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Three algorithms that improve the performance of
the asymptotically-optimal Rapidly-exploring Random Tree
(RRT*) are presented in this paper. First, we introduce the
Goal Tree (GT) algorithm for motion planning in dynamic
environments where unexpected obstacles appear sporadi-
cally. The GT reuses the previous RRT* by pruning the
affected area and then extending the tree by drawing sam-
ples from a shadow set. The shadow is the subset of the free
configuration space containing all configurations that have
geodesics ending at the goal and are in conflict with the new
obstacle. Smaller, well defined, sampling regions are con-
sidered for Euclidean metric spaces and Dubins’ vehicles.
Next, the Focused-Refinement (FR) algorithm, which sam-
ples with some probability around the first path found by an
RRT*, is defined. The third improvement is the Grandparent-
Connection (GP) algorithm, which attempts to connect an
added vertex directly to its grandparent vertex instead of par-
ent. The GT and GP algorithms are both proven to be asymp-
totically optimal. Finally, the three algorithms are simulated
and compared for a Euclidean metric robot, a Dubins’ vehi-
cle, and a seven degree-of-freedom manipulator:

1 Introduction

Sampling-based motion planning algorithms quickly
connect samples from the free configuration space in or-
der to find a collision-free path from an initial configura-
tion to a goal configuration. Improving the performance
of sampling-based algorithms, in convergence speed and its
adaptation to moving obstacles, is key in the development
of real-time motion planning algorithms. Motivated by this,

*Address all correspondence to this author.

we present three different variants to the asymptotically opti-
mal Rapidly-exploring Random Tree (RRT*) algorithm and
evaluate their potential gains on several examples.

Rapidly-exploring Dense Tree algorithms (RDTs, also
known as RRTs) [1] and Sampling-Based Roadmaps (SBRs,
including Probabilistic Roadmaps (PRMs) [2]) are sampling-
based motion planners which are resolution or probabilisti-
cally complete, and find a feasible path to the goal without
the explicit modeling of the configuration space. As opposed
to SBRs, RDTs do not require pre-processing and can find
a path relatively quickly. The path produced by these plan-
ners can be very jagged, resulting in unnecessary motion that
increases the execution time. Consequently, this motivated
research into obtaining better paths from these planners.

One way to improve paths is to apply a post-processing
algorithm. In [3], one such algorithm limits the allowable de-
viation from the original path and results in a new path with
fewer nodes. A divide and conquer method is used in [4] to
shorten a given path by connecting the first and last nodes in
the path directly. If not successful, the path list is bisected
until the connection is successful. For a predetermined num-
ber of times, the post-processing algorithm in [5] randomly
selects two points from the path list and attempts to replace
the segment between them with a straight line.

A subsequent effort focuses on obtaining paths that
guarantee asymptotic optimality with probability one. At the
core of this line of work are the PRM* and RRT* [6]. The
RRT#* can handle any-time applications [7] and manipula-
tors [8]. The Ball-tree algorithm, [9], improves the perfor-
mance of the RRT and RRT* by using volumes of free-space
instead of points as the vertices of the tree. The RRT* [10] is
another planner that returns an optimal path by maintaining a
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graph and a spanning subtree. The RRT# separates the explo-
ration and exploitation tasks so they can be run in parallel to
improve performance. The Fast Marching Tree (FMT*) [11],
performs a “lazy” dynamic programming recursion on sam-
ples from the configuration space to produce a tree of paths.
A key result from [11] is the algorithm convergence rate.

The following papers also study the effects of exploita-
tion versus exploration on the RRT*. Akgun et al. [12] uses
local biasing to choose the sampling point based upon the
current best path to the goal. The RRT*-Smart in [13] finds
an initial path to the goal, then it optimizes it using first a
smoothing technique, and then it further shapes it by bias-
ing sampling to balls around the nodes in the optimized path.
While these two papers share the same idea of exploitation
of a given path to the goal, the method focuses on a single
path only, which results, at most, in a locally-optimal path.

The idea of re-adapting motion plans when finding new
unexpected obstacles has been exploited significantly in the
literature. The discrete-time D*, and D* lite algorithms [14],
[15] re-adapt A* algorithms to find the optimal path in a
discretized space. However, these algorithms become in-
tractable as the dimensionality increases, while they have a
limited ability to handle differential constraints.

