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Prefetching

» Software Prefetching offers a straightforward method to improve
runtime
— Fetch data from memory to cache before use (reduce latency)
— Better utilize memory bandwidth
— Take advantage of compute heavy sections to have memory working
— Minimal restructuring of code (no logic changes)

* Limitations
— Prefetch location in code

* Too late: Wasted overhead
» Too early: Eviction, Cache pollution

— Memory bandwidth
— Cache size
— Overhead
— Limited number of fetch “slots”
| — Have to keep hardware (and compiler) prefetching in mind
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Quad benchmark, 3600 cells per rank, S8, 32 groups
« Attempt to apply technique to - S -
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—— Square root law B ]

CapsaiCin Sn SOIVGr —— Normal ordinate sweep / ’,/”j____ ................. _

Normal moment sweep

— Using slightly modified code with fixed —= (ell cachenalye
No cell computation

number of sweeps and no source -~ AMR ordinate sweep
SN e 2GS ordinate sweep
update (Rocotillo)

— Target is the lumped DFEM Quad grid
sweep

— Targeted variables:
 scattering source i ]
* O values

Total wall time

10= 1 Lol 1 Lol 1 1 Ll 1 L1

* incident flux 1 T 100 1000
Number of MPI ranks

Difference between blue (Cache only) and pink (No cell
computation) shows room for memory improvement.

N
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Example Prefetch Call

#pragma omp simd
for (unsigned e = 0; e < emax; e+=4)
{
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Target Architectures

» Tested on Trinitite system (2 architectures)

* Intel Haswell E5-2698-v3 processors
— 16 cores per socket, 2 sockets per node
— 40MB L3 per socket (shared).
— Prefetching into L3 cache

* Intel Knights Landing co-processors (KNL)
— 68 cores per node
— 34MB L2 (Shared 1MB per 2 cores)

— High Bandwidth Memory
* High bandwidth, similar to cache
 DRAM regime latency

— Prefetch into L2 cache
— Lower clock compered to Haswell

N
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Testing Method

N
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» Test problem scales mesh with number of ranks used
— 32 groups, N=8
— Each rank gets an equal number of cells

« Small problem — 6000 cells per rank

« Large problem — 89600 cells per rank
— Memory allocation issues with large problems using this scaling mesh

- 1 set := 5 Baseline & 5 PF runs. Averages used to compute % runtime
change

* Intel V-tune used to determine cache misses. Typically only run for 1
rank

» Scaling of successful prefetch schemes with respect to MPI rank tested
out to 4 full nodes



Prefetching for next cell (Haswell)

* Pull data for next cell while computing current cell
— Extra overhead to store a link to the next cell
— Relies on a queue of “computable” cells being populated
— Can take advantage of current cell matrix-solve compute time

« Showed promise for single rank

— Miss reduction from ~2.2B to 0.5B ;;[[12] 3]

— 5% runtime improvement 3 [4,5,6]
4 [7,8]
5th: [9]
* Poor results for parallel runs Compute stack refreshes for above
) graph, scheme cannot prefetch for
— More frequently emptying computable cell stack the first element of refresh (shown in
— Potential Bandwidth issues red)

— Runtime degradation

This method has issues with parallel scaling, graph dependence.
b
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Prefetching within cell (Haswell)

* Focus primarily on improving performance within a single cell

 Numerous configurations tested
— Many which reduce misses but offer no runtime improvement

» Best performing scheme (1 rank)
— Miss reduction from ~2.2B to 0.5B (similar to next cell PF method)
— Runtime improvement of ~3%

« Expanding to parallel reduces runtime impact
— Issues set in very quickly, ~8 to 16 ranks
— Runtimes became more varied with higher ranks, difficult to analyze

N
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Haswell: Runtime Change Scaling

Small problem tested from 1 to 128 ranks (4 nodes)

Haswell - 6000 cells/rank
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Haswell: Runtime Change Scaling

Larger problem tested from 1 to 16 ranks

Haswell - 89600 cells/rank
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Haswell: V-tune and Runtime Comparison

