SAND2017- 9015PE

The Impat of Increasing Memory
System Diversity on Applications

Gwen Voskuilen

Arun Rodrigues, Mike Frank, Si Hammond
8/23/17

@ U.3. DEPARTMENT OF I Y A D‘ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
r Administration

owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525..
SAND2017-4325 C

ENERGY #VAs




Memory architectures are T

growing in diversity

= Traditional memory (DDR DRAM) scaling is slowing
= None of the proposed alternatives is a clean replacement
= Stacked DRAM: Higher bandwidth, higher cost

= Non-volatile (NVRAM): Persistence & higher density but higher
latencies, especially for writes

= Rise of accelerators with different memory requirements
= E.g., GPUs use GDDR, a bandwidth optimized DDR

= “Multi-level Memory” (MLM) architectures

= Multiple memory types in a single system to balance performance,
cost, power, etc.

Performance depends on data access characteristics

matching memory characteristics )




DOE’s multi-level memory challenge®=.

= Recent and upcoming procurements feature MLM
= Trinity’s Knight’s Landing (KNL) nodes
= 16GB stacked DRAM (MCDRAM) + 96GB DDR DRAM
= Sierra has GPU nodes
= GPUs with smaller local HBM, remote DDR
= Exascale platforms will likely have MLM as well
= Difficult to hit power, capacity, bandwidth, cost targets without MLM

= MLM architectures pose a huge challenge for applications
= Performance sensitive to memory mapping
= How do we present MLM to applications to maximize performance?
= How do we minimize the amount of work needed to port applications
to new architectures?

Effective MLM management strategies are critical
3




How does MLM impact application e
performance?

= Started by looking at Trinity-inspired memory systems

= Management strategy affects performance and usability
= Rewrite applications and/or libraries?
= (Potentially) A lot of work
= Employ some kind of automated manager?  Can we get here?

= Might be high overhead 1
S o

= |gnore the less desirable memory?

O

effort
Need to understand the performance landscape:

« How do different strategies affect performance?
« Will one solution fit all or is everything application-dependent?

= Wastes machine resources and may
not be feasible if memory needs are high

performance

4




Sandia

Management strategies =N

‘ Hardware: Cache

Who ‘ OS/runtime: Profile and automatically map data to memory
manages

and how? ‘

Application: Manually map data to memory

Algorithmic changes: Manually map data and change algorithm
to take advantage

How feasible is application management?
What is the performance gain?




Evaluated management strategies e

in simulation

Needed hardware/software support not readily available

= Validated against hardware where possible
Simulated using the Structural Simulation Toolkit (SST) @

Parallel, discrete event driven simulation framework

Detailed architecture models for processors, caches, memory, on-chip
interconnect, etc.
Can run mini-apps on detailed node models at moderate scale

= E.g., single node, threaded, 1-8GB data sets

= Must simulate portions of a mini-app (e.g., 1-2 iterations) at this scale

Mini-apps

HPCG: Simple preconditioner + CG solve, unstructured mesh
MiniPIC: Simple particle-in-cell + Trilinos solve

PENNANT: Unstructured mesh hydro-dynamics

SNAP: Particle transport
And others: CoMD, LAMMPS, MiniFE, MiniAero, Lulesh, XSBench, ...




Architectures explored ) .

= Lightweight = Heavyweight
Trinity’s Knight’s Landing architecture
72 small cores

Private L1, semi-private L2

Mesh interconnect

Traditional CPU architecture
8 big cores

Private L1 + L2, shared L3
Ring interconnect

D Core
D L3 slice
D Memory

E Core

= Both: DDR & HMC
= HMC = HBM = MCDRAM

How do different management strategies perform on very
different architectures? .




Application analysis )

= Which data structures need bandwidth is not always obvious
= Frequently-accessed data can end up living in cache
= Not all data structures are exposed — libraries

= MemSieve: New SST-based tool to evaluate memory usage
per data structure
= Uses allocations (mallocs) as a proxy for data structures
= Able to evaluate all allocations — Intel PIN-based execution
= Filters out accesses that hit in cache

= Key metric: malloc density
= # accesses / size of allocation

= Theory: Dense allocations should go in HBM




Basic MemSieve analysis ) b
Pennant |HPCG Snap MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1TB 7.43 GB 30GB 7.9GB

Unique mallocs with 140 146 90 10794

MeMmory aCCeSSes

= Many mallocs but few locations = not too much to manage

= Mallocs grouped by stack trace; same stack trace = same location

Application management might be feasible




How easily do data structures map m@mex

to high bandwidth memory?

