
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525..
SAND2017-4325 C

The Impact of Increasing Memory
System Diversity on Applications

Gwen Voskuilen

Arun Rodrigues, Mike Frank, Si Hammond
8/23/17

SAND2017-9015PE

Memory architectures are
growing in diversity
 Traditional memory (DDR DRAM) scaling is slowing

 None of the proposed alternatives is a clean replacement

 Stacked DRAM: Higher bandwidth, higher cost

 Non-volatile (NVRAM): Persistence & higher density but higher
latencies, especially for writes

 Rise of accelerators with different memory requirements
 E.g., GPUs use GDDR, a bandwidth optimized DDR

 “Multi-level Memory” (MLM) architectures
 Multiple memory types in a single system to balance performance,

cost, power, etc.

2

Performance depends on data access characteristics
matching memory characteristics

DOE’s multi-level memory challenge

 Recent and upcoming procurements feature MLM
 Trinity’s Knight’s Landing (KNL) nodes

 16GB stacked DRAM (MCDRAM) + 96GB DDR DRAM

 Sierra has GPU nodes

 GPUs with smaller local HBM, remote DDR

 Exascale platforms will likely have MLM as well
 Difficult to hit power, capacity, bandwidth, cost targets without MLM

 MLM architectures pose a huge challenge for applications
 Performance sensitive to memory mapping

 How do we present MLM to applications to maximize performance?

 How do we minimize the amount of work needed to port applications
to new architectures?

3

Effective MLM management strategies are critical

How does MLM impact application
performance?
 Started by looking at Trinity-inspired memory systems

 Management strategy affects performance and usability
 Rewrite applications and/or libraries?

 (Potentially) A lot of work

 Employ some kind of automated manager?

 Might be high overhead

 Ignore the less desirable memory?

 Wastes machine resources and may
not be feasible if memory needs are high

4

effort

p
e

rf
o

rm
a

n
c
e

Need to understand the performance landscape:
• How do different strategies affect performance?
• Will one solution fit all or is everything application-dependent?

X ?

?

?

Can we get here?

Where do
strategies
fall in this
space?

Management strategies

Hardware: Cache

OS/runtime: Profile and automatically map data to memory

Application: Manually map data to memory

Algorithmic changes: Manually map data and change algorithm
to take advantage

5

Who
manages
and how?

How feasible is application management?
What is the performance gain?

Evaluated management strategies
in simulation
 Needed hardware/software support not readily available

 Validated against hardware where possible

 Simulated using the Structural Simulation Toolkit (SST)
 Parallel, discrete event driven simulation framework

 Detailed architecture models for processors, caches, memory, on-chip
interconnect, etc.

 Can run mini-apps on detailed node models at moderate scale
 E.g., single node, threaded, 1-8GB data sets

 Must simulate portions of a mini-app (e.g., 1-2 iterations) at this scale

 Mini-apps
 HPCG: Simple preconditioner + CG solve, unstructured mesh

 MiniPIC: Simple particle-in-cell + Trilinos solve

 PENNANT: Unstructured mesh hydro-dynamics

 SNAP: Particle transport

 And others: CoMD, LAMMPS, MiniFE, MiniAero, Lulesh, XSBench, …

6

Architectures explored

 Lightweight
 Trinity’s Knight’s Landing architecture
 72 small cores
 Private L1, semi-private L2
 Mesh interconnect

 Heavyweight
 Traditional CPU architecture
 8 big cores
 Private L1 + L2, shared L3
 Ring interconnect

7

 Both: DDR & HMC
 HMC ≈ HBM ≈ MCDRAM

Core

L1

L2

Tile

MCDRAM

DDR

C C

L1 L1

L2

Memory

L3 slice

Core

How do different management strategies perform on very
different architectures?

