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SPARTA L}

(Stochastic PArallel Rarefied-gas Time-accurate Analyzer)

Direct Simulation Monte Carlo (DSMC) code

Core developers are Steve Plimpton and Michael Gallis (Sandia
National Labs)

Open-source, http://sparta.sandia.gov




SPARTA Features ) e

= Structured grids with complex surfaces via cut and split cells

AN

= Hierarchal grids with adaptive mesh refinement

= MPI parallelism using highly scalable domain decomposition
(trillion particles simulated using the Sequoia supercomputer) s




SPARTA Features (cont.)

= Load balancing (static and dynamic)

= Surface collisions and chemistry
= Grid cell weighting of particles




SPARTA Features (cont.) ) s

= Diagnostics
= global boundary statistics
= per grid cell statistics
= per surface element statistics

= time-averaging of global, grid, surface statistics

= |n-Situ Visualization

= And more




Current Trends in HPC Hardware ) jge,

= Nodes are getting wider (more CPU cores/node)
= |ntel Sandy Bridge: 16 cores/node
= |ntel Haswell: 32 cores/node
= |ntel Broadwell: 36 cores/node
= Intel Sky Lake: 48 cores/node
» |ntel Knight’s Landing (KNL): 68 cores/node

= CPU vector processor width is increasing: KNL and Sky Lake
can process 8 double-precision operations at a time

= Multiple hardware (hw) threads per core (i.e. hyperthreading)
= |ntel KNL: 4 hw threads/core
= |BM Power8: 8 hw threads/core




GPU Acceleration ) jge,

= Currently, two out of the top ten supercomputers use NVIDIA
GPUs, according to the June 2017 Top500 List
(https://www.top500.0rg)

" |n the future, another two large supercomputers (Summit at ORNL
and Sierra at LLNL) will also have GPUs

= GPUs have 100s-1000s of “cores” (but frequency of GPU core is
lower than CPU core)

= Special code (e.g. CUDA) required to run on GPUs

= Pointersin CPU memory are NOT accessible on the GPU, and visa
versa, unless using unified virtual memory (UVM)

l http://www.nvidia.com/object/tesla-p100.html 7




Parallelization Approach ) e,

= MPI Domain decomposition

= Each processor owns a portion of the simulation domain and particles
therein

= Halo of “ghost” grid cells to reduce communication cost
= MPI used for node to node communication

= Can use either MPI or threading between processors inside a
CPU node (shared memory)

= Thread over significant loops of work inside of MPI domains,
i.e. loops over grid cells, particles, etc.

= For GPUs, a host CPU launches kernels of work on the GPU




MPI vs OpenMP: The Reality (]

= Using threading requires code to be thread safe, which can
lead to additional overhead vs MPI only

= QOrder of execution of a threaded loop is not guaranteed and can
change from run to run

= No two threads can write to the same memory at the same time

= May need to rewrite algorithm to avoid “race” conditions or use
thread atomics (memory locks)

= Benefits of MPI + OpenMP vs MPI only may only be visible at
large scale (i.e. thousands of nodes, where MPI
communication time or MPI memory consumption is high)

= MPI only doesn’t work on GPUs, must use threading




Kokkos Library

= Modern HPC hardware is complicated

= The Kokkos library is an abstraction layer between the programmer and
these platforms

= Core developers of Kokkos are Carter Edwards, Christian Trott, and Daniel
Sunderland (Sandia National Laboratories)

= Kokkos consists of two main parts:

1. Parallel dispatch—threaded kernels are launched and mapped onto backend
languages such as CUDA, OpenMP, or Pthreads

2. Kokkos views—multidimensional arrays with polymorphic memory layouts
that can be optimized for a specific hardware (such as C-style layout right vs
Fortran-style layout left)

= Used on top of existing MPI parallelization (MPI + X)

= Qpen-source, can be downloaded from https://github.com/kokkos/kokkos
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Kokkos (cont.) ) g,

= C++ code is written once using Kokkos abstractions in a form
that looks independent of the target hardware

= Target-specific code (i.e. OpenMP or CUDA) is generated
based on compile-time options

