VA

.
s LonLuamos

LA-UR-18-27941

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Improving Capsaicin Sweep Performance Using Memory Prefetching
Halvic, lan William

Presentation to CCS-2

2018-08-20

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Improving Capsaicin Sweep
Performance Using Memory

Prefetching

lan Halvic

8/16/18
Texas A&M University
Mentor: Kent Budge

8/16/2018

* Prefetching Overview
» Target Routine

» Target Architecture

* Testing Method
 Haswell Results
 KNL Results

* Wrap-Up

Los Alamos National Laboratory 8/16/18 | 2

Prefetching

» Software Prefetching offers a straightforward method to improve
runtime
— Fetch data from memory to cache before use (reduce latency)
— Better utilize memory bandwidth
— Take advantage of compute heavy sections to have memory working
— Minimal restructuring of code (no logic changes)

* Limitations
— Prefetch location in code

* Too late: Wasted overhead
» Too early: Eviction, Cache pollution

— Memory bandwidth
— Cache size
— Overhead
— Limited number of fetch “slots”
| — Have to keep hardware (and compiler) prefetching in mind

Los Alamos National Laboratory 8/16/18 | 3

Quad benchmark, 3600 cells per rank, S8, 32 groups
« Attempt to apply technique to - S -

T T T T TTT l| T T T T I LV[
—— Square root law B]

CapsaiCin Sn SOIVGr —— Normal ordinate sweep / ’,/”j____ _

Normal moment sweep

— Using slightly modified code with fixed —= (ell cachenalye
No cell computation

number of sweeps and no source -~ AMR ordinate sweep
SN e 2GS ordinate sweep
update (Rocotillo)

— Target is the lumped DFEM Quad grid
sweep

— Targeted variables:
 scattering source i]
* O values

Total wall time

10= 1 Lol 1 Lol 1 1 Ll 1 L1

* incident flux 1 T 100 1000
Number of MPI ranks

Difference between blue (Cache only) and pink (No cell
computation) shows room for memory improvement.

N

Los Alamos National Laboratory 8/16/18 | 4

Example Prefetch Call

#pragma omp simd
for (unsigned e = 0; e < emax; e+=4)
{
O*offset)],
1*offset)],
2*¥offset)],
3*offset)],

ASourcel[e+
&Sourcel[e+
&Sourcel[e+
&Sourcel[e+

__builtin prefetch
__builtin prefetch
__builtin prefetch

¢
¢
¢
__builtin prefetch C]

—— e ——
e T T i T i

G*offset)],0,3);
1*offset)],0,3);
2¥offset)],0,3);
3*offset)],0,3);

__builtin prefetch
__builtin prefetch
__builtin prefetch
__builtin prefetch

hsigmale+
hsigmale+
hsigmale+
hsigmale+

e — ——
e ——

N

Los Alamos National Laboratory 8/17/18 | 5

Target Architectures

» Tested on Trinitite system (2 architectures)

* Intel Haswell E5-2698-v3 processors
— 16 cores per socket, 2 sockets per node
— 40MB L3 per socket (shared).
— Prefetching into L3 cache

* Intel Knights Landing co-processors (KNL)
— 68 cores per node
— 34MB L2 (Shared 1MB per 2 cores)

— High Bandwidth Memory
* High bandwidth, similar to cache
 DRAM regime latency

— Prefetch into L2 cache
— Lower clock compered to Haswell

N

Los Alamos National Laboratory 8/16/18 | 6

Testing Method

N

Los Alamos National Laboratory 8/17/18 | 7

» Test problem scales mesh with number of ranks used
— 32 groups, N=8
— Each rank gets an equal number of cells

« Small problem — 6000 cells per rank

« Large problem — 89600 cells per rank
— Memory allocation issues with large problems using this scaling mesh

- 1 set := 5 Baseline & 5 PF runs. Averages used to compute % runtime
change

* Intel V-tune used to determine cache misses. Typically only run for 1
rank

» Scaling of successful prefetch schemes with respect to MPI rank tested
out to 4 full nodes

Prefetching for next cell (Haswell)

* Pull data for next cell while computing current cell
— Extra overhead to store a link to the next cell
— Relies on a queue of “computable” cells being populated
— Can take advantage of current cell matrix-solve compute time

« Showed promise for single rank

— Miss reduction from ~2.2B to 0.5B ;;[[12] 3]

— 5% runtime improvement 3 [4,5,6]
4 [7,8]
5th: [9]
* Poor results for parallel runs Compute stack refreshes for above
) graph, scheme cannot prefetch for
— More frequently emptying computable cell stack the first element of refresh (shown in
— Potential Bandwidth issues red)

— Runtime degradation

This method has issues with parallel scaling, graph dependence.
b

Los Alamos National Laboratory 8/16/18 | 8

Prefetching within cell (Haswell)

* Focus primarily on improving performance within a single cell

 Numerous configurations tested
— Many which reduce misses but offer no runtime improvement

» Best performing scheme (1 rank)
— Miss reduction from ~2.2B to 0.5B (similar to next cell PF method)
— Runtime improvement of ~3%

« Expanding to parallel reduces runtime impact
— Issues set in very quickly, ~8 to 16 ranks
— Runtimes became more varied with higher ranks, difficult to analyze

N

Los Alamos National Laboratory 8/16/18 | 9

Haswell: Runtime Change Scaling

Small problem tested from 1 to 128 ranks (4 nodes)

Haswell - 6000 cells/rank
4
¢ IS
2 ¢ ? 2
% L
: * ¢
5 0d . $.
2 >
=
= 'S
= L
. 3
2 $. .
O <
-4
0 2 4 6
N Log2(ranks)

