
LA-UR-18-27941
Approved for public release; distribution is unlimited.

Title: Improving Capsaicin Sweep Performance Using Memory Prefetching

Author(s): Halvic, Ian William

Intended for: Presentation to CCS-2

Issued: 2018-08-20

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Improving Capsaicin Sweep
Performance Using Memory

Prefetching

Ian Halvic
8/16/18

Texas A&M University
Mentor: Kent Budge

NOTE:
This is
the lab

color
palette. Agenda

8/16/18 | 2 Los Alamos National Laboratory

8/16/2018

•  Prefetching Overview
•  Target Routine
•  Target Architecture
•  Testing Method
•  Haswell Results
•  KNL Results
•  Wrap-Up

NOTE:
This is
the lab

color
palette. Prefetching

8/16/18 | 3 Los Alamos National Laboratory

•  Software Prefetching offers a straightforward method to improve
runtime
– Fetch data from memory to cache before use (reduce latency)
– Better utilize memory bandwidth
– Take advantage of compute heavy sections to have memory working
– Minimal restructuring of code (no logic changes)

•  Limitations
– Prefetch location in code

•  Too late: Wasted overhead
•  Too early: Eviction, Cache pollution

– Memory bandwidth
– Cache size
– Overhead
– Limited number of fetch “slots”
– Have to keep hardware (and compiler) prefetching in mind

NOTE:
This is
the lab

color
palette. Target

8/16/18 | 4 Los Alamos National Laboratory

•  Attempt to apply technique to
Capsaicin Sn solver
– Using slightly modified code with fixed

number of sweeps and no source
update (Rocotillo)

– Target is the lumped DFEM Quad grid
sweep

– Targeted variables:
•  scattering source
•  σ values
•  incident flux

Difference between blue (Cache only) and pink (No cell
computation) shows room for memory improvement.

NOTE:
This is
the lab

color
palette. Example Prefetch Call

8/17/18 | 5 Los Alamos National Laboratory

NOTE:
This is
the lab

color
palette. Target Architectures

8/16/18 | 6 Los Alamos National Laboratory

•  Tested on Trinitite system (2 architectures)

•  Intel Haswell E5-2698-v3 processors
– 16 cores per socket, 2 sockets per node
– 40MB L3 per socket (shared).
– Prefetching into L3 cache

•  Intel Knights Landing co-processors (KNL)

– 68 cores per node
– 34MB L2 (Shared 1MB per 2 cores)
– High Bandwidth Memory

•  High bandwidth, similar to cache
•  DRAM regime latency

– Prefetch into L2 cache
– Lower clock compered to Haswell

NOTE:
This is
the lab

color
palette. Testing Method

8/17/18 | 7 Los Alamos National Laboratory

•  Test problem scales mesh with number of ranks used
– 32 groups, N=8
– Each rank gets an equal number of cells

•  Small problem – 6000 cells per rank
•  Large problem – 89600 cells per rank

–  Memory allocation issues with large problems using this scaling mesh

•  1 set := 5 Baseline & 5 PF runs. Averages used to compute % runtime

change

•  Intel V-tune used to determine cache misses. Typically only run for 1
rank

•  Scaling of successful prefetch schemes with respect to MPI rank tested
out to 4 full nodes

NOTE:
This is
the lab

color
palette. Prefetching for next cell (Haswell)

8/16/18 | 8 Los Alamos National Laboratory

•  Pull data for next cell while computing current cell
– Extra overhead to store a link to the next cell
– Relies on a queue of “computable” cells being populated
– Can take advantage of current cell matrix-solve compute time

•  Showed promise for single rank
– Miss reduction from ~2.2B to 0.5B
– 5% runtime improvement

•  Poor results for parallel runs
– More frequently emptying computable cell stack
– Potential Bandwidth issues
– Runtime degradation

This method has issues with parallel scaling, graph dependence.

1

2 3

5

9

6

87

4

1st: [1]
2nd: [2,3]
3rd: [4,5,6]
4th: [7,8]
5th: [9]

Compute stack refreshes for above
graph, scheme cannot prefetch for
the first element of refresh (shown in
red).