The sampling-based algorithms in [16], [17] [18], [19],
and [20] all extend the RRT algorithm to deal with dy-
namic environments. The Dynamic Rapidly-exploring Ran-
dom Tree (DRRT) [16] roots the tree at the goal and trims
branches in the tree that are obstructed by the new obstacle.
The trimming is done by removing nodes that are within a
region that contains the obstacle and whose edge is in con-
flict. The descendants of the affected nodes are also removed
so that only one tree is maintained. The remaining paths in
the tree still lead to the goal but are not optimal.

In [19], the Reconfigurable Random Forest (RRF) algo-
rithm maintains a forest of trees from previous plannings that
have been broken apart according to the new obstacle infor-
mation. The RRF attempts to connect the trees as in the RRT-
connect [21] making this framework good for multi-query
problems. The trees are trimmed by removing all nodes from
within a bounding box containing the obstacle that are deter-
mined to be in conflict with the new obstacle. The RRF also
prunes its trees to maintain a manageable number of nodes to
reduce searching time. The lazy reconfiguration forest (LRF)
is presented in [20], and uses the idea of maintaining multi-
ple RRT trees from the RRF but only checks for invalid edges
along the task path instead of checking the entire tree.

To rebuild a tree from the initial position, way points
from the previous tree are reused to increase the likelihood
of a successful connection in the execution extended RRT
(ERRT) [18]. The ERRT also uses an adaptive cost func-
tion that improves the generated paths. The multipartite RRT
(MP-RRT) [17] combines several of the above mentioned
planners and an opportunistic strategy for reusing informa-
tion during replanning in a dynamic environment. However,
none of these algorithms produce optimal paths. An asymp-
totically optimal replanning algorithm, RRT*, was devel-
oped by the authors of [22]. The RRT* maintains a graph and
a shortest path sub-tree rooted at the goal. When an obstacle

is added or removed only the effected edges are updated.

This manuscript builds on the authors’ two previous pa-
pers on motion planning, [23,24]. The first paper, [23],
proposes the Goal Tree (GT) replanning algorithm to han-
dle unexpected obstacles. The second paper, [24], pro-
poses the Grandparent-Connection (GP) and the Focused-
Refinement (FR) algorithms. Compared with previous work,
this manuscript revisits the algorithms and presents an anal-
ysis of them with complete proofs and additional extended
simulations. The results are shown to move us closer to
real-time motion planning by finding near optimal paths in
a shorter amount of time compared to the RRT*. The GT
algorithm is (to the best of the authors’ knowledge) one of
only two sampling-based asymptotically optimal replanners.

In particular, we present a simplified version of this al-
gorithm with respect to the version in [23] to rebuild the
original tree instead building a second tree and connecting
the two. We prove that the asymptotic optimality, node po-
sition, and probabilistic completeness results for the RRT*
are maintained when using the GP modification. The GP is
also proven to recover the optimal path to the goal in the
visible set, all configuration that have geodesics to the goal
that are not in conflict with any obstacle. This paper also in-
troduces the approximation of the shadow as the collection
of nodes that were removed from the tree. This approxima-
tion is used as the sample set for rebuilding the tree during
the GT algorithm. The simulations have been expanded to
include a seven degree-of-freedom manipulator and include
results that combine the GT and GP algorithms.

The Goal Tree (GT) algorithm reuses information from
a RRT* rooted at the goal configuration, .7, to reduce the
replanning time in the presence of a new obstacle. When a
previously unknown obstacle obstructs the best path, .7 is
trimmed to reflect this information. The tree is then incre-
mentally extended in the affected region of the configuration
space. In this setting, we identify a new sampling region,
strictly contained in the configuration space, such that, when
used with the GT algorithm, guarantees the recovery of an
asymptotically optimal path. First, a region is proven to ex-
ist, then a characterization is provided for a general robot in
a d dimensional environment. By exploiting the known path
types of vehicles with no differential constraints in a d di-
mensional configuration space and a Dubins’ vehicle, alter-
native characterizations of the new planning region are given.

The Focused-Refinement (FR) algorithm is a modifica-
tion of RRT* that reduces the computation time needed to
obtain a low-cost path to the goal. This is done by explor-
ing the environment quickly until a set of paths to the goal
is found. Then, the algorithm focuses on lowering the cost
of this set of paths while periodically exploring the environ-
ment. In this way, the algorithm quickly returns an asymp-
totically optimal path within the regions that are more in-
tensively exploited. We present a novel way of uniformly
sampling randomly within these regions that, with the right
parameters, can recover the entire configuration space.

The Grandparent-Connection (GP) is a modification to
the RRT* algorithm that attempts to connect the added vertex
to its grandparent instead of its parent vertex. This essentially
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straightens the computed paths and lowers the cost.