Application analysis

 Which data structures need bandwidth is not always obvious
 Frequently-accessed data can end up living in cache

 Not all data structures are exposed – libraries

 MemSieve: New SST-based tool to evaluate memory usage
per data structure
 Uses allocations (mallocs) as a proxy for data structures

 Able to evaluate all allocations – Intel PIN-based execution

 Filters out accesses that hit in cache

 Key metric: malloc density

 # accesses / size of allocation

 Theory: Dense allocations should go in HBM

8

Basic MemSieve analysis

Pennant HPCG Snap MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Unique mallocs with
memory accesses

140 146 90 10794

9

 Many mallocs but few locations  not too much to manage
 Mallocs grouped by stack trace; same stack trace = same location

Application management might be feasible

How easily do data structures map
to high bandwidth memory?
 Good: A few, small, very dense allocations

 Easy to discern which allocations will benefit

 Not likely to need dynamic migration

 Example “ideal” behavior
 Left: Gray = density, Red = cumulative accesses

 Right: Gray = cumulative size, Red = cumulative accesses

10

D
e
n
s
ity

Mallocs

Few dense allocs 
steep cliff, far to left

%
 a

c
ce

ss
e
s

S
iz

e

Mallocs

%
 a

c
c
e
ss

e
s Small, dense

allocs  big
square with red
on top

More dense Less dense

Malloc density

 Flat density distribution + large size (TB!)

 Likely to need dynamic management

11

0%

50%

100%

0

1

2

3

4

%
 a

cc
e
s
se

s

D
e
n
si

ty

Malloc locations

Density
Accesses

0%

20%

40%

60%

80%

100%

0

0.5

1

1.5

%
 a

c
ce

ss
e
s

D
e
n
si

ty

Malloc locations

Density
Accesses

0%

50%

100%

0

8

16

24

32

%
 a

cc
e
ss

e
s

D
e
n
si

ty

Malloc Locations

Size (TB)
Accesses

HPCGPENNANT

0%

20%

40%

60%

80%

100%

0

2

4

6

8

%
 a

c
ce

ss
e
s

D
e
n
s
ity

Malloc locations

Size (GB)
Accesses

 Ideal density distribution + moderate size

 Probably OK with static allocation

Application behavior varies widely
Next: Does profiling predict performance?

Manual approaches to management

 Goal: Determine the performance gap between simple and
targeted (complex) management strategies

 Very simple, no programmer intervention
 Greedy – malloc

 Perform mallocs to HBM until full, spill into DDR

 Greedy – page

 Map pages to HBM until full, spill into DDR

 Complex, require deep understanding of app, potentially
invasive changes
 Static

 Map the densest data structures to HBM until full, spill into DDR

 Dynamic

 Migrate data structures to and from HBM according to current density

12

Manual allocation is feasible

13

0

1

2

3

4

5

6

7

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

v
e

r
D

D
R

 o
n

ly

Management strategy and size of HBM
as a fraction of working set size

PENNANT

12.50% 25% 50% 100%

0

1

2

3

4

5

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

v
e

r
D

D
R

 o
n

ly

Management strategy and size of HBM
as a fraction of working set size

HPCG

12.50% 25% 50% 100%

 Benefit from increasing amounts of HBM
 But diminishing returns before 100%

 Dynamic migration necessary for some cases (PENNANT)

Performance trend is similar across
architectures

 Evidence of one-solution-fits-many for management policies
 Easier for apps to adopt one policy for many machines

14

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Light Heavy Light Heavy Light Heavy

12.50% 25% 50%

P
e
rf

o
rm

a
n
c
e
 n

o
rm

.
to

 1
0
0
%

 H
B

M

Architecture and size of HBM as a fraction of working set size

PENNANT

Greedy - page Greedy - malloc Static Dynamic

Conclusions

 Application behavior varies significantly
 But profiling indicates behavior for one app doesn’t vary largely across

architectures, input data set sizes, etc.

 Application management is feasible
 Likely to want to support both application & automatic management

simultaneously to balance burden on apps with performance

 For any management policy, profiling is instrumental
 Application managed – helps identify high-bandwidth data structures

 Automatically managed – helps identify places where application
changes will improve performance

15

Where do we go from here?

