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•  Software Prefetching offers a straightforward method to improve 
runtime 
– Fetch data from memory to cache before use (reduce latency) 
– Better utilize memory bandwidth 
– Take advantage of compute heavy sections to have memory working 
– Minimal restructuring of code (no logic changes) 

•  Limitations 
– Prefetch location in code 

•  Too late: Wasted overhead 
•  Too early: Eviction, Cache pollution 

– Memory bandwidth  
– Cache size 
– Overhead 
– Limited number of fetch “slots” 
– Have to keep hardware (and compiler) prefetching in mind 
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•  Attempt to apply technique to 
Capsaicin Sn solver 
– Using slightly modified code with fixed 

number of sweeps and no source 
update (Rocotillo) 

– Target is the lumped DFEM Quad grid 
sweep 

– Targeted variables:  
•  scattering source 
•  σ values 
•  incident flux 

Difference between blue (Cache only) and pink (No cell 
computation) shows room for memory improvement. 
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•  Tested on Trinitite system (2 architectures) 

•  Intel Haswell E5-2698-v3 processors 
– 16 cores per socket, 2 sockets per node 
– 40MB L3 per socket (shared).  
– Prefetching into L3 cache 

 
•  Intel Knights Landing co-processors (KNL) 

– 68 cores per node 
– 34MB L2 (Shared 1MB per 2 cores)  
– High Bandwidth Memory 

•  High bandwidth, similar to cache 
•  DRAM regime latency 

– Prefetch into L2 cache 
– Lower clock compered to Haswell 
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•  Test problem scales mesh with number of ranks used 
– 32 groups, N=8  
– Each rank gets an equal number of cells 

•  Small problem – 6000 cells per rank 
•  Large problem – 89600 cells per rank 

–  Memory allocation issues with large problems using this scaling mesh 

 
•  1 set := 5 Baseline & 5 PF runs. Averages used to compute % runtime 

change 

•  Intel V-tune used to determine cache misses. Typically only run for 1 
rank 
 

•  Scaling of successful prefetch schemes with respect to MPI rank tested 
out to 4 full nodes 
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•  Pull data for next cell while computing current cell 
– Extra overhead to store a link to the next cell 
– Relies on a queue of “computable” cells being populated 
– Can take advantage of current cell matrix-solve compute time 

•  Showed promise for single rank  
– Miss reduction from ~2.2B to 0.5B 
– 5% runtime improvement 

•  Poor results for parallel runs 
– More frequently emptying computable cell stack 
– Potential Bandwidth issues 
– Runtime degradation 

This method has issues with parallel scaling, graph dependence. 

1

2 3

5

9

6

87

4

1st: [1] 
2nd: [2,3] 
3rd: [4,5,6] 
4th: [7,8] 
5th: [9] 

Compute stack refreshes for above 
graph, scheme cannot prefetch for 
the first element of refresh (shown in 
red). 
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•  Focus primarily on improving performance within a single cell 

•  Numerous configurations tested  
– Many which reduce misses but offer no runtime improvement 

•  Best performing scheme (1 rank) 
– Miss reduction from ~2.2B to 0.5B (similar to next cell PF method) 
– Runtime improvement of ~3% 

•  Expanding to parallel reduces runtime impact 
–  Issues set in very quickly, ~8 to 16 ranks 
– Runtimes became more varied with higher ranks, difficult to analyze  
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Small problem tested from 1 to 128 ranks (4 nodes) 
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Larger problem tested from 1 to 16 ranks 
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Even single cell PF schemes can have issues with scaling 

•  Approximately 75% reduction in LLC misses 

•  Scaling issues may be caused by shared L3 cache and related 
resources 
– L2 prefetching tested but resulted in runtime degradation 
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•  Using same prefetch scheme as best performing Haswell 

•  Single rank performance gain 
– Miss reduction from 160M to 40M 
– Frequent ~7%-12% Runtime improvement (up to ~14% observed) 

•  Appears to scale to multirank runs well 
– Similar runtime improvement observed on 272 ranks (4 nodes) 
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Small problem tested from 1 to 272 ranks (4 nodes) 
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KNLs show promise for this prefetching scheme 

•  Once again approximately 75% reduction in LLC misses 

•  Better scaling may be explained by the “less shared” nature of the LLC 
for the KNL compared to Haswell. 
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•  The vast majority of schemes tested on Haswell reduced misses (often 
by a significant amount) but had little effect on runtime 
– Potentially overloading fetch “slots”? 

– Prefetch call overhead? 
•  Thought: Put in pointless Prefetch calls and see the effect of overhead 

•  Poor scaling despite similar cache miss reduction 
– At 16 ranks, Haswell still showed ~75% miss reduction 
– More confusing: At 16 ranks KNL only showed ~55% miss reduction 
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•  Reduction in cache misses will not always correspond to decreased 
runtimes 
– Could be overtaxing fetching resources 
– Some overhead to consider 

•  Prefetching for next graph node results in graph dependence, which 
complicates scaling to higher ranks. 

•  More performance improvements due to prefetching seem to be 
available for KNL compared to Haswell 
– Possibly due to fetching into shared L3 cache for Haswell compared to less-shared 

L2 for KNL (16 fast cores in 40MB versus 2 slow cores in 1 MB)  

•  Implementation of prefetching for complex code seems to require a lot 
of guess and check 
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•  Test prefetching scheme on larger “real” problems with full transport 

solve 

•  Adapt scheme to other mesh geometries beyond what was tested here 

•  Deeper dive into why a 75% reduction in cache misses does little for 
Haswell, as well as its poor scaling 

•  Gather more scaling data points (runtime and miss changes) out to 
higher number of ranks 
– Can probably script this 