Simulations for all three algorithms and the combination
of GP with GT are given in Euclidean space, for a Dubins’
vehicle, and a seven degree-of-freedom manipulator. A Du-
bins’ vehicle running the GT algorithm is shown to improve
replanning performance compared to rerunning the RRT*.
The GP and FR are shown to find better cost paths more
quickly than the RRT*.

This paper is organized as follows. The RRT* algorithm
is reviewed in Section 2. Sections 3 and 4 detail the proposed
algorithms and Section 5 analyzes the optimality of the Goal
Tree and GP algorithms. Simulations test the algorithms in
Section 6. Section 7 concludes the paper.

2 The Rapidly-exploring Random Tree Star Algorithm

This section briefly describes the RRT* algorithm by
Karaman and Frazzoli which is theoretically analyzed in [6].
The kinodynamic RRT* is presented in [25].

The RRT*, outlined in Algorithm 1, builds a tree, .7,
which is dense with probability one in the entire configura-
tion space, X, as the number of samples, n, goes to infin-
ity. Denote by Xgee the free configuration space in X and
Xobs as the obstacles space. The tree is composed of a set
of vertices, v € 7.V, and edges, e € 7.E. Each edge is
an ordered pair of vertices e;» = (v{,v2), where v; is the
parent and v; is the child. We use Cost as the notation for
the cost function being minimized. Each edge added to .7
has a cost,denoted ceqge(e), where e € .7 .E. In the original
work by [6], the edge cost considered is the cost-fo-go,the
cost of moving from the parent v; to the child v,. Then,
the cost of a vertex, Cost(v), is the sum of the costs of the
edges connecting the root to v. The paths in 7 are asymp-
totically optimal, as n — oo the optimal path from the initial
configuration, x; € Xfee, to any other configuration in Xfe is
recovered. The functions involved in the RRT* process are
described as follows. With some abuse of notation, we will
define a robot configuration as x, instead of v.

After initializing .7 at x;, the RRT* begins by using the
Sample function to output X4, a uniformly sampled ran-
dom configuration from Xf.. The Nearest function finds the
nearest vertex, Xnearest € -7 , and extends .7 a distance € from
Xnearest 1O Z€t Xpew -

Next, the set of near vertices from .7 with respect to
Xnew are output as the set Xjeor from the function Near.
Vertices that are farther than » = min(g, y(log(n,) /n,)(1/9),
where n, is the number of vertices in .7, d is the dimension
of the configuration space, and ¥ is an independent param-
eter, are omitted from Xpear. The best parent for xpey, de-
termined in FindBestParent, is the vertex in Xpe,r that has a
collision-free path with the lowest Cost(xpew), outlined in
Algorithm 2. The paths that connect the vertices to each
other (determined using Steer), satisfy the system dynam-
ics. Only collision-free edges are added to .7. The collision
checker, CollisionCheck, returns true if the edge is collision-
free. If xpew is added to .77, then Rewire, outlined in Algo-
rithm 3, attempts to add the other vertices in Xpear as children
of xnew based upon a lower cost and collision-free edge.

Algorithm 1 7 = (V,E) < RRT*(x, ¢€)

T < InitializeTree();
T < InsertNode(0,x;,.7);
fori=1toi=Ndo
Xrand <— Sample(i);
Xnew — Nearest(.7 , X;and, €);
Xnear < Near( T, xnew);
Xparent — FindBestParent(Xycar, Xnew )
if Xparent 7 NULL then
T < InsertNode((Xparent; Xnew ) s Xnews -7 )
T < Rewire(.T, Xnear, Xnew )
end if
end for
return 7

Algorithm 2 xpyen <— FindBestParent(Xyear; Xnew)

Xparent < 0;
Cmin < ©°;
for xpear € Xnear do
Cnear,new < Steer(xnearaxnew)§
Cnear < COSt(-xnear) + Cedge (enear,new);
if cpear < ¢min and CollisionFree(epearnew) then
Xparent $<— Xnear>
Cmin < Cnear
end if
end for
return Xparent;

Algorithm 3 .7 + Rewire(.7, Xnear, Xnew)

for (xnear) € Xpear do
€near,new — Steer(XHCW7xnear)§
if Cost(Xnew) + Cedge (€ncarnew) < Cost(Xpear) then
if CollisionFree(epear.new) then
Xoldparent <— Parent(.7, Xnear )
T .remove( (xoldparent ,Xnear) )}
y-add((xneW7xnear))§
end if
end if
end for
return 7

