
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525..
SAND2017-4325 C

The Impact of Increasing Memory
System Diversity on Applications

Gwen Voskuilen

Arun Rodrigues, Mike Frank, Si Hammond
8/23/17

SAND2017-9015PE

Memory architectures are
growing in diversity
 Traditional memory (DDR DRAM) scaling is slowing

 None of the proposed alternatives is a clean replacement

 Stacked DRAM: Higher bandwidth, higher cost

 Non-volatile (NVRAM): Persistence & higher density but higher
latencies, especially for writes

 Rise of accelerators with different memory requirements
 E.g., GPUs use GDDR, a bandwidth optimized DDR

 “Multi-level Memory” (MLM) architectures
 Multiple memory types in a single system to balance performance,

cost, power, etc.

2

Performance depends on data access characteristics
matching memory characteristics

DOE’s multi-level memory challenge

 Recent and upcoming procurements feature MLM
 Trinity’s Knight’s Landing (KNL) nodes

 16GB stacked DRAM (MCDRAM) + 96GB DDR DRAM

 Sierra has GPU nodes

 GPUs with smaller local HBM, remote DDR

 Exascale platforms will likely have MLM as well
 Difficult to hit power, capacity, bandwidth, cost targets without MLM

 MLM architectures pose a huge challenge for applications
 Performance sensitive to memory mapping

 How do we present MLM to applications to maximize performance?

 How do we minimize the amount of work needed to port applications
to new architectures?

3

Effective MLM management strategies are critical

How does MLM impact application
performance?
 Started by looking at Trinity-inspired memory systems

 Management strategy affects performance and usability
 Rewrite applications and/or libraries?

 (Potentially) A lot of work

 Employ some kind of automated manager?

 Might be high overhead

 Ignore the less desirable memory?

 Wastes machine resources and may
not be feasible if memory needs are high

4

effort

p
e

rf
o

rm
a

n
c
e

Need to understand the performance landscape:
• How do different strategies affect performance?
• Will one solution fit all or is everything application-dependent?

X ?

?

?

Can we get here?

Where do
strategies
fall in this
space?

Management strategies

Hardware: Cache

OS/runtime: Profile and automatically map data to memory

Application: Manually map data to memory

Algorithmic changes: Manually map data and change algorithm
to take advantage

5

Who
manages
and how?

How feasible is application management?
What is the performance gain?

Evaluated management strategies
in simulation
 Needed hardware/software support not readily available

 Validated against hardware where possible

 Simulated using the Structural Simulation Toolkit (SST)
 Parallel, discrete event driven simulation framework

 Detailed architecture models for processors, caches, memory, on-chip
interconnect, etc.

 Can run mini-apps on detailed node models at moderate scale
 E.g., single node, threaded, 1-8GB data sets

 Must simulate portions of a mini-app (e.g., 1-2 iterations) at this scale

 Mini-apps
 HPCG: Simple preconditioner + CG solve, unstructured mesh

 MiniPIC: Simple particle-in-cell + Trilinos solve

 PENNANT: Unstructured mesh hydro-dynamics

 SNAP: Particle transport

 And others: CoMD, LAMMPS, MiniFE, MiniAero, Lulesh, XSBench, …

6

Architectures explored

 Lightweight
 Trinity’s Knight’s Landing architecture
 72 small cores
 Private L1, semi-private L2
 Mesh interconnect

 Heavyweight
 Traditional CPU architecture
 8 big cores
 Private L1 + L2, shared L3
 Ring interconnect

7

 Both: DDR & HMC
 HMC ≈ HBM ≈ MCDRAM

Core

L1

L2

Tile

MCDRAM

DDR

C C

L1 L1

L2

Memory

L3 slice

Core

How do different management strategies perform on very
different architectures?