= Helps developers deal with a wide variety of ever-changing
hardware (for new hardware, change Kokkos not SPARTA)

= Protects developers from having to maintain multiple
versions of the code

= |n practice, Kokkos allows SPARTA to run on GPUs and use
OpenMP threading on multicore CPUs/Xeon Phis

= Goal is performance portability: good performance across
many different platforms
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SPARTA KOKKOS Package ) e,

= |Implemented as an optional add-on package to SPARTA

= Developed by Stan Moore, Dan Ibanez, and Tim Fuller (Sandia
National Laboratories)

Algorithms ported to Kokkos:

= Particle move, sort, and collide (reactions not yet supported)
= Communication: pack/unpack buffers, compress particle list
= Diagnostics

u Temperature computation

= Averaging of grid quantities
= Particle emission from cell faces
= Surface collisions (diffuse, specular, and vanish)
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7| Netora

Incremental Approach

= Many diagnostics haven’t yet been ported to Kokkos, how can
they still work with Kokkos?

= Certain Kokkos arrays are aliased with legacy data structures (must
use C-style layout right)

=  Automatic data movement between host CPU and device GPU for
non-Kokkos parts of the code such as diagnostics (not using UVM)
= |nitialization done on host CPU without threading (assumes
run time is large compared to initialization time)

= Allows incremental porting approach




MPI Parallelization Approach ) e,

= Domain decomposition: each processor owns a portion of the
simulation domain and particles therein




Threaded Move ) e,

= One thread pushes particles for a timestep or micro-iteration
" |ntermediate grid crossings are found

= Statistical accumulators (i.e. number of moves, number of
surface collisions, etc.) use either a parallel reduction or an
atomic reduction on a global variable
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Threaded Sort ) e,

= Threads loop over particles to sort by grid cell

= 2D array of grid cells vs particle IDs is created, along with 1D array
of counts of particles in each cell

= Requires thread atomics to avoid write conflicts

= |f 2D array is too small, increase second dimension, realloc, and try
again

= Tried parallel scan with CRS graph, but 2D array was faster for
uniform particles/cell
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Threaded Collide )

= Each thread processes all the collisions in a grid cell
= Nearest neighbor algorithm also supported

Thread 1
Thread 2
Thread 3




Compiling and Running Kokkos Package ) e

= Start with a Kokkos Makefile included with SPARTA Kokkos

= |nstall the KOKKOS package using “make yes-kokkos” and
compile

= Designed so that no changes to input script are needed to use
threading

= Run with 4 OpenMP threads: “./spa_exe -inin.lj -k on t 4 -sf
kk”

= Run with 4 MPl and 4 GPUs: “mpiexec-np 4 ./spa_exe -in
in.colide -k on g 4 -sf kk”




Algorithmic Specializations ) B

= Different algorithms may work better on different hardware

= Typically atomic reduction of statistical accumulators is faster on
GPUs, while parallel reduction is faster on CPUs/Xeon Phis

= Threaded packing and unpacking of communication buffers can be
faster on GPUs since it avoids host/device memory transfer, non-
threaded is normally faster on CPUs/Xeon Phis

= Reordering the particle list to align with grid cells can be faster on
GPUs, but slower on CPUs

= These options are implemented in SPARTA Kokkos and can be
toggled at the command line/input script




Benchmarking

= Collide benchmark

= Particles advect though a uniform grid in a box with specular walls
(argon at room temperature)

= Variable soft sphere (VSS) collisions
= 10 particles/grid cell on average
= Can be scaled to arbitrary sizes

= Equilibrate for 30 steps using 70 ns timestep, then benchmark for 100
steps using 7 ns timestep




Benchmark Machines

= chama = Intel SandyBridge CPUs

= 1232-node cluster

= node = dual Sandy Bridge:2S5:8C @ 2.6 GHz, 16 cores,
no hyperthreading

= interconnect = Qlogic Infiniband 4x QDR, fat tree

= serrano = Intel Broadwell CPUs

= 1122 nodes

= one node = dual Broadwell 2.1 GHz CPU E5-2695, 36
cores + 2x hyperthreading

= interconnect = Omni-Path




Benchmark Machines i)

