
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly 
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525. SAND NO. 2011-XXXXP

SPARTA Kokkos: A Massively Parallel and 
Multithreaded DSMC Code 

Stan Moore, Dan Ibanez

2017 DSMC Workshop

Santa Fe, NM

SAND2017-9006C



SPARTA

(Stochastic PArallel Rarefied-gas Time-accurate Analyzer)

 Direct Simulation Monte Carlo (DSMC) code

 Core developers are Steve Plimpton and Michael Gallis (Sandia 
National Labs)

 Open-source, http://sparta.sandia.gov

2



SPARTA Features

 Structured grids with complex surfaces via cut and split cells

 Hierarchal grids with adaptive mesh refinement

 MPI parallelism using highly scalable domain decomposition 
(trillion particles simulated using the Sequoia supercomputer) 3



SPARTA Features (cont.)

 Load balancing (static and dynamic)

 Gas-phase collisions and chemistry

 Surface collisions and chemistry

 Grid cell weighting of particles
4



SPARTA Features (cont.)

 Diagnostics
 global boundary statistics

 per grid cell statistics

 per surface element statistics

 time-averaging of global, grid, surface statistics

 In-Situ Visualization

 And more
5



 Nodes are getting wider (more CPU cores/node)
 Intel Sandy Bridge: 16 cores/node

 Intel Haswell: 32 cores/node

 Intel Broadwell: 36 cores/node

 Intel Sky Lake: 48 cores/node

 Intel Knight’s Landing (KNL): 68 cores/node

 CPU vector processor width is increasing: KNL and Sky Lake 
can process 8 double-precision operations at a time

 Multiple hardware (hw) threads per core (i.e. hyperthreading)
 Intel KNL: 4 hw threads/core

 IBM Power8: 8 hw threads/core

Current Trends in HPC Hardware

6



 Currently, two out of the top ten supercomputers use NVIDIA 
GPUs, according to the June 2017 Top500 List 
(https://www.top500.org)

 In the future, another two large supercomputers (Summit at ORNL 
and Sierra at LLNL) will also have GPUs

 GPUs have 100s-1000s of “cores” (but frequency of GPU core is 
lower than CPU core)

 Special code (e.g. CUDA) required to run on GPUs

 Pointers in CPU memory are NOT accessible on the GPU, and visa 
versa, unless using unified virtual memory (UVM)

GPU Acceleration

7http://www.nvidia.com/object/tesla-p100.html



 MPI Domain decomposition
 Each processor owns a portion of the simulation domain and particles 

therein

 Halo of “ghost” grid cells to reduce communication cost

 MPI used for node to node communication

 Can use either MPI or threading between processors inside a 
CPU node (shared memory)

 Thread over significant loops of work inside of MPI domains, 
i.e. loops over grid cells, particles, etc.

 For GPUs, a host CPU launches kernels of work on the GPU

Parallelization Approach

8



 Using threading requires code to be thread safe, which can 
lead to additional overhead vs MPI only
 Order of execution of a threaded loop is not guaranteed and can 

change from run to run

 No two threads can write to the same memory at the same time

 May need to rewrite algorithm to avoid “race” conditions or use 
thread atomics (memory locks)

 Benefits of MPI + OpenMP vs MPI only may only be visible at 
large scale (i.e. thousands of nodes, where MPI 
communication time or MPI memory consumption is high)

 MPI only doesn’t work on GPUs, must use threading

MPI vs OpenMP: The Reality

9



Kokkos Library

 Modern HPC hardware is complicated

 The Kokkos library is an abstraction layer between the programmer and 
these platforms

 Core developers of Kokkos are Carter Edwards, Christian Trott, and Daniel 
Sunderland (Sandia National Laboratories)

 Kokkos consists of two main parts:

1. Parallel dispatch—threaded kernels are launched and mapped onto backend 
languages such as CUDA, OpenMP, or Pthreads

2. Kokkos views—multidimensional arrays with polymorphic memory layouts 
that can be optimized for a specific hardware (such as C-style layout right vs 
Fortran-style layout left)

 Used on top of existing MPI parallelization (MPI + X)

 Open-source, can be downloaded from https://github.com/kokkos/kokkos

10



Kokkos (cont.)