Application analysis

 Which data structures need bandwidth is not always obvious
 Frequently-accessed data can end up living in cache

 Not all data structures are exposed – libraries

 MemSieve: New SST-based tool to evaluate memory usage
per data structure
 Uses allocations (mallocs) as a proxy for data structures

 Able to evaluate all allocations – Intel PIN-based execution

 Filters out accesses that hit in cache

 Key metric: malloc density

 # accesses / size of allocation

 Theory: Dense allocations should go in HBM

8

Basic MemSieve analysis

Pennant HPCG Snap MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Unique mallocs with
memory accesses

140 146 90 10794

9

 Many mallocs but few locations not too much to manage
 Mallocs grouped by stack trace; same stack trace = same location

Application management might be feasible

How easily do data structures map
to high bandwidth memory?
 Good: A few, small, very dense allocations

 Easy to discern which allocations will benefit

 Not likely to need dynamic migration

 Example “ideal” behavior
 Left: Gray = density, Red = cumulative accesses

 Right: Gray = cumulative size, Red = cumulative accesses

10

D
e
n
s
ity

Mallocs

Few dense allocs
steep cliff, far to left

%
 a

c
ce

ss
e
s

S
iz

e

Mallocs

%
 a

c
c
e
ss

e
s Small, dense

allocs big
square with red
on top

More dense Less dense

Malloc density

 Flat density distribution + large size (TB!)

 Likely to need dynamic management

11

0%

50%

100%

0

1

2

3

4

%
 a

cc
e
s
se

s

D
e
n
si

ty

Malloc locations

Density
Accesses

0%

20%

40%

60%

80%

100%

0

0.5

1

1.5

%
 a

c
ce

ss
e
s

D
e
n
si

ty

Malloc locations

Density
Accesses

0%

50%

100%

0

8

16

24

32

%
 a

cc
e
ss

e
s

D
e
n
si

ty

Malloc Locations

Size (TB)
Accesses

HPCGPENNANT

0%

20%

40%

60%

80%

100%

0

2

4

6

8

%
 a

c
ce

ss
e
s

D
e
n
s
ity

Malloc locations

Size (GB)
Accesses

 Ideal density distribution + moderate size

 Probably OK with static allocation

Application behavior varies widely
Next: Does profiling predict performance?

Manual approaches to management

 Goal: Determine the performance gap between simple and
targeted (complex) management strategies

 Very simple, no programmer intervention
 Greedy – malloc

 Perform mallocs to HBM until full, spill into DDR

 Greedy – page

 Map pages to HBM until full, spill into DDR

 Complex, require deep understanding of app, potentially
invasive changes
 Static

 Map the densest data structures to HBM until full, spill into DDR

 Dynamic

 Migrate data structures to and from HBM according to current density

12

Manual allocation is feasible

13

0

1

2

3

4

5

6

7

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

v
e

r
D

D
R

 o
n

ly

Management strategy and size of HBM
as a fraction of working set size

PENNANT

12.50% 25% 50% 100%

0

1

2

3

4

5

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

v
e

r
D

D
R

 o
n

ly

Management strategy and size of HBM
as a fraction of working set size

HPCG

12.50% 25% 50% 100%

 Benefit from increasing amounts of HBM
 But diminishing returns before 100%

 Dynamic migration necessary for some cases (PENNANT)

Performance trend is similar across
architectures

 Evidence of one-solution-fits-many for management policies
 Easier for apps to adopt one policy for many machines

14

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Light Heavy Light Heavy Light Heavy

12.50% 25% 50%

P
e
rf

o
rm

a
n
c
e
 n

o
rm

.
to

 1
0
0
%

 H
B

M

Architecture and size of HBM as a fraction of working set size

PENNANT

Greedy - page Greedy - malloc Static Dynamic

Conclusions

 Application behavior varies significantly
 But profiling indicates behavior for one app doesn’t vary largely across

architectures, input data set sizes, etc.

 Application management is feasible
 Likely to want to support both application & automatic management

simultaneously to balance burden on apps with performance

 For any management policy, profiling is instrumental
 Application managed – helps identify high-bandwidth data structures

 Automatically managed – helps identify places where application
changes will improve performance

15

Where do we go from here?

