiated polymerization

» microfluidics for controlled NP synthesis
« polymer characterization
- TEM
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