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Memory architectures are T

growing in diversity

= Traditional memory (DDR DRAM) scaling is slowing
= None of the proposed alternatives is a clean replacement
= Stacked DRAM: Higher bandwidth, higher cost

= Non-volatile (NVRAM): Persistence & higher density but higher
latencies, especially for writes

= Rise of accelerators with different memory requirements
= E.g., GPUs use GDDR, a bandwidth optimized DDR

= “Multi-level Memory” (MLM) architectures

= Multiple memory types in a single system to balance performance,
cost, power, etc.

Performance depends on data access characteristics

matching memory characteristics )




DOE’s multi-level memory challenge®=.

= Recent and upcoming procurements feature MLM
= Trinity’s Knight’s Landing (KNL) nodes
= 16GB stacked DRAM (MCDRAM) + 96GB DDR DRAM
= Sierra has GPU nodes
= GPUs with smaller local HBM, remote DDR
= Exascale platforms will likely have MLM as well
= Difficult to hit power, capacity, bandwidth, cost targets without MLM

= MLM architectures pose a huge challenge for applications
= Performance sensitive to memory mapping
= How do we present MLM to applications to maximize performance?
= How do we minimize the amount of work needed to port applications
to new architectures?

Effective MLM management strategies are critical
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How does MLM impact application e
performance?

= Started by looking at Trinity-inspired memory systems

= Management strategy affects performance and usability
= Rewrite applications and/or libraries?
= (Potentially) A lot of work
= Employ some kind of automated manager?  Can we get here?

= Might be high overhead 1
S o

= |gnore the less desirable memory?

O

effort
Need to understand the performance landscape:

« How do different strategies affect performance?
« Will one solution fit all or is everything application-dependent?

= Wastes machine resources and may
not be feasible if memory needs are high

performance
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Sandia

Management strategies =N

‘ Hardware: Cache

Who ‘ OS/runtime: Profile and automatically map data to memory
manages

and how? ‘

Application: Manually map data to memory

Algorithmic changes: Manually map data and change algorithm
to take advantage

How feasible is application management?
What is the performance gain?




Evaluated management strategies e

in simulation

Needed hardware/software support not readily available

= Validated against hardware where possible
Simulated using the Structural Simulation Toolkit (SST) @

Parallel, discrete event driven simulation framework

Detailed architecture models for processors, caches, memory, on-chip
interconnect, etc.
Can run mini-apps on detailed node models at moderate scale

= E.g., single node, threaded, 1-8GB data sets

= Must simulate portions of a mini-app (e.g., 1-2 iterations) at this scale

Mini-apps

HPCG: Simple preconditioner + CG solve, unstructured mesh
MiniPIC: Simple particle-in-cell + Trilinos solve

PENNANT: Unstructured mesh hydro-dynamics

SNAP: Particle transport
And others: CoMD, LAMMPS, MiniFE, MiniAero, Lulesh, XSBench, ...




Architectures explored ) .

= Lightweight = Heavyweight
Trinity’s Knight’s Landing architecture
72 small cores

Private L1, semi-private L2

Mesh interconnect

Traditional CPU architecture
8 big cores

Private L1 + L2, shared L3
Ring interconnect

D Core
D L3 slice
D Memory

E Core

= Both: DDR & HMC
= HMC = HBM = MCDRAM

How do different management strategies perform on very
different architectures? .




Application analysis )

= Which data structures need bandwidth is not always obvious
= Frequently-accessed data can end up living in cache
= Not all data structures are exposed — libraries

= MemSieve: New SST-based tool to evaluate memory usage
per data structure
= Uses allocations (mallocs) as a proxy for data structures
= Able to evaluate all allocations — Intel PIN-based execution
= Filters out accesses that hit in cache

= Key metric: malloc density
= # accesses / size of allocation

= Theory: Dense allocations should go in HBM




Basic MemSieve analysis ) b
Pennant |HPCG Snap MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1TB 7.43 GB 30GB 7.9GB

Unique mallocs with 140 146 90 10794

MeMmory aCCeSSes

= Many mallocs but few locations = not too much to manage

= Mallocs grouped by stack trace; same stack trace = same location

Application management might be feasible




How easily do data structures map m@mex

to high bandwidth memory?

= Good: A few, small, very dense allocations
= Easy to discern which allocations will benefit
= Not likely to need dynamic migration
= Example “ideal” behavior
= Left: Gray = density, Red = cumulative accesses

= Right: Gray = cumulative size, Red = cumulative accesses

Few dense allocs =
steep cliff, far to left

% accesses
Size
% accesses

Mallocs Mallocs

More dense Less dense

Small, dense
allocs - big
square with red
on top




Malloc density ) .

PENNANT HPCG

4 100% 100%
Densit (7)) 15 0 (7))
3 o y () SOA) o
=) —Accesses 8 2 1 mm Density 60% &
2 o 50% 8 2 —Accesses 8
o o [ 40% ©
o 1 @® QO5 @®
S ' 20% =R

(o]
0 Malloc locations 0% 0 Malloc locations 0%

32 100% 8 — 100%
24 s 6 80% g
> ] = 0 8
B @ ® 60% &
c 16 50% & 5 4 40% 9
8 . S O —Size (GB) ° &
8 —3Size (TB) o 2 o/ o
—Accesses X —Accesses 20% X

0 0% 0 0%

Malloc Locations Malloc locations

= Flat density distribution + large size (TB!) = Ideal density distribution + moderate size
= Likely to need dynamic management = Probably OK with static allocation

Application behavior varies widely
Next: Does profiling predict performance?