= Good: A few, small, very dense allocations
= Easy to discern which allocations will benefit
= Not likely to need dynamic migration
= Example “ideal” behavior
= Left: Gray = density, Red = cumulative accesses

= Right: Gray = cumulative size, Red = cumulative accesses

Few dense allocs =
steep cliff, far to left

% accesses
Size
% accesses

Mallocs Mallocs

More dense Less dense

Small, dense
allocs - big
square with red
on top




Malloc density ) .

PENNANT HPCG

4 100% 100%
Densit (7)) 15 0 (7))
3 o y () SOA) o
=) —Accesses 8 2 1 mm Density 60% &
2 o 50% 8 2 —Accesses 8
o o [ 40% ©
o 1 @® QO5 @®
S ' 20% =R

(o]
0 Malloc locations 0% 0 Malloc locations 0%

32 100% 8 — 100%
24 s 6 80% g
> ] = 0 8
B @ ® 60% &
c 16 50% & 5 4 40% 9
8 . S O —Size (GB) ° &
8 —3Size (TB) o 2 o/ o
—Accesses X —Accesses 20% X

0 0% 0 0%

Malloc Locations Malloc locations

= Flat density distribution + large size (TB!) = Ideal density distribution + moderate size
= Likely to need dynamic management = Probably OK with static allocation

Application behavior varies widely
Next: Does profiling predict performance?




Manual approaches to management®=.

" Goal: Determine the performance gap between simple and
targeted (complex) management strategies

= Very simple, no programmer intervention

= Greedy - malloc

= Perform mallocs to HBM until full, spill into DDR
= Greedy - page

= Map pages to HBM until full, spill into DDR

= Complex, require deep understanding of app, potentially
invasive changes

= Static
= Map the densest data structures to HBM until full, spill into DDR

= Dynamic
= Migrate data structures to and from HBM according to current density

12
-



Manual allocation is feasible ) 2=

PENNANT HPCG
> ! > 5
S 6 S 4
5 :
Q4 a3
o 3 o)
3, 5°
S I I S 1
omnd ool ook dlE 2 I Al HEE D
z, 1 i [ 2,
Q.
() Greedy - Greedy - Static Dynamic (% Greedy - Greedy - Static Dynamic
page malloc page malloc
Management strategy and size of HBM Management strategy and size of HBM
as a fraction of working set size as a fraction of working set size
mm12.50% wm25% wmm50% —100% mm12.50% wmm25% wmm50% —100%

= Benefit from increasing amounts of HBM
= But diminishing returns before 100%

= Dynamic migration necessary for some cases (PENNANT)

13




Performance trend is similar across )&
architectures

PENNANT

m Greedy - page ®Greedy - malloc ®=Static ®Dynamic

COOLO0O0O0000
O NWRrRUION®©

Light Heavy Light Heavy Light Heavy

12.50% 25% 50%
Architecture and size of HBM as a fraction of working set size

Performance norm. to 100% HBM

= Evidence of one-solution-fits-many for management policies

= Easier for apps to adopt one policy for many machines

14



Conclusions ) 2=

= Application behavior varies significantly

= But profiling indicates behavior for one app doesn’t vary largely across
architectures, input data set sizes, etc.

= Application management is feasible

= Likely to want to support both application & automatic management
simultaneously to balance burden on apps with performance

= For any management policy, profiling is instrumental
= Application managed — helps identify high-bandwidth data structures

= Automatically managed — helps identify places where application
changes will improve performance

15
-



Where do we go from here? UL

= Trinity impacts
= |nvolvement with Kokkos to support manual management

= Algorithmic changes to facilitate manual management
= E.g., KokkosKernels

= Future impacts

= Evaluate management for other potential MLM architectures
= E.g., non-volatile + HBM (+ DDR?)

= Discussions with vendors about hardware support
= Cross-lab effort to propose common MLM APIs
= On-going thrust to scale node-level simulations in SST

= |Improved scalability as part of this work (25%+)

= Future: Ability to simulate even larger/longer apps; more complex
nodes (more cores, larger memories, etc.)

16







General software management Earey

approaches
Software
G management \

‘! OS / Runtime \ I! Programmer
1 1 1 1
Static ] Dynamic ] Static ] Dynamic ]

) ] ] 1
Greedily insert } Greedily insert } Place "best" } Migrate current J

pages into HMC mallocs into HMC mallocs in HBM "best" to HBM

—
Increased performance?




Not all applications benefit from HBM  [WEx.