 C++ code is written once using Kokkos abstractions in a form 
that looks independent of the target hardware

 Target-specific code (i.e. OpenMP or CUDA) is generated 
based on compile-time options

 Helps developers deal with a wide variety of ever-changing 
hardware (for new hardware, change Kokkos not SPARTA)

 Protects developers from having to maintain multiple 
versions of the code

 In practice, Kokkos allows SPARTA to run on GPUs and use 
OpenMP threading on multicore CPUs/Xeon Phis

 Goal is performance portability: good performance across 
many different platforms

11



SPARTA KOKKOS Package

 Implemented as an optional add-on package to SPARTA

 Developed by Stan Moore, Dan Ibanez, and Tim Fuller (Sandia 
National Laboratories)

Algorithms ported to Kokkos:

 Particle move, sort, and collide (reactions not yet supported)

 Communication: pack/unpack buffers, compress particle list

 Diagnostics
 Temperature computation

 Averaging of grid quantities

 Particle emission from cell faces

 Surface collisions (diffuse, specular, and vanish)

12



Incremental Approach

 Many diagnostics haven’t yet been ported to Kokkos, how can 
they still work with Kokkos?
 Certain Kokkos arrays are aliased with legacy data structures (must 

use C-style layout right)

 Automatic data movement between host CPU and device GPU for 
non-Kokkos parts of the code such as diagnostics (not using UVM)

 Initialization done on host CPU without threading (assumes 
run time is large compared to initialization time)

 Allows incremental porting approach

13



 Domain decomposition: each processor owns a portion of the 
simulation domain and particles therein

MPI Parallelization Approach

14

MPI #1 MPI #2

MPI #3 MPI #4



Threaded Move

 One thread pushes particles for a timestep or micro-iteration

 Intermediate grid crossings are found

 Statistical accumulators (i.e. number of moves, number of 
surface collisions, etc.) use either a parallel reduction or an 
atomic reduction on a global variable

15

MPI rank 1

Thread 1
Thread 2
Thread 3



Threaded Sort

 Threads loop over particles to sort by grid cell

 2D array of grid cells vs particle IDs is created, along with 1D array 
of counts of particles in each cell

 Requires thread atomics to avoid write conflicts

 If 2D array is too small, increase second dimension, realloc, and try 
again

 Tried parallel scan with CRS graph, but 2D array was faster for 
uniform particles/cell

16

Cell ID Part. ID Part. ID

1

2

3

4

5

6

MPI rank 1
Thread 1
Thread 2
Thread 3



Threaded Collide

 Each thread processes all the collisions in a grid cell

 Nearest neighbor algorithm also supported

17

MPI rank 1

Thread 1
Thread 2
Thread 3



Compiling and Running Kokkos Package

 Start with a Kokkos Makefile included with SPARTA Kokkos

 Install the KOKKOS package using “make yes-kokkos” and 
compile

 Designed so that no changes to input script are needed to use 
threading

 Run with 4 OpenMP threads: “./spa_exe -in in.lj -k on t 4 -sf 
kk”

 Run with 4 MPI and 4 GPUs: “mpiexec -np 4 ./spa_exe -in 
in.colide -k on g 4 -sf kk”

18



Algorithmic Specializations

 Different algorithms may work better on different hardware
 Typically atomic reduction of statistical accumulators is faster on 

GPUs, while parallel reduction is faster on CPUs/Xeon Phis

 Threaded packing and unpacking of communication buffers can be 
faster on GPUs since it avoids host/device memory transfer, non-
threaded is normally faster on CPUs/Xeon Phis

 Reordering the particle list to align with grid cells can be faster on 
GPUs, but slower on CPUs

 These options are implemented in SPARTA Kokkos and can be 
toggled at the command line/input script

19



Benchmarking

 Collide benchmark
 Particles advect though a uniform grid in a box with specular walls 

(argon at room temperature)

 Variable soft sphere (VSS) collisions

 10 particles/grid cell on average

 Can be scaled to arbitrary sizes

 Equilibrate for 30 steps using 70 ns timestep, then benchmark for 100 
steps using 7 ns timestep

20



Benchmark Machines

 chama = Intel SandyBridge CPUs 
 1232-node cluster 

 node = dual Sandy Bridge:2S:8C @ 2.6 GHz, 16 cores, 
no hyperthreading

 interconnect = Qlogic Infiniband 4x QDR, fat tree

 serrano = Intel Broadwell CPUs 
 1122 nodes 

 one node = dual Broadwell 2.1 GHz CPU E5-2695, 36 
cores + 2x hyperthreading

 interconnect = Omni-Path

21



Benchmark Machines

 mutrino = Intel Haswell CPUs and Intel KNLs 
 ~100 CPU nodes 

 one node = dual Haswell 2.3 GHz CPU, 32 cores + 2x hyperthreading

 ~100 KNL nodes 

 node = single Knight's Landing processor, 68 cores + 4x hyperthreading

 interconnect = Cray Aries Dragonfly

 testbed meant to represent the Trinity supercomputer at LANL

22



Benchmark Machines

 ride80 = IBM Power8 CPUs and NVIDIA K80 
GPUs 
 11 nodes 

 one node = dual Power8 3.42 GHz CPU (Firestone), 
16 cores + 8x hyperthreading

 each node has 2 Tesla K80 GPUs (each K80 is "dual" 
with 2 internal GPUs) 

 interconnect = Infiniband

 ride100 = IBM Power8 CPUs and NVIDIA P100 
GPUs 
 8 nodes 

 one node = dual Power8 3.42 GHz CPU (Garrison), 
16 cores + 8x hyperthreading

 each node has 4 Pascal P100 GPUs 

 interconnect = Infiniband 23



Parameter Sweep

 Don’t know optimal number of MPI tasks vs OpenMP threads 
or number of hyperthreads to use a priori