3 The Goal Tree Algorithm

In this section, the Goal Tree (GT) algorithm is de-
scribed in detail. The GT is a method for replanning when
unexpected or moving obstacles obstruct the execution of the
path determined by the RRT*. The RRT* produces paths that
are asymptotically optimal from the initial configuration to
any other point in the configuration space. By a slight mod-
ification to the RRT* algorithm, one can produce a tree, 7,
rooted at the goal configuration, xg, such that the asymp-
totically optimal path from any point in Xge to xg can be
recovered. To do this, the cost associated with each edge
e12 = (v1,v2) in the RRT* tree becomes the cost-to-come;
i.e. the cost of traveling from the child v, to the parent v;.
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Once the new obstacle, &, has been discovered, the GT
trims 7 and then it is extended in some subset R C X \ 0.
To trim .7, the edges are checked for conflict with & and re-
moved using PropagateCost. Instead of checking every edge
in J; we can define a subregion that contains all possible
vertices whose trajectories are in conflict with &. We want
to define the region as all points within some Euclidean dis-
tance from a point in . Denote the center point of & as x.,
and the maximum Euclidean distance from x. to the bound-
ary of ¢ as rmax. A graph search is done over .7 to deter-
mine the maximum edge cost, reost = MaXee 7 £ {Cedge(€) }-
Since cedge(€1,2) > ||x1 — x2|, the set of vertices whose tra-
jectories are in conflict with & is contained in

Veonflict = {V S yG-V | ”xmva < rmax"l‘rcost}-

All trajectories of the vertices in Vongict are checked for con-
flict with &'. All vertices found in conflict with &, and their
descendants, are trimmed from .7;.

4 The Focused-Refinement
Connection Modifications
The following section describes the two extensions to
the RRT* in detail. The first is the Focused-Refinement
(FR) modification that attempts to recover a near optimal
path much quicker than the RRT*. The second extension,
the Grandparent-Connection (GP), is aimed at reducing the
number of nodes in the path to the goal and reducing the
computation time needed to discover a near optimal path.

and  Grandparent-

4.1 The Focused-Refinement algorithm

As shown in [6], the RRT* initially constructs a tree
that is the same as the RRT and then, as more nodes are
added, the RRT* begins to look at many neighboring ver-
tices to recover an asymptotically optimal path. The RRT*
finds and refines all paths in the configuration space. The
refinement extension, Focused-Refinement (FR), focuses on
refining only those paths that have already reached the goal
region in hopes of reducing the amount of time needed to
find a sufficiently optimal path.

The FR begins the construction of a tree using the RRT*
algorithm until there exists at least one path that reaches the
goal region. This set of paths is denoted as II, with p ver-
tices defining a set V1. The FR has two options: exploring
the configuration space or exploiting IT to lower its cost. If
exploring, the algorithm proceeds as the RRT*, but if exploit-
ing, the set of vertices in I1, Vfy, is determined. The sample
Xnew 18 determined by perturbing a vertex randomly drawn
from the set V. The FR then proceeds as the RRT*.

The pseudo code for the FR is presented in Algorithm 4,
and uses three parameters. The first is Cexploic € N, the num-
ber of consecutive iterations the FR will exploit IT. The num-
ber of consecutive iterations to explore Xg.. is the second pa-
rameter needed, Cexplore € N. The third parameter, Ceser € N,
tells the algorithm when to update Vrj. The sampling re-
gion defined by Vi1 does not change dramatically every it-

eration, therefore, to save computation time, the set Vy is
only updated every Creset + Cexplore iterations. If Cexploir = 0
and Cexplore = o, the FR becomes the RRT*. The parameters
are chosen by the user to best reflect their desired ratio of
exploration versus exploitation. It is recommended to keep
the numbers small relative to the total number of samples to
allow for swapping between the explore and exploit natures
of the FR algorithm. In order to take advantage of the ex-
ploitation property of the FR, Cexploic should be greater than
Cexplore- In environments with multiple routes to the goal,
Cexplore €an be increased in hopes of finding a better route
than what was initially found.

Exploitation only occurs if GoalReach returns true
(there exists at least one path to Xg) and exploitation has oc-
curred less than Cexploir consecutive times. Once IT has been
exploited Cexplojt iterations, the RRT* is allowed to explore
the space for Cexplore iterations. The following are the details
on choosing xpew during the exploitation stage of the FR.