 Trinity impacts
 Involvement with Kokkos to support manual management

 Algorithmic changes to facilitate manual management

 E.g., KokkosKernels

 Future impacts
 Evaluate management for other potential MLM architectures

 E.g., non-volatile + HBM (+ DDR?)

 Discussions with vendors about hardware support

 Cross-lab effort to propose common MLM APIs

 On-going thrust to scale node-level simulations in SST
 Improved scalability as part of this work (25%+)

 Future: Ability to simulate even larger/longer apps; more complex
nodes (more cores, larger memories, etc.)

16

General software management
approaches

Software
management

OS / Runtime

Static

Greedily insert
pages into HMC

Greedily insert
mallocs into HMC

Dynamic

Programmer

Static

Place "best"
mallocs in HBM

Dynamic

Migrate current
"best" to HBM

18

Increased performance?

Not all applications benefit from HBM

 Max speedup possible: 8X

19

0

1

2

3

4

5

6

7

MiniPIC
charge

MiniPIC field MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

ve
r

D
D

R
 o

n
ly

Application / sample

Performance with unlimited HBM

Heavyweight

Lightweight

Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization

20

0

0.5

1

1.5

2

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

SNAP

12.50% 25% 50% 100%

Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large

21

0

1

2

3

4

5

6

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

HPCG

12.50% 25% 50% 100%

Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Compared to block level: lower tracking overhead but higher
add/remove overhead

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)

22

Automatic Page-Level Swapping

 Addition policies

 Replacement policies

23

Directory
Controller

DDR
Fast

Memory

MLM Unit

Mapping
Table

DMA

Policy
Dispatcher

Addition Policies Replacement Policies

• addT: Simple Threshold
• addMFU: Most Frequently Used
• addRAND: 1:8192 chance
• addMRPU: More Recent Previous Use
• addMFRPU: More Frequent + More

Recent Previous Use
• addSC: Deprioritize streams
• addSCF: as addSC + More Frequent

• FIFO: First-in, First-out
• LRU: Least Recently Used
• LFU: Least Frequently Used
• LFU8: LFU w/ 8-bit counter
• BiLRU: BiModal LRU
• SCLRU: Deprioritize streams

Performance vs. Policy

24

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
e

rf
o

rm
an

ce

Add Policy

Lulesh: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
er

fo
rm

an
ce

Add Policy

MiniFE: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

Addition policy: big variation

Replacement policy: little variation

“What you put in matters more than what you take out”

Larger data sets

 Looked at highest performing
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement

25

0

1

2

3

4

5

6

7

1024 8192 65536

Pe
rf

 (
1=

n
o

 f
as

t
m

em
)

Pages

Pennant-b Performance: Addition

addMFRPU All Fast
addRand addSCF
addMFU

0

0.5

1

1.5

2

1024 8192 65536

Pe
rf

 (
1

=n
o

 f
as

t
m

em
)

Pages

Snap-p0 Performance: Addition

addMFRPU All Fast

addRand addSCF

AddMFU

0

1

2

3

4

5

6

1024 8192 65536

Pe
rf

 (
1

=n
o

 f
as

t
m

em
)

Pages

HPCG Performance: Addition

addMFRPU Series2

addRAND addSCF

addMFU

Fine Tuning
1. Thresholds

2. Page size

3. Throttling

26

0

0.5

1

1.5

2

0 20 40 60 80

P
er

fo
rm

an
ce

Threshold

Pennant Threshold

0

1

2

3

4

5

9 11 13 15

R
el

. P
e

fo
rm

Page Size (2x B)

Pennant Page size Effects

128M

256M

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

9 11 13 15

R
el

. P
ef

o
rm

Page Size (2x B)

snap-p0 Page size Effects

128M

256M

0.5

1.5

2.5

3.5

0 200 400 600 800 1000

P
er

fo
rm

an
ce

Threshold

MLM Performace vs. Threshold (addT/LRU)

CoMD

lammps

lulesh

miniFE

0

0.2

0.4

0.6

0.8

1

CoMD lammps lulesh miniFE
P

er
fo

rm
an

ce

Swap Thro0 ling

Thro; le

No Thro; le

