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Abstract

Schedule Management Optimization (SMO) is a tool for automatically generating a
schedule of project tasks. Project scheduling is traditionally achieved with the use of
commercial project management software or case-specific optimization formulations.
Commercial software packages are useful tools for managing and visualizing copious
amounts of project task data. However, their ability to automatically generate
optimized schedules is limited. Furthermore, there are many real-world constraints
and decision variables that commercial packages ignore. Case-specific optimization
formulations effectively identify schedules that optimize one or more objectives for a
specific problem, but they are unable to handle a diverse selection of scheduling
problems. SMO enables practitioners to generate optimal project schedules
automatically while considering a broad range of real-world problem characteristics.
SMO has been designed to handle some of the most difficult scheduling problems —
those with resource constraints, multiple objectives, multiple inventories, and diverse
ways of performing tasks. This report contains descriptions of the SMO modeling
concepts and explains how they map to real-world scheduling considerations.
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1 INTRODUCTION

Scheduling is the process of timing a set of tasks to complete a project. Creating schedules that
meet delivery dates and minimize project duration with limited human, fiscal, and material
resources is a significant challenge. Real-world scheduling problems have many characteristics
that must be considered, such as resource constraints, precedence relationships among tasks,
multiple ways of completing a task, concurrent projects that compete for resources, inventory
constraints, and production and consumption of materials (to name a few).

Project scheduling is traditionally achieved with the use of commercial project management
software or case-specific optimization formulations. Commercial software packages are useful
tools for managing and visualizing large amounts of project task data. However, their ability to
generate optimized schedules is limited and is typically aimed at resolving resource conflicts
rather than optimizing a schedule according to the goals of the user. Furthermore, these
packages do not explicitly account for many real-world constraints and decisions. Case-specific
optimization formulations can be used to effectively identify schedules that optimize one or more
objectives for a specific problem, but they require significant effort and an analyst with expertise
in optimization formulation and programming.

Schedule Management Optimization (SMO) is a tool for automatically generating schedules that
considers a broad range of real-world scheduling constraints. The resulting schedule specifies
when each task should start, and how each task should be completed. Users of SMO can model a
resource-constrained project scheduling problem using a simple, generic modeling language in a
user-friendly environment, thus eliminating the need for a specialized optimization formulation
and modeling expertise. SMO uses a genetic algorithm to identify a set of resource-feasible
schedules that are optimized to multiple competing objectives. This multi-objective approach
currently enables users to explore tradeoffs between cost, duration, lateness, resource utilization,
and risk. Other objectives may be added in future releases.

This report provides an overview of SMO’s modeling concepts and explains how the constructs
used in SMO map to practical scheduling decisions, constraints, and objectives.






2 PROJECT STRUCTURE

SMO inputs are based on a language that describes the basic elements of most scheduling
problems: projects/tasks, resources, and products/inventories. Figure 1 gives an overview of the
project- and task-related constructs.

PrOJ eCt —_ Priority >

TaS k —(\ Precedence

MOde —__ Duration >

Figure 1: SMO project and task overview

In SMO, time is discretized into individual units called time periods. A time period can
represent any length of time (minute, hour, day, 0.5 weeks, etc.). However, all time periods in an
SMO model must be the same length. E.g., if Task 1 takes 5 days, and Task 2 takes 2 weeks, the
model could assume that each time period represents one day, and Task 1’s duration would be 5
time periods and Task 2’s duration would be 14. In this case, you cannot, however, assume that
each time period represents a week, because then Task 1’°s duration could not be represented with
an integer value.

2.1 Projects

A project defines a set of tasks that once completed, achieves a high-level objective. For
example, in building a housing development, each individual house could be a project. The tasks
of a project would consist of all the activities necessary to construct each respective house.
Other projects may be to construct the streets of the housing development or a park.

Projects can be given a priority!, which defines the relative order in which a project’s tasks are
scheduled with respect to the tasks of other projects. For example, if Projects A, B, and C have

! Project priority is not implemented in the current release. All projects are treated with equal priority.



priorities 1.0, 3.4, and 8.0, respectively, then Project A’s tasks will be scheduled first followed
by those of Project B and finally Project C. If Project B’s tasks use different resources and
products from those of Project A, the prioritization would not affect the scheduling of Project B’s
tasks. However, if Project B’s tasks use some or all the same resources as Project A’s tasks,
Project B’s tasks will have to be scheduled in time periods where the commonly used resources
are unclaimed by Project A’s tasks.

2.2 Tasks

A task represents an activity to be completed. Every task will be included in the final schedule
exactly once.

There may be more than one way to complete a task. Each alternative method of completing the
task is called a mode (Section 2.3).

Tasks take time to complete, and often require resources, consume products, or generate
products. A task’s duration, input requirements, and output generation depend on the mode in
which the task was carried out.

There are often relationships between tasks, where a task cannot be started until certain other
tasks have been completed. These task order dependencies are specified via precedence
relationships. Every precedence relationship involves two tasks, a predecessor task and a
successor task. The predecessor must be completed before the successor can begin. Every task
is a successor of its own predecessors, and a predecessor of its successors; defining one side of
the relationship automatically defines the other side.

Precedence relationships can be direct or indirect. Indirect relationships arise when precedence
relationships are chained together. For example, task A may be a predecessor of task B, and task
B a predecessor of task C. In this case, task A is an indirect predecessor of task C because task
A must be completed before task C can begin. Analysts only need to define direct precedence
relationships.

Every task can have any number of predecessors and successors. However, a task is not allowed
to have a precedence relationship with itself, even when considering indirect relationships. In
other words, a chain of precedence relationships may not form a loop.