The new sample, Xpew, 1S determined as illustrated in
Fig. 1 and in Algorithm 5. Given a d-dimensional config-
uration space, X C R?, consider k € {1,2,---,d}. First,
the minimum and maximum k-component from Vpy € RéxP,
Win = minV{% and wpax = maxV{%, are found. Here, V{%
is the set of all k-components of the vertices in V7. Next,
the k-component of Xpew (xf.,) is taken as a uniformly
random sample between wpi, — € and wpax + €, € > 0.
For every j # k, the j-component of the vertex whose k-
component is nearest to X, is determined, X/, esi> Xnearest =
argmin, ¢y, [ — xF||. The j-component of Xyey is uni-
formly sampled between x/.prest — € and X)epres + €. The FR
alternates which k-component is used to determine Xpey, this
provides a uniform distribution of samples around I1. As €
is increased, the entire configuration space is uniformly sam-
pled randomly, thus recovering the original RRT*.

Note that V7 can consist of multiple distinct paths to
the goal. Determining distinct paths is non-trivial and poten-
tially time-consuming. In general, and in the simulation sec-
tion, V1 is only the current best path. Efficiently determining
distinct paths is a subject of future work. Because the FR
restricts exploration of the free configuration space, it is not
for use in conjunction with the GT replanning algorithm.

4.2 The Grandparent-Connection modification

The GP was inspired by reducing the number of nodes
in, and cost of, a given path. Before adding a node to the
tree, the modified algorithm attempts to connect directly to
its grandparent node, as outlined in Algorithm 6. A suc-
cessful connection to the grandparent occurs when a lower
cost, collision-free path is found. It is also predicted that the
Grandparent Connection will produce smoother paths with
fewer nodes. Because the Grandparent-Connection is ap-
plied during construction of the tree as every node is added to
the tree, the grandparent connection smooths out every path
in the tree. The GP gains the advantage over smoothing a
single path when paired with the GT or similar replanning
algorithms. The grandparent connection can also be used in
combination with the FR algorithm.
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Fig. 1: An illustrative example on choosing xpey When refin-
ing a single path. The red rectangle is an obstacle in the en-
vironment. The blue dots are the the set of vertices, Vi1, used
to determine the region from which xpey is sampled. The k-
component of xpey is a uniform random sample between the
maximum and minimum (plus and minus €, respectively) k-
component values from V. Next, with respect to x£.,,, de-
termine the nearest k-component from Vi and label its cor-
responding j-component as X/, - Finally, the xfey is a ran-
dom value from between x{;earest — € and xr’;earest +&,€>0.
Sample xpey is represented as the green dot.

Algorithm 4 .7 = (V,E) <
FR (xi7 £,d, Cexploita Cexplore ) Creset)

T < InitializeTree();
T < InsertNode(0,x;, 7 );
Creset = 1; Cexploit = 15 Cexplore = 1; k=1,
fori=1toi=Ndo
if GoalReach and cexploit < Cexploit then
if Creset = 1; then
Vi1 = PathSet(.7);
end if

(Creset ) Cexploit) < UpdateParamete rs(creseta Cexploits Creset ) 5

Xnew = NewPointPathSet(Viy, €,k,d);
k «+ UpdateDimension(d);
else

Algorithm 5 x,cy, < NewPointPathSet(V, €,k,d)

Wmin = min(Vk);
Wmax = max(VK);
* o = Rand(Win — €, Winax + €);
Xnearest = NearestComponent(V,xX., );
for j=1toj=d; do
if j # k then
Vmin = xillgarest —&
. .
Vmax = Xpearest T &
xr]1ew = Rand(vminavmax);
end if
end for

Algorithm 6 xpyen < FindBestParent(Xyear, Xnew)

Xparent <— 0;
Cmin <
for xpear € Xnear do
€near,new < Steer(xnea.hxnew);
Cnear < COSt(xneaI) T Cedge(enear,new);
if cnear < cmin and CollisionFree(epearnew) then
Xparent <= Xnear>
Cmin <= Cnear;
end if
if Xparent 7 0 then
Xgrandparent <— y-parent(xparent);
€grandparent,new < Steer(xgrandparentaxnew);

Cgrandparent — Cost (xgrandparent ) +
Cedge (e grandparent,new ) 5

if Cgrandparent < Cmin and CollisionFree (egrandparent,new )
then

Xparent <~ Xgrandparent>
Cmin < Cgrandparent>
end if
end if
end for
return Xparent;

(Cexplore s Cexploit) < UpdateParameters (Cexplore » Cexploits Cexplore )

Xrand < Sample(i);
Xnew < Nearest( 7, Xand, €);
end if
Xnear < Near( T, xnew);
Xparent — FindBestParent(Xnear, Xnew )
if Xparent 7 NULL then
T < InsertNode((Xparent; Xnew ) Xnews -7 )
T <+ Rewire(T , Xnear, Xnew )
end if
end for
return

5 Analysis

In this section, we analyze the optimality of the GT and
GP algorithms.