 Trinity impacts
 Involvement with Kokkos to support manual management

 Algorithmic changes to facilitate manual management

 E.g., KokkosKernels

 Future impacts
 Evaluate management for other potential MLM architectures

 E.g., non-volatile + HBM (+ DDR?)

 Discussions with vendors about hardware support

 Cross-lab effort to propose common MLM APIs

 On-going thrust to scale node-level simulations in SST
 Improved scalability as part of this work (25%+)

 Future: Ability to simulate even larger/longer apps; more complex
nodes (more cores, larger memories, etc.)

16

General software management
approaches

Software
management

OS / Runtime

Static

Greedily insert
pages into HMC

Greedily insert
mallocs into HMC

Dynamic

Programmer

Static

Place "best"
mallocs in HBM

Dynamic

Migrate current
"best" to HBM

18

Increased performance?

Not all applications benefit from HBM

 Max speedup possible: 8X

19

0

1

2

3

4

5

6

7

MiniPIC
charge

MiniPIC field MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

ve
r

D
D

R
 o

n
ly

Application / sample

Performance with unlimited HBM

Heavyweight

Lightweight

Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization

20

0

0.5

1

1.5

2

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

SNAP

12.50% 25% 50% 100%

Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large

21

0

1

2

3

4

5

6

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

HPCG

12.50% 25% 50% 100%

Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Compared to block level: lower tracking overhead but higher
add/remove overhead

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)

22

Automatic Page-Level Swapping

 Addition policies

 Replacement policies

23

Directory
Controller

DDR
Fast

Memory

MLM Unit

Mapping
Table

DMA

Policy
Dispatcher

Addition Policies Replacement Policies

• addT: Simple Threshold
• addMFU: Most Frequently Used
• addRAND: 1:8192 chance
• addMRPU: More Recent Previous Use
• addMFRPU: More Frequent + More

Recent Previous Use
• addSC: Deprioritize streams
• addSCF: as addSC + More Frequent

• FIFO: First-in, First-out
• LRU: Least Recently Used
• LFU: Least Frequently Used
• LFU8: LFU w/ 8-bit counter
• BiLRU: BiModal LRU
• SCLRU: Deprioritize streams

Performance vs. Policy

24

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
e

rf
o

rm
an

ce

Add Policy

Lulesh: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
er

fo
rm

an
ce

Add Policy

MiniFE: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

Addition policy: big variation

Replacement policy: little variation

“What you put in matters more than what you take out”

Larger data sets

 Looked at highest performing
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement

25

0

1

2

3

4

5

6

7

1024 8192 65536

Pe
rf

 (
1=

n
o

 f
as

t
m

em
)

Pages

Pennant-b Performance: Addition

addMFRPU All Fast
addRand addSCF
addMFU

0

0.5

1

1.5

2

1024 8192 65536

Pe
rf

 (
1

=n
o

 f
as

t
m

em
)

Pages

Snap-p0 Performance: Addition

addMFRPU All Fast

addRand addSCF

AddMFU

0

1

2

3

4

5

6

1024 8192 65536

Pe
rf

 (
1

=n
o

 f
as

t
m

em
)

Pages

HPCG Performance: Addition

addMFRPU Series2

addRAND addSCF

addMFU

Fine Tuning
1. Thresholds

2. Page size

3. Throttling

26

0

0.5

1

1.5

2

0 20 40 60 80

P
er

fo
rm

an
ce

Threshold

Pennant Threshold

0

1

2

3

4

5

9 11 13 15

R
el

. P
e

fo
rm

Page Size (2x B)

Pennant Page size Effects

128M

256M

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

9 11 13 15

R
el

. P
ef

o
rm

Page Size (2x B)

snap-p0 Page size Effects

128M

256M

0.5

1.5

2.5

3.5

0 200 400 600 800 1000

P
er

fo
rm

an
ce

Threshold

MLM Performace vs. Threshold (addT/LRU)

CoMD

lammps

lulesh

miniFE

0

0.2

0.4

0.6

0.8

1

CoMD lammps lulesh miniFE
P

er
fo

rm
an

ce

Swap Thro0 ling

Thro; le

No Thro; le