= mutrino = Intel Haswell CPUs and Intel KNLs
= ~100 CPU nodes
= one node = dual Haswell 2.3 GHz CPU, 32 cores + 2x hyperthreading

= ~100 KNL nodes
= node = single Knight's Landing processor, 68 cores + 4x hyperthreading

= interconnect = Cray Aries Dragonfly

= testbed meant to represent the Trinity supercomputer at LANL




Benchmark Machines i)

= ride80 =IBM Power8 CPUs and NVIDIA K80
GPUs
= 11 nodes

= one node = dual Power8 3.42 GHz CPU (Firestone),
16 cores + 8x hyperthreading

= each node has 2 Tesla K80 GPUs (each K80 is "dual"
with 2 internal GPUs)

= interconnect = Infiniband

= ridel00 =IBM Power8 CPUs and NVIDIA P100
GPUs
= 8 nodes

= one node = dual Power8 3.42 GHz CPU (Garrison),
16 cores + 8x hyperthreading

= each node has 4 Pascal P100 GPUs

= interconnect = Infiniband 23
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Parameter Sweep

= Don’t know optimal number of MPI tasks vs OpenMP threads
or number of hyperthreads to use a priori

= Use a parameter sweep to find optimal settings for the
different packages

= Only best results of the parameter sweep included in the
results shown here




Single Core ) 2=

= 1 MPI rank with 1 OpenMP thread
= Best performance using either Kokkos or MPI only
= Not possible to run on 1 GPU core
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Single Node ) 2=,

= 1 CPUnode or 1 GPU (2 logical GPUs for K80)
= Best performance using either Kokkos or MPI only
= Large cache effect for small problem sizes
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Sandia

Timing Breakdown s

= 1 CPUnode or 1 GPU (2 logical GPUs for K80)

Single Node, 16M particles

Haswell

KNL

H Move M Collide = Sort




Strong Scaling, 64M particles

= Best performance using either Kokkos or MPI only
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Strong Scaling, 8M particles ) e,

= Best performance using either Kokkos or MPI only

Collide: strong scaling, 8M particles
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Weak Scaling, 16M particles/node (]

= Best performance using either Kokkos or MPI only
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Weak Scaling, 1M particles/node (]

= Best performance using either Kokkos or MPI only

Collide: weak scaling, 1M particles/node
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GPU Node Scaling

= Usel, 2, or4P100 GPUs with Kokkos CUDA
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Kokkos OpenMP vs MPI Only =

= KNL weak scaling

= CPU is MPI only, Kokkos is OpenMP, Kokkos/serial is MPI only
using the Kokkos code

= Allowing MPI on the hyperthreads

= OpenMP threading has little to no benefit, may have more
benefit at full scale (1000s of nodes)
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Kokkos OpenMP vs MPI Only ) =,

= KNL weak scaling
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Kokkos OpenMP vs MPI Only ) =,

= Single Node KNL

. qulidg: KrNL,1 siqglq noge .

F=Y
o
(=]

o—e CPU/KNL
|| e Kokkos/KNL
1| e Kokkos/serial/KNL

W
1%
o

[*3]
o
o

W8]
u
[=]

=
u
o

Millions of particle-steps/sec
= [N)
o (=]
o o

wu
(=]

[=]

64K 256K 1M 2M 4M 8M16M  64M
Particle count

35
-



Kokkos OpenMP vs MPI Only ) =,

= Haswell weak scaling
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Kokkos OpenMP vs MPI Only ) =,

= Haswell weak scaling
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Kokkos OpenMP vs MPI Only ) =,

= P100 weak scaling using 1, 2, and 4 GPUs per node

Collide: P100, weak scaling, 16M particles/node
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Kokkos OpenMP vs MPI Only ) =,

= P100 weak scaling
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New Benchmark Website )t

= Very non-trivial to get optimal performance on modern HPC
platforms

= New SPARTA benchmarking website will show performance
plots for different hardware
= Free molecular flow
= Collisional flow

= Flow around a sphere

= Will also include links to:
= Tables of time for each run
= Makefiles used for compiling SPARTA on different platforms
= List of modules loaded

= Exact MPIl run command used, along with affinity settings
= SPARTA logfiles for each run
40




New Benchmark Website (cont.