5.1 Optimality of Goal Tree

Reducing the sampling region for rebuilding 9 can
lead to faster cost rate-of-change but can also prevent global
asymptotic optimality. We prove that there exist a generic
restricted region of the space which when used to extend .7
guarantees convergence to a globally optimal path. Then we
aim to characterize these regions for common cases.

Theorem 1. Let X = [0,1]¢ be a d-dimensional C-space,
d eNandd > 2. Let Xops be the C-obstacles space. Assume
O is newly found obstacle information, i.e. O ¢ Xobs, and
there exists a ball, B(xg,r) C (Xobs U ©)¢, r > 0. Suppose
the feasible dynamic paths of vehicles in a free environment
are at least €. Then, there exists a generic R C X such that
if I is originally built in X using the RRT* with informa-
tion Xops, then trimmed using O, and finally extended in R
using the RRT* with information Xous U O, then an optimal
path, T : x; — xg, can be asymptotically recovered by the GT
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algorithm-as n — oo,

Proof. The ball B(xg,r) is an obstacle free environment
where the restricted optimal solution is a sufficiently smooth
curve. A generic property of smooth curves is that they have
a finite number of inflection points and vertices; see [26] fo-
cusing on planar curves, but from which results are valid for
curves in any dimensions. Thus, there exists a final piece of
the optimal path, say o, to xg which is convex or concave and
does not contain any vertex or inflection point in it. Using o,
there exists a smaller radius 7 < r such that B(xg,r’) N o re-
duces to a single intersection point. The optimal path 7 from
Xy to xg must go through the dB(xg,r’) at this point. Then,
taking R = X \ B(xg,r’) will yield & asymptotically. O

In d dimensional environments, a rebuilding region
guaranteed to recovery an asymptotically optimal trajectory
can be found as follows. Consider the goal and new initial
configurations, xgand xy, and a new obstacle & such that
xp,Xxg ¢ O. For simplicity, assume that & N Xops = 2.

First, a region in the environment is defined and then,
using this region for sampling, the GT is proven to recover a
geodesic from xp to xg. Due to the obstacles in the environ-
ment, any configuration in Xge. could have more than one
geodesic to xg. Note that in the following, the distinction
is made between position and configuration. Position is the
(p1,p2,...) position in the environment, while configuration
can also include orientations or velocities.

Definition 1. Shadow Set: The shadow of xg on O, .Y, is
the envelope or hull, as defined by position rather than con-
figuration, formed by the geodesics from all configurations
in Xiree going to xg that are in conflict with O.

Note that x; € . must be true, otherwise, there is no need
for replanning. Also note that .% is a set of positions and
not configurations. In this way each position could have an
infinite number of possible configurations associated with it.

Definition 2. Outgoing Configuration: Let S C X be a set
such that xp € S and whose boundary is denoted as 0S. Then,
an outgoing configuration on dS is defined as a configuration
whose position is in dS and whose orientation or velocity
will force the vehicle to leave S.

Lemma 1. All outgoing configurations on 0.%; have
geodesics to xg that are not in conflict with 0.

Proof. Let x be an outgoing configuration on d.%;. Con-
sider a geodesic from x to xg which is in conflict with &,
then by the definition of an outgoing configuration on d.%,
any motion from x forces the vehicle position strictly outside
0d.%¢. However, this is in contradiction with the definition
of ., which contains all positions obtained from geodesics
to x¢ that are in conflict with &. Therefore, there must only
exist geodesics from x to x¢ that are not in conflict with &J

The main result, Theorem 2, states that using the shadow
of xg on & as the new sampling region will allow the Goal
Tree to asymptotically recover an optimal path from x; to
xg. Due to the tree structure used by the GT, only one of the
geodesics from xp to xg will be recovered.

Theorem 2. Let .7y be as in Definition 1. If the Goal Tree
algorithm uses S as the new sampling region to rebuild
TG, then it will converge to a globally optimal path as n — .

Proof. Let w be an optimal path from xp to xg. If 7 lies
entirely in ., then, it will be recovered by sampling in .%.
Otherwise, 7T must cross d.% at an outgoing configuration.
Let x; be the outgoing configuration in 7 that first crosses
d.-%¢. Then the subpath of 7, from x; to xy, lies entirely in
-%¢ and can be recovered by sampling in .. By Lemma 1,
a geodesic from x| to xg is in J;. Thus, the GT algorithm
can recover a geodesic from xy to xg by sampling in .. [J

By exploiting what is known about geodesics in the Eu-
clidean metric, we can provide an alternative characteriza-
tion of a feasible sampling region for use in the GT by a
robot with no differential constraints.