2.3 Modes

Modes define the ways a task can be accomplished. A task can be performed using different
types and/or quantities of resources (Section 0) as well as consume or generate different types
and/or quantities of products (Section 0).

A task to build a wall could be performed using different numbers of workers and material. In
this case, a mode to build the wall using brick could require masons and consume bricks. On the
other hand, a mode to build the wall using concrete could require a cement truck and concrete
workers while consuming concrete mix.

Associated with each mode is a duration, which is defined as the time required to complete the
task from start to finish using that mode. A mode that uses more resources typically has a shorter
duration. For example, employing four masons instead of two should reduce the duration
required to build a brick wall.

10



Resource requirements for a mode can vary over each time period of the mode’s duration. For
example, a mode may require a setup and teardown step in which personnel resources are used at
the beginning and end of the task. Product consumption and generation occur at the beginning
and end of the task, respectively.

The final attribute associated with modes is cost. Cost typically represents the expense of the
resources and product consumed by the mode as well as any other expenses such as labor (which
alternatively could be costed as a resource, see below), transport costs, insurance costs, capital
costs, etc. More specifically, SMO considers three types of costs associated with each mode:
resource costs, product costs, and one-time costs. The resource cost of a mode is the total cost of
using each resource that the mode requires. The cost to utilize each resource is a function of the
per-unit utilization cost of the resource per-unit-time as well as the quantities of the resource
required during each period of the mode’s duration. The product cost of a mode is the net
expense incurred or revenue generated by consumption and generation of products and is a
function of the product’s per-unit consumption and revenue values as well as the quantities of
each product generated and consumed. Lastly, one-time costs encompass other costs incurred by
the mode that are not associated with products or resources (e.g., capital costs, set-up costs).

11






3 RESOURCES

Figure 2 gives and overview of the scheduling language constructs related to resources.

Resource
Request

\ 4

Resource e

Resource
Relinquish

Figure 2: SMO resource overview

3.1 Resource Description

Resources are reusable items or entities that may be required to carry out a task, such as tools,
facilities, or personnel. A model may include several types and quantities of resources to be used
by tasks.

Each resource can be used by only one task at a time, and tasks can only be scheduled when the
resources they require are available, so resource contention has a significant impact on the timing
of tasks.

Resources of the same type are grouped into resource pools. When a task needs a certain kind of
resource, the required resource is taken from the corresponding pool. The resource is removed
from its pool while the task is using it, temporarily reducing the number of resources of that type
available to other tasks. When the task is done with the resource, it is returned to the pool and
the number of available resources of that type increases.

The resources in a pool are indistinguishable from each other; there is no way to identify a
specific mechanic in a resource pool of mechanics, for example. If a specific mechanic is
needed, this mechanic should comprise their own pool.

In some cases, a resource may not be available for one or more fixed durations. For example, an
employee may have vacation scheduled, or a machine may have maintenance scheduled for a
specific date. The analyst can model these situations in SMO by specifying one or more spans of
resource non-availability for each resource type. During one of these periods, all resources of a
type are unavailable.

3.2 Resource Requirement Schedules

The types and quantities of required resources can vary from one task to the next and from one
mode of task execution to the next. The resources required to execute a task in each mode are
described by a resource requirement schedule. A resource requirement schedule describes which
resources are required, and when, relative to the start of the task.

A resource requirement schedule can be thought of as a list of resource types that will be needed
to carry out a task in a mode. For each required resource type, there is a usage schedule that
describes how many resources of that type will be required for each time period of the task’s

13



duration. The required number of resources can be constant throughout the task’s duration, or it
can change from one time period to the next.

An example of a resource requirement schedule is shown in Table 1 below. In this example, a
vehicle is to be repaired. The repairs need to be done in a garage bay, so a single Garage Bay
resource is required throughout the task. The task can be started by a single mechanic without a
vehicle lift, but requires an additional mechanic and a vehicle lift in the 2" and 3™ time periods.
The final time period (which might represent final cleanup) no longer requires the additional
mechanic or the vehicle lift.

Table 1: Example resource requirement schedule

Cost per Unit Resource per Time Period
Resource G pas .
Unit Time Period 1 2 3 4
Garage Bay $100.00 1 1 1 1
Mechanic $50.00 1 2 2 1
Vehicle Lift $5.00 0 1 1 0

Note that there may be other ways to carry out the same repair, represented by alternative task
modes. Each alternative mode would have its own resource requirement schedule, possibly
using diverse types and quantities of resources, and possibly having a different overall duration.

Resources are pulled from resource pools at the time they are needed, which may not be when
the task starts. Similarly, resources are returned to their resource pool when they are no longer
needed, which may be before the task ends. Also note that tasks can only use resources while the
task is in progress. They cannot claim resources before the beginning of the task, nor can they
hold on to resources past the end of the task’s duration.

Associated with each resource is a cost, which is specified as the cost of using a single unit of the
resource for a single time period. The total resource cost of a mode is computed using the cost of
each required resource together with the quantities of the resource used during each time period.
In the case of repairing the vehicle, the resource cost of the Mechanic is $50.00 x (1 +2 +2 + 1)
= $300.00. The resource cost of the Garage Bay and Vehicle Lift can be similarly computed as
$400.00 and $10.00, respectively, so that the total resource cost is $300.00 + $400.00 + $10.00 =
$710.00.

