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Memory architectures are 
growing in diversity
 Traditional memory (DDR DRAM) scaling is slowing

 None of the proposed alternatives is a clean replacement

 Stacked DRAM: Higher bandwidth, higher cost

 Non-volatile (NVRAM): Persistence & higher density but higher 
latencies, especially for writes

 Rise of accelerators with different memory requirements
 E.g., GPUs use GDDR, a bandwidth optimized DDR

 “Multi-level Memory” (MLM) architectures
 Multiple memory types in a single system to balance performance, 

cost, power, etc.
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Performance depends on data access characteristics 
matching memory characteristics



DOE’s multi-level memory challenge

 Recent and upcoming procurements feature MLM
 Trinity’s Knight’s Landing (KNL) nodes

 16GB stacked DRAM (MCDRAM) + 96GB DDR DRAM

 Sierra has GPU nodes

 GPUs with smaller local HBM, remote DDR

 Exascale platforms will likely have MLM as well
 Difficult to hit power, capacity, bandwidth, cost targets without MLM

 MLM architectures pose a huge challenge for applications
 Performance sensitive to memory mapping

 How do we present MLM to applications to maximize performance?

 How do we minimize the amount of work needed to port applications 
to new architectures?
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Effective MLM management strategies are critical



How does MLM impact application 
performance?
 Started by looking at Trinity-inspired memory systems

 Management strategy affects performance and usability
 Rewrite applications and/or libraries?

 (Potentially) A lot of work

 Employ some kind of automated manager?

 Might be high overhead

 Ignore the less desirable memory?

 Wastes machine resources and may 
not be feasible if memory needs are high
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Management strategies

Hardware: Cache

OS/runtime: Profile and automatically map data to memory

Application: Manually map data to memory

Algorithmic changes: Manually map data and change algorithm 
to take advantage
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Who 
manages 
and how?

How feasible is application management? 
What is the performance gain?



Evaluated management strategies 
in simulation
 Needed hardware/software support not readily available

 Validated against hardware where possible

 Simulated using the Structural Simulation Toolkit (SST)
 Parallel, discrete event driven simulation framework 

 Detailed architecture models for processors, caches, memory, on-chip 
interconnect, etc.

 Can run mini-apps on detailed node models at moderate scale
 E.g., single node, threaded, 1-8GB data sets

 Must simulate portions of a mini-app (e.g., 1-2 iterations) at this scale

 Mini-apps
 HPCG: Simple preconditioner + CG solve, unstructured mesh

 MiniPIC: Simple particle-in-cell + Trilinos solve

 PENNANT: Unstructured mesh hydro-dynamics

 SNAP: Particle transport

 And others: CoMD, LAMMPS, MiniFE, MiniAero, Lulesh, XSBench, …
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Architectures explored

 Lightweight
 Trinity’s Knight’s Landing architecture
 72 small cores
 Private L1, semi-private L2
 Mesh interconnect

 Heavyweight
 Traditional CPU architecture
 8 big cores
 Private L1 + L2, shared L3
 Ring interconnect
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 Both: DDR & HMC
 HMC ≈ HBM ≈ MCDRAM
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Application analysis

 Which data structures need bandwidth is not always obvious
 Frequently-accessed data can end up living in cache

 Not all data structures are exposed – libraries

 MemSieve: New SST-based tool to evaluate memory usage 
per data structure
 Uses allocations (mallocs) as a proxy for data structures

 Able to evaluate all allocations – Intel PIN-based execution

 Filters out accesses that hit in cache

 Key metric: malloc density

 # accesses / size of allocation

 Theory: Dense allocations should go in HBM
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Basic MemSieve analysis

Pennant HPCG Snap MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Unique mallocs with 
memory accesses

140 146 90 10794
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 Many mallocs but few locations  not too much to manage
 Mallocs grouped by stack trace; same stack trace = same location

Application management might be feasible



How easily do data structures map 
to high bandwidth  memory?
 Good: A few, small, very dense allocations

 Easy to discern which allocations will benefit

 Not likely to need dynamic migration

 Example “ideal” behavior
 Left: Gray = density, Red = cumulative accesses

 Right: Gray = cumulative size, Red = cumulative accesses
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Malloc density

 Flat density distribution + large size (TB!)