 Use a parameter sweep to find optimal settings for the 
different packages

 Only best results of the parameter sweep included in the 
results shown here

24



Single Core

 1 MPI rank with 1 OpenMP thread

 Best performance using either Kokkos or MPI only

 Not possible to run on 1 GPU core

*Results shown in this presentation may be improved in the future
25



Single Node

 1 CPU node or 1 GPU (2 logical GPUs for K80)

 Best performance using either Kokkos or MPI only

 Large cache effect for small problem sizes

26



Timing Breakdown

 1 CPU node or 1 GPU (2 logical GPUs for K80)

27

0

2

4

6

8

10

12

ti
m

e
(s

)

Single Node, 16M particles

Move Collide Sort

P100

Haswell

KNL



Strong Scaling, 64M particles

 Best performance using either Kokkos or MPI only

28



Strong Scaling, 8M particles

 Best performance using either Kokkos or MPI only

29



Weak Scaling, 16M particles/node

 Best performance using either Kokkos or MPI only

30



Weak Scaling, 1M particles/node

 Best performance using either Kokkos or MPI only

31



GPU Node Scaling

 Use 1, 2, or 4 P100 GPUs with Kokkos CUDA

32



Kokkos OpenMP vs MPI Only

 KNL weak scaling

 CPU is MPI only, Kokkos is OpenMP, Kokkos/serial is MPI only 
using the Kokkos code

 Allowing MPI on the hyperthreads

 OpenMP threading has little to no benefit, may have more 
benefit at full scale (1000s of nodes)

33



Kokkos OpenMP vs MPI Only

 KNL weak scaling

34



Kokkos OpenMP vs MPI Only

 Single Node KNL

35



Kokkos OpenMP vs MPI Only

 Haswell weak scaling

36



Kokkos OpenMP vs MPI Only

 Haswell weak scaling

37



Kokkos OpenMP vs MPI Only

 P100 weak scaling using 1, 2, and 4 GPUs per node

38



Kokkos OpenMP vs MPI Only

 P100 weak scaling

39



New Benchmark Website

 Very non-trivial to get optimal performance on modern HPC 
platforms

 New SPARTA benchmarking website will show performance 
plots for different hardware
 Free molecular flow

 Collisional flow

 Flow around a sphere

 Will also include links to:
 Tables of time for each run

 Makefiles used for compiling SPARTA on different platforms

 List of modules loaded

 Exact MPI run command used, along with affinity settings

 SPARTA logfiles for each run
40



New Benchmark Website (cont.)

 Screenshot of benchmarking website:

41



Automation

 Python script is created for every machine and every model

 Python scripts work together to generate batch scripts for 
each accelerator package and model

 Batch scripts are submitted to the job queue on each machine

 Python script post-process logfiles to generate tables of 
timings, finds “best” time in sweep of parameters

 Python scripts generate plots from tables and then generates 
webpage

 SPARTA Kokkos is constantly being improved; can rerun the 
benchmarks and regenerate the webpage with updated 
results

42



Regression Testing

 Currently 9 regression tests for Kokkos SPARTA run on:
 multiple CPU cores using multiple OpenMP threads

 multiple GPUs

 multiple CPU cores using a single thread in “exact” mode (uses Kokkos
but gives the exact same output as the non-Kokkos version of SPARTA)

 Testing is automated using the Jenkins continuous integration 
server

 Regression testing helps improve the quality and reliability of 
Kokkos SPARTA

43



Open Source Release

 MPI only version of SPARTA is available at 
http://sparta.sandia.gov

 Kokkos version (along with documentation) should be 
released soon (by the end of 2017)

 New benchmarking website also to be released

44



Conclusions

 Kokkos abstractions provide performance portability by 
allowing SPARTA to run on GPUs and use OpenMP threads on 
CPUs/Xeon Phis

 OpenMP threading has little benefit for low node counts, may 
have more benefit when using 1000s of nodes

 Current and future work:
 Multithreaded support for complex surfaces, load balancing, adaptive 

grids, etc. in progress

 Improve performance on CPU and KNL through vectorization

 Increase coverage of the KOKKOS package in SPARTA

45



Thank you

Questions?

46