= Max speedup possible: 8X

Speedup over DDR only

S =~ N W b 00 O N

Performance with unlimited HBM \\|
0\“”
ot
m Heavyweight be“
Lightweight e

m Lightweig \Jbe 50«\

e‘\" W W

‘Oe“ ‘oe“e‘

MiniPIC  MiniPIC field MiniPIC SNAP p0  SNAP p1/2 HPCG PENNANT
charge move

Application / sample




Manual allocation: SNAP ) &,

SNAP

> 2
c
o
x 1.5
)
@)
o 1
>
o
Q.
B l ' I
(0}
a
n 0

Greedy - page Greedy - malloc Static Dynamic

m12.50% m25% m50% m100%

= Greedy-page performs the best

= Two large mallocs in SNAP, each 42% of total
= Medium/low density

= Once they don’t fit, HMC size / malloc strategy doesn’t matter
= Suggested code change

= Break up large mallocs to improve HMC utilization




Manual allocation: HPCG =

HPCG
> 6
55
5
a4
23
o
D
o 1
Q.
?0
Greedy - page Greedy - malloc Static Dynamic

m12.50% m25% m50% m100%

= Again, large jump from 25% to 50% HMC
= Page-based & static perform similarly
= Dynamic not better

= But granularity of migration is large




Hardware management ) S,

= Hardware management of MLM at the page level
= Cache pages in HMC, page still resides in DDR

= Compared to block level: lower tracking overhead but higher
add/remove overhead

= Focus was hardware caching

= But, also possible to do caching via OS

= Usually, less information (hits, misses, etc.)




Sandia
|‘|'| National
Laboratories

Automatic Page-Level Swapping

Fast
.. . DDR
= Addition policies Memory

A
T MLM Unit
I_ » DMA =

= Replacement policies [ Policy
Dispatcher
Mapping
Table
\
Directory
Controller
Addition Policies Replacement Policies
e addT: Simple Threshold * FIFO: First-in, First-out
 addMFU: Most Frequently Used  LRU: Least Recently Used
« addRAND: 1:8192 chance  LFU: Least Frequently Used

 addMRPU: More Recent Previous Use + LFUS8: LFU w/ 8-bit counter
« addMFRPU: More Frequent + More BiLRU: BiModal LRU
Recent Previous Use  SCLRU: Deprioritize streams
« addSC: Deprioritize streams
* addSCF: as addSC + More Frequent



Performance vs. Policy .

Replacement policy: little variation

Lulesh: MLM Performance vs Policy \ \ MiniFE: MLM Performance vs Policy
1.4

& BiLRU = FIFO & BiLRU = FIFO
“ LRU & SCLRU

“ LRU & SCLRU

W LFU8 = LFU

W LFU8 = LFU

addMFRPU  addMFU addMRPU  addRAND addsc addT addSCF addMFRPU  addMFU addMRPU  addRAND addsc addT addSCF

\ Add Policy / Add Policy

Addition policy: big variation

“What you put in matters more than what you take out”

24




7| Netora

Larger data sets

HPCG Performance: Addition

= Looked at highest performing —-¢ | —=-addMFRPU e Series2

" .. £ 5+ —e—addRAND addSCF A
addition policies 4 | —eaddMFU

= Variants of most-frequently used 5 ; /

. 1l Pl
= Baseline: random 21 —o— —————
g0
|| [a
LRU replacement 1024 2109 coose
Pages
Pennant-b Performance: Addition Snap-p0 Performance: Addition
7 ——addMFRPU @ All Fast 2
€6 | —*addRand addSCF » T °
Q .
£ 5 —e—addMFU 215 e S
S 4 q@ ——————0
o 3 2 !
I i ——addMFRPU @ All Fast
T’ 05 —e—addRand addSCF
o1 Q —e—AddMFU
0 0
1024 8192 65536 1024 8192 65536
Pages Pages 25




Rel. Peform

N W B~ O,

Fine Tuning
1. Thresholds

Pennant Threshold

2

0.5

Performance

0
0

20 40
Threshold

2. Pagesize
3. Throttling

Pennant Page size Effects

 — *—o

—o—128M
—e—256M

Page Size (2* B)

1.5
1

60

1.6
1.58
1.56
1.54
1.52

Rel. Peform

=
u

1.48
1.46

Performance

Laboratories
MLM Performace vs. Threshold (addT/LRU)
#
@=(mm CoMD
== lammps
@i |ulesh
@ miniFE
—ia
(I) 2(;0 4(I)0 6(I)0 8(I)0 10IOO

snap-p0 Page size Effects

—e—128M
—e—256M

9 11 13
Page Size (2* B)

o o o
- o)} o]
‘

Performance

o
)

[0

Threshold

CoMD

lulesh

miniFE

26




