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Memory architectures are 
growing in diversity
 Traditional memory (DDR DRAM) scaling is slowing

 None of the proposed alternatives is a clean replacement

 Stacked DRAM: Higher bandwidth, higher cost

 Non-volatile (NVRAM): Persistence & higher density but higher 
latencies, especially for writes

 Rise of accelerators with different memory requirements
 E.g., GPUs use GDDR, a bandwidth optimized DDR

 “Multi-level Memory” (MLM) architectures
 Multiple memory types in a single system to balance performance, 

cost, power, etc.
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Performance depends on data access characteristics 
matching memory characteristics



DOE’s multi-level memory challenge

 Recent and upcoming procurements feature MLM
 Trinity’s Knight’s Landing (KNL) nodes

 16GB stacked DRAM (MCDRAM) + 96GB DDR DRAM

 Sierra has GPU nodes

 GPUs with smaller local HBM, remote DDR

 Exascale platforms will likely have MLM as well
 Difficult to hit power, capacity, bandwidth, cost targets without MLM

 MLM architectures pose a huge challenge for applications
 Performance sensitive to memory mapping

 How do we present MLM to applications to maximize performance?

 How do we minimize the amount of work needed to port applications 
to new architectures?
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Effective MLM management strategies are critical



How does MLM impact application 
performance?
 Started by looking at Trinity-inspired memory systems

 Management strategy affects performance and usability
 Rewrite applications and/or libraries?

 (Potentially) A lot of work

 Employ some kind of automated manager?

 Might be high overhead

 Ignore the less desirable memory?

 Wastes machine resources and may 
not be feasible if memory needs are high
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Management strategies

Hardware: Cache

OS/runtime: Profile and automatically map data to memory

Application: Manually map data to memory

Algorithmic changes: Manually map data and change algorithm 
to take advantage

5

Who 
manages 
and how?

How feasible is application management? 
What is the performance gain?



Evaluated management strategies 
in simulation
 Needed hardware/software support not readily available

 Validated against hardware where possible

 Simulated using the Structural Simulation Toolkit (SST)
 Parallel, discrete event driven simulation framework 

 Detailed architecture models for processors, caches, memory, on-chip 
interconnect, etc.

 Can run mini-apps on detailed node models at moderate scale
 E.g., single node, threaded, 1-8GB data sets

 Must simulate portions of a mini-app (e.g., 1-2 iterations) at this scale

 Mini-apps
 HPCG: Simple preconditioner + CG solve, unstructured mesh

 MiniPIC: Simple particle-in-cell + Trilinos solve

 PENNANT: Unstructured mesh hydro-dynamics

 SNAP: Particle transport

 And others: CoMD, LAMMPS, MiniFE, MiniAero, Lulesh, XSBench, …
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Architectures explored

 Lightweight
 Trinity’s Knight’s Landing architecture
 72 small cores
 Private L1, semi-private L2
 Mesh interconnect

 Heavyweight
 Traditional CPU architecture
 8 big cores
 Private L1 + L2, shared L3
 Ring interconnect
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 Both: DDR & HMC
 HMC ≈ HBM ≈ MCDRAM
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How do different management strategies perform on very 
different architectures?



Application analysis

 Which data structures need bandwidth is not always obvious
 Frequently-accessed data can end up living in cache

 Not all data structures are exposed – libraries

 MemSieve: New SST-based tool to evaluate memory usage 
per data structure
 Uses allocations (mallocs) as a proxy for data structures

 Able to evaluate all allocations – Intel PIN-based execution

 Filters out accesses that hit in cache

 Key metric: malloc density

 # accesses / size of allocation

 Theory: Dense allocations should go in HBM
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Basic MemSieve analysis

Pennant HPCG Snap MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Unique mallocs with 
memory accesses

140 146 90 10794

9

 Many mallocs but few locations  not too much to manage
 Mallocs grouped by stack trace; same stack trace = same location

Application management might be feasible



How easily do data structures map 
to high bandwidth  memory?
 Good: A few, small, very dense allocations

 Easy to discern which allocations will benefit

 Not likely to need dynamic migration

 Example “ideal” behavior
 Left: Gray = density, Red = cumulative accesses

 Right: Gray = cumulative size, Red = cumulative accesses
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Malloc density

 Flat density distribution + large size (TB!)

 Likely to need dynamic management
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 Ideal density distribution + moderate size

 Probably OK with static allocation

Application behavior varies widely
Next: Does profiling predict performance?



Manual approaches to management

 Goal: Determine the performance gap between simple and 
targeted (complex) management strategies

 Very simple, no programmer intervention
 Greedy – malloc

 Perform mallocs to HBM until full, spill into DDR

 Greedy – page

 Map pages to HBM until full, spill into DDR

 Complex, require deep understanding of app, potentially 
invasive changes
 Static

 Map the densest data structures to HBM until full, spill into DDR

 Dynamic

 Migrate data structures to and from HBM according to current density
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Manual allocation is feasible
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 Benefit from increasing amounts of HBM
 But diminishing returns before 100%

 Dynamic migration necessary for some cases (PENNANT)



Performance trend is similar across 
architectures

 Evidence of one-solution-fits-many for management policies
 Easier for apps to adopt one policy for many machines
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Conclusions

 Application behavior varies significantly
 But profiling indicates behavior for one app doesn’t vary largely across 

architectures, input data set sizes, etc.

 Application management is feasible
 Likely to want to support both application & automatic management 

simultaneously to balance burden on apps with performance

 For any management policy, profiling is instrumental
 Application managed – helps identify high-bandwidth data structures

 Automatically managed – helps identify places where application 
changes will improve performance
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Where do we go from here?

 Trinity impacts
 Involvement with Kokkos to support manual management

 Algorithmic changes to facilitate manual management

 E.g., KokkosKernels

 Future impacts
 Evaluate management for other potential MLM architectures

 E.g., non-volatile + HBM (+ DDR?)

 Discussions with vendors about hardware support

 Cross-lab effort to propose common MLM APIs

 On-going thrust to scale node-level simulations in SST
 Improved scalability as part of this work (25%+)

 Future: Ability to simulate even larger/longer apps; more complex 
nodes (more cores, larger memories, etc.)
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General software management 
approaches

Software 
management

OS / Runtime

Static

Greedily insert 
pages into HMC

Greedily insert 
mallocs into HMC

Dynamic

Programmer

Static

Place "best" 
mallocs in HBM

Dynamic

Migrate current 
"best" to HBM
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Increased performance?



Not all applications benefit from HBM

 Max speedup possible: 8X 
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Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization
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Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large
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Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Compared to block level: lower tracking overhead but higher 
add/remove overhead

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)
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Automatic Page-Level Swapping

 Addition policies

 Replacement policies
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Directory 
Controller

DDR
Fast 

Memory

MLM Unit

Mapping 
Table

DMA

Policy 
Dispatcher

Addition Policies Replacement Policies

• addT: Simple Threshold
• addMFU: Most Frequently Used
• addRAND: 1:8192 chance
• addMRPU: More Recent Previous Use
• addMFRPU: More Frequent + More 

Recent Previous Use
• addSC: Deprioritize streams
• addSCF: as addSC + More Frequent

• FIFO: First-in, First-out
• LRU: Least Recently Used
• LFU: Least Frequently Used
• LFU8: LFU w/ 8-bit counter
• BiLRU: BiModal LRU
• SCLRU: Deprioritize streams



Performance vs. Policy
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“What you put in matters more than what you take out”



Larger data sets

 Looked at highest performing 
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement
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Fine Tuning
1. Thresholds

2. Page size

3. Throttling
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