14




4 PRODUCTS

Figure 3 gives an overview of the scheduling language constructs related to products and product

stores/inventories.
Product
Generation

Store I

A 4
Product
Consumption

Figure 3: SMO product store overview

4.1 Product Description

Products are items that are consumed or generated by tasks, such as fuel or manufactured goods.
Like resources, products may be required to carry out a task. Unlike resources, products cannot
be reused — products are consumed when they are used by a task, with the amount of product
used by the task permanently removed from the model. However, tasks can generate products as
an output, thus replenishing the amount of product available in the product store.

4.2 Product Consumption and Generation

The types and quantities of products consumed to carry out a task can vary from one task to the
next, and from one mode of task execution to the next. Similarly, the products generated by
tasks can vary from mode to mode. Each mode of task execution has its own list of which
products it will consume, and in what quantities, and its own list of which products it will
generate, and in what quantities.

Examples of product consumption and generation lists are shown in Table 2 and Table 3
respectively below. In this example, a standard oil change consumes 2 units of engine oil and 1
unit of wiper fluid, and generates 2 units of dirty engine oil.

Table 2: Product consumption example

Product Consumption
Product Quantity Per Unit Cost
Engine Oil 2 $5.00
Wiper Fluid 1 $1.50

15



Table 3: Product generation example
Product Generation

Product Quantity Per Unit Revenue
Dirty Engine Oil 2 $0.00

Associated with product consumption and generation are costs and revenues, respectively. The
cost of product consumption is specified as the monetary expenditure associated with consuming
a single unit of product. Likewise, the revenue of product generation is specified as the
monetary gain associated with generating a single unit of product. In the example of a standard
oil change, the cost of product consumption is 2 x $5.00 + 1 x $1.50 = $11.50. There is zero
revenue generated, so the total product cost of a standard oil change is $11.50. If the Dirty
Engine Oil had a monetary value of $0.50 per unit, then revenue of 2 x $0.50 would be generated
giving a total product cost of $10.50. In instances where revenue is generated by consuming
product (e.g., removing waste) or cost is incurred by generating product (e.g. generating waste),
the consumption cost or generation revenue should be input as negative numbers, respectively.

4.3 Product Inventory
Each type of product is kept in a product store. Each product store starts with some quantity of
its product in inventory. As products are generated and consumed by tasks, inventory levels
increase and decrease. Products consumed by tasks are removed from inventory when the task
begins. Products generated by tasks are added to inventory at the beginning of the first time
period after the task completes.

As an example, assume the oil change task described in the previous section has a duration of 2
time periods. If the oil change starts at time period 3, then the amount of engine oil in inventory
is reduced by 2 units in time period 3, wiper fluid inventory is reduced by 1 in time period 3, and
dirty engine oil inventory is increased by 2 in time period 5.

In addition to inventory changes caused by tasks, the analyst can specify additional changes that
should be made to product inventory levels. The analyst specifies the type and quantity of
product that should be added to or removed from inventory, and the time at which the change
should occur. These analyst-specified inventory changes represent anything other than tasks that
will impact the amount of product that should be available to tasks. For example, fuel delivery
can be modeled as a set of inventory increases at scheduled delivery times.

Each product store has an upper and a lower inventory limit, specified by the analyst. Inventory
overage occurs when inventory levels rise above the upper limit, and underage occurs when
inventory levels fall below the lower limit. The overage for a single time period is defined as the
amount of the inventory that is above the upper limit in that time period, or zero if the inventory
level is at or below the upper limit. The total overage for a product store is the sum of overages
for all time periods in the schedule. The total overage for the model is the sum of total overages
for all product stores. Underage values are calculated in an analogous manner, but with respect
to the inventory level falling below the lower limit.

Inventory limits do not affect the timing of tasks. Tasks are scheduled when resources are
available, even if the selected time will cause inventory levels to fall outside the defined bounds.
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4.4 Product Refills

The analyst may specify that some or all the product stores be refilled when, upon scheduling a
task at its earliest resource- and precedence-feasible start time (Section 5.1), their inventory
levels drop below their lower limits.

A refill event for a product store has a duration, a quantity, and resource requirements. The
quantity represents the number of units of the product that the store will receive upon completion
of the refill. The quantity gets applied to the product store one time period after the last period of
the refill duration. Refills do not “top off”” a product store. I.e., they do not increase the quantity
up to the upper limit of the store. Rather, they increase the inventory by a fixed amount. Each
project store can have only one refill type defined for it.

Refills may require resources to complete the refill. If a refill requires resources, they are
required for the entire duration of the refill event. This is different than task modes, where
resource requirements can vary over the duration of the task. The ability to model variable
resource requirements may be implemented in future releases of SMO. The process for
scheduling product refills is covered in Section 5.2.

17






5 THE SCHEDULE BUILDER AND EVALUATOR

SMO uses the basic elements of a scheduling problem (tasks, modes, resources, and products) to
build a set of possible schedules. SMO uses a genetic algorithm (GA) to search the realm of
possible schedules. To reduce the size of the search space, the variables that the genetic
algorithm operates on include a priority ordering of the tasks, and the mode selections of the
tasks. Therefore, the task ordering and the task mode selections on which the GA operates do
not fully define a schedule. We still need to know when each task will begin. We also must
evaluate the goodness of each design in terms of the optimization objectives. Furthermore, we
may also be interested in other aspects of the schedule for results reporting purposes, such as
resource utilization profiles over time. The schedule builder and evaluator perform these
functions.

5.1 Building Resource- and Precedence-Feasible Schedules

The SMO schedule builder and evaluator takes the task ordering and mode selections from the
GA and decodes them into a fully-defined schedule. The objectives and constraints are then
evaluated and the results returned to the GA, which continues to iterate towards the set of Pareto
optimal designs. The schedule building algorithm proceeds as follows:

1. For each task, determine the duration, resource requirements, product consumption, and
product generation according to the selected mode.