= Screenshot of benchmarking website:

Single node performance, Collide benchmark
Performance in millions of particle-timesteps / second

[Nparticles |Sandandge Haswell [Broadwell KNL K8&0-1 P100-1 |
32000 |249.8 (CPU.mp1=16) 444.9 (CPU.mp1=32.hyper=1) 314.8 (CPU.mp1=36.hyper=1) 191.8 (CPU/KNL,mp1=64.hyper=1) 15.72 (Kokkos/Cuda.mp1=2) |55.04 (Kokkos/Cuda.mpi=1)
64000  [280.3 (CPU.mpi=16) [520.4 (CPU.mpi=64.hyper=2) [418.2 (CPU.mpi=36 hyper=2) [246.8 (CPU/KNL mpi=64.hyper=1) 31.62 (Kokkos/Cuda,mpi=2) [80.94 (Kokkos/Cuda mpi=1)
128000 296.1 (CPU.mpi=16) 618.6 (CPU.mpi=64 hyper=2) 503.3 (CPU,mpi=72 hyper=2) 273.1 (CPU/KNL, mpi=64 hyper=1) 54.74 (Kokkos/Cuda,mpi=2) [130.8 (Kokkos/Cuda,mpi=1)
256000 264.8 (CPU.mp1=16) 685.2 (CPU.mp1=64.hyper=2) 601.3 (CPU.mp1=64 hyper=2) 292.5 (CPU/KNL,mp1=128 hyper=2) 91.27 (Kokkos/Cuda.mp:=2) |130.2 (Kokkos/Cuda.mpi=1)
512000 147.9 (CPU.mpi=16) 623 (CPU,mpi=64 hyper=2) 613.4 (CPU_.mpi=72 hyper=2) 324.4 (CPU/KNL. mpi=128 hyper=2) 116.6 (Kokkos/Cuda mpi=2) |250.7 (Kokkos/Cuda.mpi=1)
1024000 |[128.7 (CPU,mpi=16) 289.2 (CPU.mpi=64 hyper=2) 331.2 (CPU.mpi=72 hyper=2) 330.2 (Kokkos/KNL mpi=64 thread=4 hyper=4) ||140.2 (Kokkos/Cuda.mpi=2)|275.5 (Kokkos/Cuda.mpi=1)
2048000 (112.7 (CPU.mp1=16) 245.9 (Kokkos/serial, mp1=64.hyper=2) 258.4 (CPU.mp1=72 hyper=2) 350.4 (Kokkos/KNL,mp1=64 thread=4 hyper=4) ||140.7 (Kokkos/Cuda.mp1=2)|299.2 (Kokkos/Cuda.mpi=1)
4096000 [91.56 (CPU.mpi=16) 223.1 (Kokkos/OMP,mpi=64 hyper=2 thread=1) [243.9 (Kokkos/serial mpi=72 hyper=2) 333 (Kokkos/KNL.mpi=64 thread=4 hyper=4) 150.3 (Kokkos/Cuda.mpi=2)|302.9 (Kokkos/Cuda.mpi=1)
‘81920(}0 |74,74 (Kokkos/serial. mpi=16) ‘190,8 (Kokkos/serial mpi=64_hyper=2) |211,2 (Kokkos/serial mpi=72 hyper=2) ‘299,3 (Kokkos/KNL.mpi=32. thread=8 hyper=4) ‘147,7 (Kokkos/Cuda mpi=2) |300,5 (Kokkos/Cuda.mpi=1)
16384000 [64.46 (CPU,mpi=16) 164.5 (Kokkos/serial, mp1=64.hyper=2) 177.9 (Kokkos/serial. mp1=72 hyper=2) 282.8 (Kokkos/KNL,mp1=256, thread=1 hyper=4) |147.6 (Kokkos/Cuda.mp:=2)|304.7 (Kokkos/Cuda.mpi=1)
32768000 [62.67 (Kokkos/serial mpi=16) (144 (Kokkos/serial mpi=64 hyper=2) 157.8 (Kokkos/serial mpi=72 hyper=2) 272.7 (Kokkos/serial KNL mpi=256_hyper=4) 146.5 (Kokkos/Cuda.mpi=2)|306.7 (Kokkos/Cuda.mpi=1)
‘65536(}00 |6(},96 (Kokkos/serial. mpi=16) ‘132,7 (Kokkos/serial mpi=64_hyper=2) |14S‘,5 (Kokkos/serial mpi=72 hyper=2) ‘259,2 (Kokkos/KNL.mpi=256 thread=1 hyper=4) ‘148,7 (Kokkos/Cuda mpi=2) |301,2 (Kokkos/Cuda.mpi=1)
‘131072000 |57.58 (Kokkos/serial. mpi=16) ‘123 (Kokkos/serial. mp1=64.hyper=2) |131 (Kokkos/OMP,mp1=72 hyper=2.thread=1) ‘226.4 (Kokkos/serial/KNL,mp1=256 . hyper=4) ‘None |N|:|ue