Theorem 3. Let X be a d-dimensional C-space such that
d € Nand d > 2. Let the initial obstacle space be Xops and
let O ¢ Xops be new obstacle information. For simplicity,
assume that 0 N Xops = 9. If

1. X is the Euclidean metric space,
2. 0O CRCX,

3. R is convex, and

4. Xy S R

then the GT algorithm will converge to a globally optimal
path, T, as n — oo by employing I with the previous Xops
and trimming J¢ using the O information and then extend-
ing I in R.

Proof. In Euclidean space, an optimal path, 7, is composed
of straight lines and segments that follow the boundary of the
obstacles. In particular, an optimal path from x; to any point
on dR, with respect to the new obstacle information, is a con-
catenation of path segments included among the following:

1. collision-free straight line paths from x; to a point on
the boundary of 7 i.e., a visible point on d & from x;.

2. any path along the boundary of & and the boundary of
the convex hull of &, and

3. collision-free straight line paths from d &' to the visible
boundary of R.

The convexity of R implies that all straight lines that begin
and end in R are entirely contained in R. Any path that fol-
lows d 0 is entirely in R because &' C R. A globally optimal
path from xy to xg will have to cross dR if xg ¢ R. Let the
boundary point at this crossing be xg. By the above discus-
sion, the subpath from xy to xp can be recovered asymptot-
ically by means of sampling in R with the new obstacle in-
formation. Consider the optimal subpath from xp to xg with
respect to the old obstacle information Xops. By the same
considerations as above, this optimal subpath is made of a
concatenation of segments from the list above but with re-
spect to Xops. Thus, it can be asymptotically recovered by
means of .7; with information in Xyps. ]

Note that, if & N Xyps # &, then R would have to be a convex
region containing the connected component of &' U X, that
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contains ¢." This connected set would then be used in the
above proof in place of 7.

The region characterization from Definition 1 can be
used to approximately determine where to sample from the
geodesics obtained from the initial tree for planning prob-
lems. However, and as for the Euclidean case, alternative
regions can be used if the particular dynamics are amenable
to direct analysis. The following leads to a characterization
of a new sampling region, R, for use in rebuilding 7 during
replanning with the Dubins’ vehicle. The Dubins’ vehicle
has three states, x- and y-position and orientation 6. The
dynamics for the Dubins’ vehicle are

where v is the speed of the vehicle and p is the minimum
turning radius. It is assume that both v and p are constant.
The optimal trajectory between two configurations for these
dynamics are discussed in [27]. The locally optimal trajec-
tory defined by the above dynamics is one of six paths, RSL,
LSR, RSR, LSL, RLR, and LRL, where L means left, R
means right, and S means straight. Geodesics with respect
to Euclidean length are characterized as concatenations of
circular arcs and straight lines. The minimum turning radius
for the Dubins’ vehicle is denoted as p.

The following lemmas are useful in obtaining the main
Dubins’ vehicle result of this subsection.

Lemma 2. Given a circular arc that begins at x; and ends
at x», that has an angle strictly less than 7 radians, let x. be
the point where the tangent lines of the arc at x| and x, cross.
Then, the outer approximation is defined as the union of the
line from x| to x. with the line from x; to x,. Then, the length
of the outer approximation of a given circular arc is greater
than or equal to the arc length.

Lemma 3. Given a circular arc that begins at x; and ends
at xy, define the inner approximation as the straight line con-
necting x| to x. Then, the length of the inner approximation
of a given circular arc is less than or equal to the arc length.

The proof of Lemma 2 and 3 follows directly from basic ge-
ometric considerations employing the triangular inequality
and the convexity of circular arcs. It can be seen that the
result can be extended to any convex curve and any inner
approximation defined using points on the curve and joining
them through lines in a similar way.

Now, using &, a region that contains at least one valid
path around & is defined.

Definition 3. R, Region: Define the region Ry as the
smallest convex set that contains the union of € with circles
of radius 2p centered at each corner of 0.

Now, R is extended to contain feasible paths from xp to the
previous region R .

Obstacle

Fig. 2: The sampling region for a Dubins’ vehicle as de-
scribed in Definition 4.

Definition 4. R Region: Define the region R, as the small-
est convex region that contains Rz and B(xy,2p).

Fig. 2 pictorially explains the Dubins’ vehicle sampling re-
gion from Definition 4. The first Dubins’ vehicle result of
this subsection states the existence of valid trajectories in R.