2. Starting with the first task in the ordering sent from the GA, schedule it to begin at the
earliest possible time without violating resource constraints or precedence relationships.

3. Repeat Step 2 for the remaining tasks in the order in which they appear in the task
ordering from the GA.

A simple example of this process follows. Consider a problem with seven tasks and one

resource type. Assume that there are four units of the resource available. Each task has only 1
mode with resource requirements and durations as shown in Table 4.

Table 4: Example scheduling problem

Task ID Rgleusi(:‘lg;:n ¢ Duration
1 2 2
2 2 3
3 3 2
4 3 2
S 2 3
6 1 4
7 2 3
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The precedence relationships for the tasks are shown in Figure 4. Figure 4 is an example of a
directed acyclic graph (DAG), which is a convenient way to visually represent precedence
relationships. In this representation, the arrows are directed from predecessors towards
successors. The graph must have no cycles. Otherwise, the schedule would be logically

impossible.

Figure 4: Example precedence graph

Given the precedence relationships, resource requirements, and durations described above,
assume that the GA passes the following task order to the schedule builder: [24 1 6 3 5 7]. The
schedule that results from this ordering is shown in Figure 5.

4 Resource
Utilization
T 1
3
5
4

T 2 7

6

— i ——+— —t——
Time

Figure 5: Schedule built from task order[2416 3 57]

Task 2 is scheduled first. All resources are currently available in the first time period (because
no other tasks are scheduled yet), so Task 2 can begin at time # = 0. Next, we schedule Task 4.
Task 4 has Task 2 as a predecessor, so it cannot begin before Task 2 is complete. Therefore, we
schedule Task 4 to begin at # = 3. Next, we schedule Task 1. Task 1 has no predecessors, and
there are enough resources available in the first time period to complete it (Task 1 requires 2
resources, and Task 2 is only using 2 resources out of the total available 4), so we schedule it to
begin at t = 0. Next, we schedule Task 6. There are enough resources available for Task 6 to
begin at t = 2. However, Task 4 is a predecessor of Task 6, so Task 6 will begin at = 5 once
Task 4 has completed. This process continues until all tasks have been schedule according to
available resources and precedence relationships.

The schedule building algorithm will never create a schedule that violates resource constraints,
because it can always schedule tasks later when enough resources are available. It will also
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never build a schedule that violates precedence constraints. It may, however, make schedules
that violate upper and lower bounds on product store levels. If this occurs, the cumulative
overage and the cumulative underage will be reported back to the GA as constraint violations.
Design that do not violate constraints will be viewed by the GA as being more favorable than
those that do.

5.2 Building Product Inventory-Feasible Schedules
Product inventory violations may be avoided by defining a type of refill event for a product store
(see Section 4.4). The process for scheduling product refills proceeds as follows:

1. When scheduling a task, find the earliest precedence- and resource-feasible start time.
2. If scheduling the task at this time violates a product store lower limit, try to remedy the
violation with a refill event.

a. Start the search for the refill event start time in the last time period in which the
violated store has any activity (not including the just-scheduled task if it is in the
future).

b. If possible, search forwards (in the future) incrementally for a feasible (with
respect to resources and product store floor/ceiling) start time for the refill event
up to the time period corresponding to the start time of the offending task minus
the refill event duration.

c. If 2B was unsuccessful (or could not even begin), search backwards (in the past)
incrementally for a feasible start time for the refill event down to t = 0.

d. If 2C was unsuccessful, find the first resource-feasible start time for the refill,
using the original search start time minus the refill duration as a starting point.
Then find the first resource-feasible start time for the offending task that starts
after the refill finishes. If a store violation still exists, increment the refill start
time and try again. Search up to last time period that any of the involved products
and resources have any activity. Only do this if there is one violated product store.
If there are multiple, moving the task start time has unknown effects on the other
stores, including the one(s) that have already been processed.

3. [If; after completing Step 2, store violations still exist (floor or ceiling), schedule the task
at its earliest precedence- and resource-feasible start time without refilling and return the
schedule as infeasible.

There is no single best way to schedule product refills. The approach that SMO uses has
advantages and disadvantages. The most notable disadvantage is that product store lower-limit
violations are not guaranteed to be fixed by a refill event. The advantages are numerous,
however. First, this approach does not increase the size of the search space for the GA, because
the GA does not have to make any decisions about scheduling refill tasks. Second, this approach
results in a small modeling burden for the analyst. The analyst does not have to predict how
many refill tasks will be needed a priori; they are simply scheduled as needed. The analyst also
does not have to create individual refill tasks. Rather, they define one refill task type whose

parameters (duration, cost, resource requirements, etc.) apply every time that type of refill is
scheduled.
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6 BUSINESS REQUIREMENTS

6.1 Business Requirements Overview

Business requirements are desired conditions that may be satisfied by executing tasks. Examples
of business requirements include test coverage of components, risk mitigation, and safety
objectives. Different modes of task execution may satisfy business requirements to differing
degrees. For example, a “component testing” task might have two different modes of execution,
one which tests the component thoroughly but which takes a long time, and another which can be
completed quickly but provides less confidence in the results. The analyst can indicate which
requirements each task mode satisfies, and to what degree.