Manual approaches to management®=.

" Goal: Determine the performance gap between simple and
targeted (complex) management strategies

= Very simple, no programmer intervention

= Greedy - malloc

= Perform mallocs to HBM until full, spill into DDR
= Greedy - page

= Map pages to HBM until full, spill into DDR

= Complex, require deep understanding of app, potentially
invasive changes

= Static
= Map the densest data structures to HBM until full, spill into DDR

= Dynamic
= Migrate data structures to and from HBM according to current density
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Manual allocation is feasible ) 2=

PENNANT HPCG
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Management strategy and size of HBM Management strategy and size of HBM
as a fraction of working set size as a fraction of working set size
mm12.50% wm25% wmm50% —100% mm12.50% wmm25% wmm50% —100%

= Benefit from increasing amounts of HBM
= But diminishing returns before 100%

= Dynamic migration necessary for some cases (PENNANT)
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Performance trend is similar across )&
architectures

PENNANT

m Greedy - page ®Greedy - malloc ®=Static ®Dynamic

COOLO0O0O0000
O NWRrRUION®©

Light Heavy Light Heavy Light Heavy

12.50% 25% 50%
Architecture and size of HBM as a fraction of working set size

Performance norm. to 100% HBM

= Evidence of one-solution-fits-many for management policies

= Easier for apps to adopt one policy for many machines
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Conclusions ) 2=

= Application behavior varies significantly

= But profiling indicates behavior for one app doesn’t vary largely across
architectures, input data set sizes, etc.

= Application management is feasible

= Likely to want to support both application & automatic management
simultaneously to balance burden on apps with performance

= For any management policy, profiling is instrumental
= Application managed — helps identify high-bandwidth data structures

= Automatically managed — helps identify places where application
changes will improve performance
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Where do we go from here? UL

= Trinity impacts
= |nvolvement with Kokkos to support manual management

= Algorithmic changes to facilitate manual management
= E.g., KokkosKernels

= Future impacts

= Evaluate management for other potential MLM architectures
= E.g., non-volatile + HBM (+ DDR?)

= Discussions with vendors about hardware support
= Cross-lab effort to propose common MLM APIs
= On-going thrust to scale node-level simulations in SST

= |Improved scalability as part of this work (25%+)

= Future: Ability to simulate even larger/longer apps; more complex
nodes (more cores, larger memories, etc.)
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General software management Earey

approaches
Software
G management \

‘! OS / Runtime \ I! Programmer
1 1 1 1
Static ] Dynamic ] Static ] Dynamic ]

) ] ] 1
Greedily insert } Greedily insert } Place "best" } Migrate current J

pages into HMC mallocs into HMC mallocs in HBM "best" to HBM

—
Increased performance?




Not all applications benefit from HBM  [WEx.

= Max speedup possible: 8X

Speedup over DDR only
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Manual allocation: SNAP ) &,

SNAP
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= Greedy-page performs the best

= Two large mallocs in SNAP, each 42% of total
= Medium/low density

= Once they don’t fit, HMC size / malloc strategy doesn’t matter
= Suggested code change

= Break up large mallocs to improve HMC utilization




Manual allocation: HPCG =

HPCG
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= Again, large jump from 25% to 50% HMC
= Page-based & static perform similarly
= Dynamic not better

= But granularity of migration is large




Hardware management ) S,

= Hardware management of MLM at the page level
= Cache pages in HMC, page still resides in DDR

= Compared to block level: lower tracking overhead but higher
add/remove overhead

= Focus was hardware caching

= But, also possible to do caching via OS

= Usually, less information (hits, misses, etc.)
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Automatic Page-Level Swapping

Fast
.. . DDR
= Addition policies Memory

A
T MLM Unit
I_ » DMA =

= Replacement policies [ Policy
Dispatcher
Mapping
Table
\
Directory
Controller
Addition Policies Replacement Policies
e addT: Simple Threshold * FIFO: First-in, First-out
 addMFU: Most Frequently Used  LRU: Least Recently Used
« addRAND: 1:8192 chance  LFU: Least Frequently Used

 addMRPU: More Recent Previous Use + LFUS8: LFU w/ 8-bit counter
« addMFRPU: More Frequent + More BiLRU: BiModal LRU
Recent Previous Use  SCLRU: Deprioritize streams
« addSC: Deprioritize streams
* addSCF: as addSC + More Frequent



Performance vs. Policy .

Replacement policy: little variation

Lulesh: MLM Performance vs Policy \ \ MiniFE: MLM Performance vs Policy
1.4

& BiLRU = FIFO & BiLRU = FIFO
“ LRU & SCLRU

“ LRU & SCLRU

W LFU8 = LFU

W LFU8 = LFU

addMFRPU  addMFU addMRPU  addRAND addsc addT addSCF addMFRPU  addMFU addMRPU  addRAND addsc addT addSCF

\ Add Policy / Add Policy

Addition policy: big variation

“What you put in matters more than what you take out”
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Larger data sets

HPCG Performance: Addition
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Rel. Peform
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Fine Tuning
1. Thresholds
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