Elapsed Time : 127.653s Elapsed Time : 126.159s
CPU Time & 115.753s CPU Time ~: 114.328s
Memory Bound 61.3% R of Pipeline Slots Memory Bound ~: 50.7% R of Pipeline Slots
L1 Bound - 7.3% & of Clockticks L1 Bound —: 12.6% K of Clockticks
DRAM Bound DRAM Bound ~:
DRAM Bandwidth Bound —: 0.0%  of Elapsed Time DRAM Bandwidth Bound —: 0.0% of Elapsed Time
NUMA: % of Remote Accesses = 0.0% NUMA: % of Remote Accesses ~: 0.0%
Loads: 77,299,118,904 Loads: 83,645,509,290
Stores: 48,601,057,988 Stores: 50.582.817.439
LLC Miss Count : 2,242,934,568 LLC Miss Count 473,228,392
Local DRAM Access Count =: 2,165,864,974 Local DRAM Access Count = 459,213,776
Count = 0

Remote DRAM A Count —: 0 Remote DRAM
Remote Cache A Count =: 700,021 Remote

Average Lat

ache CO 0
[cycles) 40 Average Latency (cycles) ~: 44
Total Thread Count: 1 1

Total Thread Count:

Paused Time ™ Os Paused Time " : 0s

« Approximately 75% reduction in LLC misses

« Scaling issues may be caused by shared L3 cache and related
resources

— L2 prefetching tested but resulted in runtime degradation

Even single cell PF schemes can have issues with scaling
|
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KNL: Prefetching Within Cell

* Using same prefetch scheme as best performing Haswell

» Single rank performance gain
— Miss reduction from 160M to 40M
— Frequent ~7%-12% Runtime improvement (up to ~14% observed)

« Appears to scale to multirank runs well
— Similar runtime improvement observed on 272 ranks (4 nodes)

N
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KNL: Runtime Change Scaling

Small problem tested from 1 to 272 ranks (4 nodes)

Phi (6000 cells/rank)
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KNL: V-tune and Runtime Comparison

Elapsed Time : 23.401s

CPU Time —:
Memory Bound:
L2 Hit Rate —:
L2 Hit Bound =
L2 Miss Bound —:
MCDRAM Bandwidth Bound =
DRAM Bandwidth Bound
L2 Miss Count =
MCDRAM Hit Rate:
MCDRAM HitM Rate:
Total Thread Count:

Paused Time =

21.480s

56.5%
11.2% of Clockticks
100.0% R of Clockticks
0.0%

0.0%  of Elapsed Tims

162,004,860

99.3%
89.6%
1

Os

Elapsed Time
CPU Time —:
Memory Bound:

L2 Hit Rate —:
L2 Hit Bound =

L2 Miss Bound :
MCDRAM Bandwidth Bound =
DRAM Bandwidth Bound = :

L2 Miss Count =
MCDRAM Hit Rate:

MCDRAM HithM Rate:

Total Thread Count:

Paused Time =:

- 21.392s

19.560s

84.9%
12.7%
30.5% R of Clockticks
0.0%
0.0%
39,001,170
99.4%
91.7%

1

Os

of Clockticks

of Elapsed Time

« Once again approximately 75% reduction in LLC misses

» Better scaling may be explained by the “less shared” nature of the LLC
for the KNL compared to Haswell.

KNLs show promise for this prefetching scheme

N
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Less Misses =/= Reduced Runtime

» The vast majority of schemes tested on Haswell reduced misses (often
by a significant amount) but had little effect on runtime

— Potentially overloading fetch “slots”?

— Prefetch call overhead?
« Thought: Put in pointless Prefetch calls and see the effect of overhead

* Poor scaling despite similar cache miss reduction
— At 16 ranks, Haswell still showed ~75% miss reduction
— More confusing: At 16 ranks KNL only showed ~55% miss reduction

N
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* Reduction in cache misses will not always correspond to decreased
runtimes
— Could be overtaxing fetching resources
— Some overhead to consider

» Prefetching for next graph node results in graph dependence, which
complicates scaling to higher ranks.

* More performance improvements due to prefetching seem to be
available for KNL compared to Haswell

— Possibly due to fetching into shared L3 cache for Haswell compared to less-shared
L2 for KNL (16 fast cores in 40MB versus 2 slow cores in 1 MB)

* Implementation of prefetching for complex code seems to require a lot
of guess and check

N
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Future Directions

» Test prefetching scheme on larger “real” problems with full transport
solve

« Adapt scheme to other mesh geometries beyond what was tested here

* Deeper dive into why a 75% reduction in cache misses does little for
Haswell, as well as its poor scaling

« Gather more scaling data points (runtime and miss changes) out to
higher number of ranks
— Can probably script this

N
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