6.2 Business Requirements Objective

The requirements objective is computed from coverage factors that are specified for each mode.
A coverage factor is a number in the interval [0,1], where coverage factors of zero and one
indicate that the mode provides no coverage or full coverage of the requirement, respectively.
When multiple modes are selected that provide different coverage factors for a requirement, the
coverage level of the requirement is computed as a function of the coverage factors. Let R be the
set of requirements, M be the set of modes selected to be scheduled, and ¢; be the coverage factor
of the j" mode. The coverage level of the i" requirement, denoted C;, is computed as follows:

¢ =1-T1(1-¢) (1)

jeM

The equation for the coverage level of a requirement has a probabilistic interpretation. If each
coverage factor is viewed as the probability that its associated mode succeeds or fails in covering
the requirement, the computation of the coverage level is analogous to the probability that at
least one mode succeeds in covering the requirement. It should be stressed that this probabilistic
interpretation provides the motivation for the formula to compute the coverage level of a
requirement, but coverage factors and the resulting coverage level are not intended to be viewed
strictly as probabilities.

The requirements objective is then computed by normalizing the sum of the coverage levels of
each individual requirement. See Section 7.4 for a discussion of function normalization in SMO.
The requirements objective, denoted C, is computed as follows:

C=¢|>.C @

ieR

where ¢ is the objective normalization function.
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7 MULTI-OBJECTIVE OPTIMIZATION

7.1 Multi-Objective Genetic Algorithm Overview

Traditional optimization methods seek to optimize a single objective subject to a set of
constraints. In practice, however, it is often useful to treat one or more constraints as objectives.
Multiple competing objectives are optimized simultaneously for identifying and understanding
the impact of decisions on performance tradeoffs. The goal of multi-objective optimization is to
identify a set of non-dominated designs, i.e., those for which there are no known designs outside
this set that are better in at least one objective and not worse in any others. The set of non-
dominated designs is called the Pareto set, and its domain is called the trade space (Figure 6).

Performance

Cost

Figure 6: A Pareto set of multi-objective optimization solutions in the performance
(maximized) vs. cost (minimized) trade space

SMO uses the JEGA multi-objective genetic algorithm (MOGA) to explore the trade space and
identify the set of non-dominated designs. For more information about JEGA’s MOGA, see the
DAKOTA reference manual [1].

7.2 SMO Objective Functions

SMO seeks to optimize four overall objectives: cost, coverage, schedule, and risk. The
objectives, also known as response groups, are comprised of one or more metrics called
responses.
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Figure 7: SMO response groups

7.2.1 Response Group 1: Minimize Total Cost

SMO seeks to minimize the total cost of completing all tasks. The total cost of completing all
tasks is the sum of the costs of each selected mode in the final schedule, plus the sum of all
resource costs, plus the sum of all product consumption costs, minus the sum of all product
generation revenues.

7.2.2 Response Group 2: Maximize Requirement Coverage
SMO seeks to maximize the extent to which business requirements are covered. See Section 6
for a discussion of business requirements and the calculation of the coverage response group.

7.2.3 Response Group 3: Maximize Schedule Performance

The schedule response group is comprised of two responses that measure the quality of the
overall schedule. First, the total duration, the time required to complete all tasks, is sought to be
minimized. Second, the critical activity timing, is also sought to be minimized. For each task,
the analyst may specify if that activity is considered critical. The critical activity timing response
is computed by summing the start times of all critical activities in the final schedule. In practice,
critical activities are those that one desires to schedule as soon as possible. Such activities may
exist for a variety of reasons. For example, a critical activity may be a test whose outcome may
significantly impact the future schedule if the results it yields are undesired or unexpected.

Although they both are measured in units of time, duration and critical activity timing may have
significantly different scales of magnitude and have different meanings. Therefore, the schedule
response group objective value cannot be generated by simply summing its two responses.
Instead, they are normalized using the function normalization approach that is discussed in
Section 7.4.
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7.2.4 Response Group 4: Minimize Risk

In practice, predetermined schedules are rarely adhered to exactly as planned. Tasks may take
longer to complete than expected. A resource may not be available when expected due to
external factors, such as machine breakdown or employee illness. Schedule risk is a measure of
how sensitive a schedule is to changes in task start times that result from resources not being
available when expected.

Figure 8 shows three schedules for the same three-task project. The first schedule (a) is the
highest risk; if tasks 1 or 2 have delayed finish times, the finish time of the final task, and
therefore the overall project, will be delayed. The second schedule (b) is medium risk. If task 1
is delayed task 2 will also be delayed, but task 3 is unlikely to be delayed because the resource
has downtime scheduled between tasks 2 and 3. The final schedule (c) is the lowest risk. If task
1 is delayed, tasks 2 and 3 are not likely to be delayed because the resource has down time
between tasks 1 and 2 and between tasks 2 and 3.

Resource
Utilization
A
(a) 1 2 3
| | | | | | | | | | | >
T T T T T T T T T T —
Time
Resource
Utilization
A
(b) 1 2 3
| | | | | | | | | | >
| T T T I I I I I I =
Time
Resource
Utilization
A
(c) 1 2 3
| | | l l | | | | >
T T T T T T T T —
Time

Figure 8: Schedules with (a) highest risk, (b) medium risk, and (c) lowest risk

The example in Figure 8 highlights two features of a reduced risk schedule: high total resource
downtime and the high count of resource downtimes. If resources are fully utilized all the time,
there is little to no wiggle room for tasks taking longer than expected when the schedule is
executed in real life. Note that schedules (b) and (c) have the same total downtime, but (c) is
lower-risk because there are more buffers between tasks. Both the total resource availability
between times of full utilization, called "Awvailability Time", and the number of resource
availabilities between times of full utilization, called "Availability Count", are important. This is
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because it's better to have lots of little gaps between resource uses than one big one. Therefore,
both the availability time and the availability count are considered when calculating the risk
metric. SMO will prefer schedules that maximize these two metrics.