NOTE:
This is
the lab

color
palette. Prefetching within cell (Haswell)

8/16/18 | 9 Los Alamos National Laboratory

•  Focus primarily on improving performance within a single cell

•  Numerous configurations tested
– Many which reduce misses but offer no runtime improvement

•  Best performing scheme (1 rank)
– Miss reduction from ~2.2B to 0.5B (similar to next cell PF method)
– Runtime improvement of ~3%

•  Expanding to parallel reduces runtime impact
–  Issues set in very quickly, ~8 to 16 ranks
– Runtimes became more varied with higher ranks, difficult to analyze

NOTE:
This is
the lab

color
palette. Haswell: Runtime Change Scaling

8/16/18 | 10 Los Alamos National Laboratory

Small problem tested from 1 to 128 ranks (4 nodes)

NOTE:
This is
the lab

color
palette. Haswell: Runtime Change Scaling

8/16/18 | 11 Los Alamos National Laboratory

Larger problem tested from 1 to 16 ranks

NOTE:
This is
the lab

color
palette. Haswell: V-tune and Runtime Comparison

8/16/18 | 12 Los Alamos National Laboratory

Even single cell PF schemes can have issues with scaling

•  Approximately 75% reduction in LLC misses

•  Scaling issues may be caused by shared L3 cache and related
resources
– L2 prefetching tested but resulted in runtime degradation

NOTE:
This is
the lab

color
palette. KNL: Prefetching Within Cell

8/16/18 | 13 Los Alamos National Laboratory

•  Using same prefetch scheme as best performing Haswell

•  Single rank performance gain
– Miss reduction from 160M to 40M
– Frequent ~7%-12% Runtime improvement (up to ~14% observed)

•  Appears to scale to multirank runs well
– Similar runtime improvement observed on 272 ranks (4 nodes)

NOTE:
This is
the lab

color
palette. KNL: Runtime Change Scaling

8/16/18 | 14 Los Alamos National Laboratory

Small problem tested from 1 to 272 ranks (4 nodes)

NOTE:
This is
the lab

color
palette. KNL: V-tune and Runtime Comparison

8/16/18 | 15 Los Alamos National Laboratory

KNLs show promise for this prefetching scheme

•  Once again approximately 75% reduction in LLC misses

•  Better scaling may be explained by the “less shared” nature of the LLC
for the KNL compared to Haswell.

NOTE:
This is
the lab

color
palette. Less Misses =/= Reduced Runtime

8/16/18 | 16 Los Alamos National Laboratory

•  The vast majority of schemes tested on Haswell reduced misses (often
by a significant amount) but had little effect on runtime
– Potentially overloading fetch “slots”?

– Prefetch call overhead?
•  Thought: Put in pointless Prefetch calls and see the effect of overhead

•  Poor scaling despite similar cache miss reduction
– At 16 ranks, Haswell still showed ~75% miss reduction
– More confusing: At 16 ranks KNL only showed ~55% miss reduction

NOTE:
This is
the lab

color
palette. Wrap-Up

8/16/18 | 17 Los Alamos National Laboratory

•  Reduction in cache misses will not always correspond to decreased
runtimes
– Could be overtaxing fetching resources
– Some overhead to consider

•  Prefetching for next graph node results in graph dependence, which
complicates scaling to higher ranks.

•  More performance improvements due to prefetching seem to be
available for KNL compared to Haswell
– Possibly due to fetching into shared L3 cache for Haswell compared to less-shared

L2 for KNL (16 fast cores in 40MB versus 2 slow cores in 1 MB)

•  Implementation of prefetching for complex code seems to require a lot
of guess and check

NOTE:
This is
the lab

color
palette. Future Directions

8/16/18 | 18 Los Alamos National Laboratory

•  Test prefetching scheme on larger “real” problems with full transport

solve

•  Adapt scheme to other mesh geometries beyond what was tested here

•  Deeper dive into why a 75% reduction in cache misses does little for
Haswell, as well as its poor scaling

•  Gather more scaling data points (runtime and miss changes) out to
higher number of ranks
– Can probably script this