Los Alamos National Laboratory 8/16/18 | 10

Haswell: Runtime Change Scaling

Larger problem tested from 1 to 16 ranks

Haswell - 89600 cells/rank
1 ®
L 2
0 ¢
&
c -1
o ®
E -2
5 .
X
-3 ? *
% .
4
-4
0 1 2 3 4
N Log2(ranks)

Los Alamos National Laboratory 8/16/18 | 11

Haswell: V-tune and Runtime Comparison

Elapsed Time : 127.653s Elapsed Time : 126.159s
CPU Time & 115.753s CPU Time ~: 114.328s
Memory Bound 61.3% R of Pipeline Slots Memory Bound ~: 50.7% R of Pipeline Slots
L1 Bound - 7.3% & of Clockticks L1 Bound —: 12.6% K of Clockticks
DRAM Bound DRAM Bound ~:
DRAM Bandwidth Bound —: 0.0% of Elapsed Time DRAM Bandwidth Bound —: 0.0% of Elapsed Time
NUMA: % of Remote Accesses = 0.0% NUMA: % of Remote Accesses ~: 0.0%
Loads: 77,299,118,904 Loads: 83,645,509,290
Stores: 48,601,057,988 Stores: 50.582.817.439
LLC Miss Count : 2,242,934,568 LLC Miss Count 473,228,392
Local DRAM Access Count =: 2,165,864,974 Local DRAM Access Count = 459,213,776
Count = 0

Remote DRAM A Count —: 0 Remote DRAM
Remote Cache A Count =: 700,021 Remote

Average Lat

ache CO 0
[cycles) 40 Average Latency (cycles) ~: 44
Total Thread Count: 1 1

Total Thread Count:

Paused Time ™ Os Paused Time " : 0s

« Approximately 75% reduction in LLC misses

« Scaling issues may be caused by shared L3 cache and related
resources

— L2 prefetching tested but resulted in runtime degradation

Even single cell PF schemes can have issues with scaling
|

Los Alamos National Laboratory 8/16/18 | 12

KNL: Prefetching Within Cell

* Using same prefetch scheme as best performing Haswell

» Single rank performance gain
— Miss reduction from 160M to 40M
— Frequent ~7%-12% Runtime improvement (up to ~14% observed)

« Appears to scale to multirank runs well
— Similar runtime improvement observed on 272 ranks (4 nodes)

N

Los Alamos National Laboratory 8/16/18 | 13

KNL: Runtime Change Scaling

Small problem tested from 1 to 272 ranks (4 nodes)

Phi (6000 cells/rank)
0
2
-4
o
= 6 ¢ 3 .
3 = o R
$)(3 : $
°3 1 .
$ *
10
o
12
0 2 4 6 8
N Log2(ranks)

Los Alamos National Laboratory 8/16/18 | 14

KNL: V-tune and Runtime Comparison

Elapsed Time : 23.401s

CPU Time —:
Memory Bound:
L2 Hit Rate —:
L2 Hit Bound =
L2 Miss Bound —:
MCDRAM Bandwidth Bound =
DRAM Bandwidth Bound
L2 Miss Count =
MCDRAM Hit Rate:
MCDRAM HitM Rate:
Total Thread Count:

Paused Time =

21.480s

56.5%
11.2% of Clockticks
100.0% R of Clockticks
0.0%

0.0% of Elapsed Tims

162,004,860

99.3%
89.6%
1

Os

Elapsed Time
CPU Time —:
Memory Bound:

L2 Hit Rate —:
L2 Hit Bound =

L2 Miss Bound :
MCDRAM Bandwidth Bound =
DRAM Bandwidth Bound = :

L2 Miss Count =
MCDRAM Hit Rate:

MCDRAM HithM Rate:

Total Thread Count:

Paused Time =:

- 21.392s

19.560s

84.9%
12.7%
30.5% R of Clockticks
0.0%
0.0%
39,001,170
99.4%
91.7%

1

Os

of Clockticks

of Elapsed Time

« Once again approximately 75% reduction in LLC misses

» Better scaling may be explained by the “less shared” nature of the LLC
for the KNL compared to Haswell.

KNLs show promise for this prefetching scheme

N

Los Alamos National Laboratory 8/16/18 | 15

Less Misses =/= Reduced Runtime

» The vast majority of schemes tested on Haswell reduced misses (often
by a significant amount) but had little effect on runtime

— Potentially overloading fetch “slots”?

— Prefetch call overhead?
« Thought: Put in pointless Prefetch calls and see the effect of overhead

* Poor scaling despite similar cache miss reduction
— At 16 ranks, Haswell still showed ~75% miss reduction
— More confusing: At 16 ranks KNL only showed ~55% miss reduction

N

Los Alamos National Laboratory 8/16/18 | 16

* Reduction in cache misses will not always correspond to decreased
runtimes
— Could be overtaxing fetching resources
— Some overhead to consider

» Prefetching for next graph node results in graph dependence, which
complicates scaling to higher ranks.

* More performance improvements due to prefetching seem to be
available for KNL compared to Haswell

— Possibly due to fetching into shared L3 cache for Haswell compared to less-shared
L2 for KNL (16 fast cores in 40MB versus 2 slow cores in 1 MB)

* Implementation of prefetching for complex code seems to require a lot
of guess and check

N

Los Alamos National Laboratory 8/16/18 | 17

Future Directions

» Test prefetching scheme on larger “real” problems with full transport
solve

« Adapt scheme to other mesh geometries beyond what was tested here

* Deeper dive into why a 75% reduction in cache misses does little for
Haswell, as well as its poor scaling

« Gather more scaling data points (runtime and miss changes) out to
higher number of ranks
— Can probably script this

N

Los Alamos National Laboratory 8/16/18 | 18