7.3 SMO Constraints

In other optimization formulations, particularly in the domain of linear programming (LP), many
constraint equations are required to enforce precedence and resource feasibility and to ensure
that each task appears exactly once in the final schedule. With SMO, these constraints are
inherently satisfied because of the nature the schedule building algorithm, thus drastically
simplifying the optimization formulation compared to LP approaches.

The only constraints in SMO are those that are related to product inventories. See Section 4.3
for the definition of product inventory overage and underage.

7.4 Response Function Normalization

An objective function in SMO is nonlinear and can be composed of one or more response
functions. For example, an objective that measures efficiency may consist of response functions
for machine utilization and quantity of working inventory. Maximizing efficiency in this
example would require maximizing machine utilization while simultaneously minimizing the
quantity of working inventory. The response functions could be combined into a single
maximization or minimization objective by taking the negative of the working inventory quantity
or utilization response functions, respectively. However, combining both these response
functions into a single efficiency objective is problematic because utilization and working
inventory are not commensurate with respect to their units or magnitudes. For example,
utilization typically has a fractional value between 0 and 1; whereas, working inventory could
have a magnitude in the thousands.

To aggregate response functions having disparate units and/or magnitudes into a single objective,
each response value is first normalized using a function that accounts for the response goal (e.g.,
maximization, minimization) as well as the desired response value and acceptable limit. The
normalized response values can then be summed and optimized as a single objective. Specifying
a normalization function for a response requires several parameters. First, the response objective
value must be specified which is a desired value for the response (e.g., we may desire 0.95
machine utilization) as well as the response limit value which is the worst response value that is
acceptable (e.g., utilization below 0.60 is not acceptable).

An example of a normalization function for maximization is shown in Figure 9. For this
response function, the desired value is 10.0 and the lowest acceptable limit is 7.0. As indicated
by the increasing slope below the limit, the normalization function increasingly penalizes
transgressions of the limit. Likewise, the response function increases modestly above the limit
indicating that exceeding the limit is not especially beneficial. In addition to maximization and
minimization, normalization functions can also be created for a seek value goal, where the goal is
to keep the response as close to the objective value as possible. Only a single limit value is
required to be specified and the function imposes a symmetrical limit above or below the
objective. In this way, the normalization function can penalize response values that transgress
either limit with more severity.
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Figure 9: Example normalization function for maximization

7.5 Using a Genetic Algorithm for Scheduling

The SMO MOGA modifies both the order of the tasks and the mode selections for those tasks to
fully explore the trade space and evolve the set of Pareto designs. The ordering of tasks is
represented as a permutation of unique integers which each corresponds to a specific task. The
schedule builder decodes this sequence into a fully defined schedule. The schedule building
algorithm requires that the ordering passed from the MOGA respects precedence constraints, and
that each task ID appears exactly once in the sequence. Because traditional GA operators do not
meet these requirements, SMO’s MOGA uses custom operators [2] to initialize, cross, and
mutate the task ordering of the designs in the population. The initialize, cross?, and mutate
operators for task mode selections are more like those traditionally found in a GA.

7.5.1 Initialization

The initialization algorithm is called repeatedly to randomly generate an initial population of
designs. Mode selections are generated by choosing a random number in the range [1, M] for
each task, where M is the number of modes for a given task. Initializing the task order requires a
more complex algorithm. In the initial task order, precedence must be respected, and each task
must appear exactly once. The algorithm proceeds as follows:

1. Count the number of predecessors for each task.

2. Identify the tasks that currently have a predecessor count of zero. At least one task must
have zero predecessors.

3. Randomly choose one of the tasks that have zero predecessors and place it at the end of
the current task ordering.

4. Reduce the predecessor count of all successors of the selected task by one.

5. Repeat Steps 2-4 until all tasks have been placed in the ordering.

2 Task mode crossover is not implemented in the current release of SMO. Crossover only impacts task priority order.
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7.5.2 Crossover

Crossover is the process of “mating” two designs (parents) to produce two new ones (children).
Crossover occurs during each generation and is intended to pass along high-performance
characteristics from one generation to the next and therefore push the search towards global
optima. The crossover operator for the task ordering must obey the requirements that the
resulting designs feature each task exactly once and preserve task precedence.

In the following sections, the algorithms for one-point, two-point, multi-point (3+), and uniform
crossover are discussed. In all the examples, there are eight tasks with the precedence
relationship shown in Figure 10.

O—C—6—0

Figure 10: Precedence graph for crossover examples

7.5.2.1 One-Point Crossover

The algorithm for one-point crossover on task order proceeds as follows. Given random
crossover point ¢, positions 1,...,q in child 1 are taken from parent 1. The remaining positions
are taken from parent 2 in order, but the tasks that were taken from parent 1 may not be
considered again. Child 2 is generated in the same fashion but with the inheriting parents
reversed. An example of this process with eight tasks and ¢ = 3 is shown in Figure 11.

1
C1:[123157 46 8]
C2:[13524678

1

1
P1:[12314567 8]
P2:[135/72468] .

Figure 11: One-point crossover example

7.5.2.2 Two-Point Crossover

Two-point crossover in SMO is like one-point crossover, but there are two crossover points
instead of one. Given two random crossover points »; and r> positions 1,...,7; and 2 to the end
are taken from parent 1 for child 1. The remaining positions are taken from parent 2 in order, but
the tasks that were taken from parent 1 are ignored. An example of this process with eight tasks,
r1 =2, and 2 = 6 is shown in Figure 15.