 Likely to need dynamic management
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Application behavior varies widely
Next: Does profiling predict performance?



Manual approaches to management

 Goal: Determine the performance gap between simple and 
targeted (complex) management strategies

 Very simple, no programmer intervention
 Greedy – malloc

 Perform mallocs to HBM until full, spill into DDR

 Greedy – page

 Map pages to HBM until full, spill into DDR

 Complex, require deep understanding of app, potentially 
invasive changes
 Static

 Map the densest data structures to HBM until full, spill into DDR

 Dynamic

 Migrate data structures to and from HBM according to current density

12



Manual allocation is feasible
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Performance trend is similar across 
architectures

 Evidence of one-solution-fits-many for management policies
 Easier for apps to adopt one policy for many machines
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Conclusions

 Application behavior varies significantly
 But profiling indicates behavior for one app doesn’t vary largely across 

architectures, input data set sizes, etc.

 Application management is feasible
 Likely to want to support both application & automatic management 

simultaneously to balance burden on apps with performance

 For any management policy, profiling is instrumental
 Application managed – helps identify high-bandwidth data structures

 Automatically managed – helps identify places where application 
changes will improve performance
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Where do we go from here?

 Trinity impacts
 Involvement with Kokkos to support manual management

 Algorithmic changes to facilitate manual management

 E.g., KokkosKernels

 Future impacts
 Evaluate management for other potential MLM architectures

 E.g., non-volatile + HBM (+ DDR?)

 Discussions with vendors about hardware support

 Cross-lab effort to propose common MLM APIs

 On-going thrust to scale node-level simulations in SST
 Improved scalability as part of this work (25%+)

 Future: Ability to simulate even larger/longer apps; more complex 
nodes (more cores, larger memories, etc.)
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General software management 
approaches

Software 
management

OS / Runtime

Static

Greedily insert 
pages into HMC

Greedily insert 
mallocs into HMC

Dynamic

Programmer

Static

Place "best" 
mallocs in HBM

Dynamic

Migrate current 
"best" to HBM
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Increased performance?



Not all applications benefit from HBM

 Max speedup possible: 8X 
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Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization
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Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large
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Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Compared to block level: lower tracking overhead but higher 
add/remove overhead

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)
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Automatic Page-Level Swapping

 Addition policies

 Replacement policies
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Directory 
Controller

DDR
Fast 

Memory

MLM Unit

Mapping 
Table

DMA

Policy 
Dispatcher

Addition Policies Replacement Policies

• addT: Simple Threshold
• addMFU: Most Frequently Used
• addRAND: 1:8192 chance
• addMRPU: More Recent Previous Use
• addMFRPU: More Frequent + More 

Recent Previous Use
• addSC: Deprioritize streams
• addSCF: as addSC + More Frequent

• FIFO: First-in, First-out
• LRU: Least Recently Used
• LFU: Least Frequently Used
• LFU8: LFU w/ 8-bit counter
• BiLRU: BiModal LRU
• SCLRU: Deprioritize streams



Performance vs. Policy
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Addition policy: big variation

Replacement policy: little variation

“What you put in matters more than what you take out”



Larger data sets

 Looked at highest performing 
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement
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Fine Tuning
1. Thresholds

2. Page size

3. Throttling

26

0

0.5

1

1.5

2

0 20 40 60 80

P
er

fo
rm

an
ce

Threshold

Pennant Threshold

0

1

2

3

4

5

9 11 13 15

R
el

. P
e

fo
rm

Page Size (2x B)

Pennant Page size Effects

128M

256M

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

9 11 13 15

R
el

. P
ef

o
rm

Page Size (2x B)

snap-p0 Page size Effects

128M

256M

0.5

1.5

2.5

3.5

0 200 400 600 800 1000

P
er

fo
rm

an
ce

Threshold

MLM Performace vs. Threshold (addT/LRU)

CoMD

lammps

lulesh

miniFE

0

0.2

0.4

0.6

0.8

1

CoMD lammps lulesh miniFE
P

er
fo

rm
an

ce

Swap Thro0 ling

Thro; le

No Thro; le