Run commands and logfile links for column SandyBridge

‘3200{) |mpiru11 -n 16 -N 16 --bind-to core spa_chama cpu-vx 16 -v v 10 -v z 20 -v t 100 -in in collide steps -log log sparta date=8Aug17 model=collide machine=chama pke=cpu.kind=node size=32K node=1.mpi=16
64000 mpirun -n 16 -N 16 —-bind-to core spa_chama_cpu -vx 16 -v y 20 -v z 20 -v t 100 -1n in.collide.steps -log log.sparta.date=8Aug17.model=collide.machine=chama.pkg=cpu.kind=node.size=64K node=1.mp=16
128000 impirun -n 16 -N 16 --bind-to core spa_chama_cpu -vx 32 -vy 20 -v z 20 -v t 100 -in in collide steps -log log sparta date=8Aug17 model=collide machine=chama pke=cpu.kind=node size=128K node=1.mpi=16
‘256000 |mpiru11 -n 16 -N 16 --bind-to core spa_chama cpu -vx 32 -v v 20 -v z 40 -v t 100 -in in collide steps -log log sparta date=8Aug17 model=collide machine=chama pke=cpu.kind=node size=256K .node=1.mpi=16
‘512000 |mpi.run -n 16 -N 16 —bind-to core spa_chama_cpu -vx 32 -v y 40 -v z 40 -v t 100 -1n in.collide.steps -log log.sparta.date=8 Aug17.model=collide.machine=chama pkg=cpu.kind=node.s1ze=512K.node=1.mp1=16




Automation ) i,

= Python script is created for every machine and every model

= Python scripts work together to generate batch scripts for
each accelerator package and model

= Batch scripts are submitted to the job queue on each machine

= Python script post-process logfiles to generate tables of
timings, finds “best” time in sweep of parameters

= Python scripts generate plots from tables and then generates
webpage

= SPARTA Kokkos is constantly being improved; can rerun the
benchmarks and regenerate the webpage with updated
results
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Regression Testing .

= Currently 9 regression tests for Kokkos SPARTA run on:
= multiple CPU cores using multiple OpenMP threads
= multiple GPUs

= multiple CPU cores using a single thread in “exact” mode (uses Kokkos
but gives the exact same output as the non-Kokkos version of SPARTA)

= Testing is automated using the Jenkins continuous integration
server

= Regression testing helps improve the quality and reliability of
Kokkos SPARTA

.' Jenkins




Open Source Release

= MPI only version of SPARTA is available at
http://sparta.sandia.gov

= Kokkos version (along with documentation) should be
released soon (by the end of 2017)

= New benchmarking website also to be released




Conclusions

= Kokkos abstractions provide performance portability by
allowing SPARTA to run on GPUs and use OpenMP threads on
CPUs/Xeon Phis

= OpenMP threading has little benefit for low node counts, may
have more benefit when using 1000s of nodes

= Current and future work:

= Multithreaded support for complex surfaces, load balancing, adaptive
grids, etc. in progress

= |mprove performance on CPU and KNL through vectorization

= |ncrease coverage of the KOKKOS package in SPARTA




Thank you
Questions?
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