1 I ! ]
P1: [1 21345617 8] C1:[1 2354 6i7 8]
P2: [13i5 7 2 416 8] ’ C2:[1312457}6 8]
1 1 1 1

Figure 12: Two-point crossover example

7.5.2.3 Multi-Point Crossover

Following the approach for one- and two-point crossover may result in precedence violations if
there are three or more crossover points. Therefore, a different algorithm is used for this case.
When there are three or more crossover points, SMO will randomly divide each parent into R+1
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sections, where R is the number of crossover points (R > 2). Starting with the first section, each
child inherits its tasks and their order from each parent alternately, ignoring the tasks that are
already included in the child. Note that this approach will also work if there are two crossover
points, but the result will be different that the method described in the previous section. An
example of this process with eight tasks and R = 3 is shown in Figure 13.

1 I 1 1 1 1
P1: [1 213 415 617 8] C1: [1 213 514 617 8]
P2: [1 3i5 712 416 8] C2: [1 3}2 45 716 §]
1 1

—

Figure 13: Multi-point crossover example

7.5.2.4  Uniform Crossover

Uniform crossover is achieved for each child by, starting at the first position, each position of the
child is filled by selecting a parent at random, then selecting the first task in the parent that is not
already included in the child. An example of this process is shown in Figure 14. The vectors of
1’s and 2’s at the top and bottom of the figure show which parent child 1 and child 2 are
inheriting from, respectively.

[11212221]

P1:[1234567 8] C1:[1234576 8]
P2:[1357246 8] C2:[1324576 8]

[12112211]

Figure 14: Uniform crossover example

7.5.3 Mutation

Mutation is an operator that is used to promote diversity from one generation of designs to the
next. Mutation is performed during each generation by making random alterations to existing
designs in the population. The mutated designs are similar, but not identical, to their original
counterparts. Mutation prevents premature convergence to a suboptimal solution set, and
encourages the GA to explore the design space more broadly.

When performing mutations on the task ordering, the mutation operator must preserve
precedence and obey the rule that each task must appear exactly once in the resulting design.
The mutation operator for task ordering proceeds as follows:

Select a random position, v, in the task order of the design to be mutated.

Identify the position, 7, of the latest predecessor of the task in position v.

Identify the position, j, of the earliest successor of the task in position v.

Select a random position, &, between i and ;.

Insert the task from position v immediately before position k and slide the subsequent
tasks towards v.

Al bl .

Note that you cannot swap the elements in positions v and k, because doing so could violate
precedence constraints. An example of this operation is shown in Figure 15.
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Figure 15: Example task ordering mutation operation

In the example above, Task 3 (position v) is randomly selected to be moved. Task 3’s latest
predecessor is Task 1 (position i) and its earliest successor is Task 5 (position j). Having
identified positions i and j, a position between the two is selected. In this example, the eligible
positions hold Tasks 2, 4, and 6 (Task 3’s current position is also eligible). Say the position that
holds Task 2 (position k) is selected. Task 3 is then moved into Task 2’s position. Tasks 2, 4,
and 6 move one space to the right to fill the void. You cannot swap Tasks 2 and 3, because
precedence would be broken if Task 2 were a predecessor of Tasks 4 or 6.

SMO may perform this operation recursively according to the Mutation Depth parameter. The
GA determines the depth by randomly generating a number in the range 1 up to the number
specified by the mutation depth parameter. For example, if the GA generates the number 2 as
the mutation depth, it will choose a random element v and then identify i and j. Next, it will find
the latest predecessor and earliest successor of i and move i somewhere in-between. Then it will
do the same thing to j. After moving i and j, it will move the original v somewhere between its
current latest predecessor and earliest successor. This operation can be performed to an arbitrary
recursion depth provided that the precedence chain is long enough.

The mutation operator for mode selections is like that of a traditional GA. The algorithm
proceeds as follows:

1. Randomly choose a task to mutate the mode selection of.

2. Generate a random number, m, in the range [1, M], where M is the number of modes
available for the task that was selected in Step 1.

3. Change the mode of the selected task to mode m.

SMO may repeatedly mutate the same design multiple times (both the task order and the mode
selections) according to the user-defined Mutation Repeats parameter. The GA will randomly
choose a number between 1 and the number of mutation repeats and repeat mutation on a single
design that number of times.

7.6 Algorithm Options

7.6.1 Random Seed

The Random Seed is used to initialize the random number generator in the genetic algorithm.
Entering a value of “0” will cause the GA to set the random seed using the current time.

7.6.2 Population Size

The Population Size is the size of the initial population of randomly generated designs. Note
that the population size parameter sets the size of the initial population only. The actual size of
the population may vary during an optimization run depending on the types of operators chosen.
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7.6.3 Fitness Assessor

There are two Fitness Assessor options in SMO. The Domination Count fitness assessor
determines fitness by computing the number of designs that dominate each design. Designs with
low domination counts are preferred to those with high domination counts. The Layer Rank
fitness assessor assigns all non-dominated designs a layer of 0. Then ignoring the designs
assigned a layer of 0, all remaining designs that are non-dominated are assigned a layer of 1.
This process continues until all designs are assigned to a layer. Designs with lower layer
rankings (closer to 0) are preferred to those with higher layer rankings.

7.6.4 Evaluation Concurrency

The Evaluation Concurrency specifies the number of evaluations that can occur in parallel. If
left blank, the number of logical processors on your machine will be used. Using a negative
number will use the number of logical processors minus the number entered.

7.6.5 Domination Cutoff and Shrinkage Rate

Domination Cutoff is a selection parameter that specifies a limit on the domination count or the
layer rank of designs in the population. When used with the Domination Count fitness assessor,
all designs that are dominated by fewer than the cutoff are kept, and all others are subject to the
shrinkage rate. When used with the Layer Rank fitness assessor, all designs whose layer is
below the cutoff are kept, and all others are subject to the shrinkage rate.

The Shrinkage Rate is implemented to prevent sudden decreases in the population size between
generations and thus a rapid loss of genetic diversity. The shrinkage rate defines the maximum
amount that the population size can decrease between generations. To enforce this, all the
selections that would normally be made according to the domination cutoff are made. If that is
not enough, selections are made from the best of what is left (effectively increasing the cutoff as
far as it must to get the minimum number of selections). This continues until enough selections
are made.

7.6.6 Crossover Rate and Crossover Points

The Crossover Rate specifies the probability of a crossover operation being performed on any
given design. Let P be the population size, and CR be the crossover rate. The number of
crossovers that will occur is (CR*P) / 2. Note that we divide be two because two designs are
crossed for each one crossover operation. For example, if the population size is 50 and the
crossover rate is 0.8, there will be 20 crossover operations performed. Because each crossover
operation involves two randomly selected designs, the probability that any given design will be
crossed is 0.8.

The Crossover Points parameter specifies the number of crossover points. See Section 7.5.2 for
a discussion of crossover in SMO.

7.6.7 Mutation Rate, Depth and Repeats

The Mutation Rate controls the number of mutations performed. The rate specifies the
probability that a mutation will be performed on any given design variable. Note that the
number of design variables is 2N, where N is the number of tasks, because each design is defined
by both the task ordering and the mode selections for each task. Therefore, the number of
mutations that will occur is (2*MR*P*N), where MR is the mutation rate and P is the population
size. For example, if the population size is 50, there are 100 tasks, and the mutation rate is 0.01,
there will be 100 total mutations (2*0.01*50*100).
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The Mutation Depth controls the number of times to recursively mutate the task order. The GA
will randomly choose a number in the range [1, Mutation Depth] and recursively mutate the task
order that number of times.

The Mutation Repeats parameter controls the number of times mutation will be repeated on the
same individual. The GA will randomly choose a number in the range [1, Mutation Repeats] and
repeat mutation on an individual that number of times.

7.6.8 Max Generations

The Max Generations parameter specifies the maximum number of iterations that JEGA will
perform before terminating the optimization and returning the current set of non-dominated
designs at that point.

7.6.9 Max Evaluations

The Max Evaluations parameter specifies the maximum number of function evaluations that
JEGA will perform before terminating the optimization and returning the current set of non-
dominated designs at that point.

7.6.10 Max Time

The Max Time parameter specifies the maximum number of seconds that may pass before
terminating the optimization automatically terminates and returns the current set of non-
dominated designs at that point.

7.6.11 Tracked Percent Change and Tracked Generations

The Tracked Percent Change and the Tracked Generations work together to terminate the
GA when the set of non-dominated designs is not changing, or is change very little, from one
generation to the next. JEGA computes a Pareto metric at the completion of each generation.
When the metric does not change by the specified percentage over the specified number of
generations, the algorithm terminates. See the JEGA documentation for details of the Pareto
metric calculation.

7.6.12 Niching

Niching is a process that is employed in multi-objective GAs to promote diversity across the set
of non-dominated designs. Without niching, some Pareto sets evolve to a set of clusters that
have several similar individuals while ignoring potentially interesting designs in between.

There are three Niching Methods to choose from in SMO. The Max Designs niching method
chooses a limited number of designs to remain in the population. The number that remain is
determined by the Maximum Niched Designs parameter. This method is helpful in situations
where the population grows very large, thus consuming too many computer resources. The Max
Designs nicher ranks designs using their fitness and a count of the number of designs that are too
close to them. What is deemed “too close” is determined by the Niching Percentage, which sets
the distance in each direction from the design of interest as a percentage of the total range of
each objective function. The Radial Distance niching method uses the Niching Percentage to
determine a minimum allowed Euclidean distance (square root of sum of squares) between any
two designs. The Orthogonal Distance nicher works in a similar manner, except the distance is
enforced along each dimension. Think of the Radial Distance nicher as disallowing two designs
to reside in the same multi-dimensional sphere, whereas the Orthogonal Distance nicher
disallows two designs to reside in the same multi-dimensional rectangle.

34



Designs that are removed by the nicher are not necessarily discarded. Checking the Cache
Niched Designs checkbox will buffer designs up to the number specified by Max Cached
Designs. Buffered designs are reinserted in to the population prior to the next round of selection.

All nichers will always keep the extreme points of the non-dominated set.

7.6.13 Logging

SMO offers the ability to save a log file that contains information and statistics from the
optimization process. To save a log file, enter a file name in the Log Filename field. The
Logging Levels determine the amount and type of logging information that is recorded:

¢ Debug: Outputs all entries.

¢ Verbose: Outputs all but the most insignificant of entries.

e Normal: Outputs informational entries or above.

¢ Quiet: Outputs only entries that are warning level or above.

e Silent: Turns logging virtually off.

e Fatal: Outputs only very severe errors that will presumably lead the application to abort.

Checking Print Each Population will create a file containing the variable values, objectives,
and constraints for each member of the population after each iteration. Lastly, checking Print
Final Population will cause SMO to save the final set of non-dominated designs with objective
and constraint values. All files are saved to the user’s local application data directory (e.g.
C:\Users\username\AppData\Local\SMO). Note that the AppData directory may be hidden
by some Windows operating systems.
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