Lemma 4. The region R, as in Definition 4, contains at
least one feasible Dubins’ vehicle trajectory from xp to any
outgoing configuration on oR.

Proof. First, it is shown that the Dubins’ vehicle dynam-
ics can be satisfied while traveling from xp to any point on
dB(xp,2p). To do this, note that the Dubins’ vehicle can
leave x; and travel on a curve of radius p for 7 radians that
places the vehicle on the boundary of R. This will put the Du-
bins’ vehicle 2p way from x; and the vehicle can now travel
along dB(xy,2p). From dB(xy,2p), the Dubins’ vehicle can
travel to R, along the tangent line forming the boundary of
the convex hull between Ry and B(xy,2p). The Dubins’
vehicle is now on dRg, the circles centered at the corners
with radius 2p allow it to stay on dR traveling completely
around the obstacle. Given that dR is 2p from d &, implies
that the vehicle can do a circular maneuver from some point
on dR to get to a specific outgoing configuration on JR.
Thus, R will contain at least one trajectory, not necessarily
optimal, from xp to any outgoing configuration on dR. I

The second result is that, the optimal path, from a con-
figuration inside R to an arbitrary outgoing configuration on
JdR, will be entirely inside R.

Lemma 5. Let ¢ be a feasible path for a Dubins’ vehicle
that starts at xp and ends at an outgoing configuration Xepq €
JdR. If ¢ leaves and returns to R, then there exists another
path, T, from xp to Xend, that is entirely in R and that has a
lower path length than o.

Proof. Define By, to be a ball

1. of radius p
2. that is tangent to both dR and &
3. thatis contained in R, By C R.

Every time o crosses dR, two such balls can be created. Take
Bp1 to be the By that is tangent to ¢ before leaving R and
that is closest to where o crosses back into R. Let x| be the
configuration in o that is tangent to By;. Now, take By to
be the By that is tangent to ¢ after returning to R and that
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is’closest to where o crossed outside of R. Let x, be the
configuration in o that is tangent to By;.

Break o into three subpaths: oy from x; to xi, o2
from x| to X7, and Onepg from x; to xepg. Now, construct 7 as
follows. Let 7y = oy and Mpeng = Ozend- The subpath 7y,
is taken to be the path from x; that travels along dB,; until
it reaches dR, concatenated with the path that travels along
JR until it reaches d B>, and concatenated with the path that
travels along 8Bp2 until it reaches x,.

Now, 7 has been constructed to be a path, from x, to
Xend, that is entirely inside R. To prove that & has a shorter
path length than o, outer approximate every arc in 7j2, 7f,,
and inner approximate every arc in o1, 0f,. This leaves us
with two paths that start at x; and end at x, and that are only
composed of straight lines. By construction, 7}, is convex
(because R and the outer approximation are convex). From
the triangle inequality and the convexity of 77,, the length of
0}, cannot be longer than the length of 77,. Which means the
length of 7;, must be less than the length of 61,. Combining
this with the fact that the length of 7 is equal to the length
of oy and the length of Tyenq is equal to the length of G2enq,
the length of 7 is less than the length of ¢. Therefore, any
feasible Dubins’ vehicle path that leaves and returns to R can
be shortened to a path that is entirely inside R. 0

The main Dubins’ vehicle result of this subsection says
that R is a sampling region that allows the GT to recover the
optimal path. This is stated more precisely in Theorem 4.

Theorem 4. Consider a Dubins’ vehicle at xp for which
minimum-length paths are to be found to xg. Assume that
the new obstacle, O, is a convex polygon and does not in-
tersect any other obstacles. Let R be as in Definition 4 and
assume xg ¢ R. If the Goal Tree algorithm uses R as the
new sampling region to rebuild g, then it will converge to
a globally optimal path as n — oo.

Proof. By Lemma 4, there exists a path in R from xp to any
Xend» an outgoing configuration on dR. Then, by Lemma 5,
if the optimal path 7* to any xenq leaves and returns to R, a
shorter path can be found, which contradicts the optimality
of m*. Therefore 7* must be entirely in R and can be found
by sampling in R. Let xp be the outgoing configuration on
JdR where the optimal path from x; to xg crosses outside of
R. From the above, the path from x; to xp can be recovered
asymptotically by sampling in R with the information from
0. Now consider the path from xp to xg, this path is outside
of R and can be asymptotically constructed by sampling out-
side of R with respect to Xops. Thus, the optimal path from
xp to xg can be recovered asymptotically from 7. O

5.2 Analysis of Grandparent-Connection

The same probabilistic completeness and asymptotic op-
timality results for the RRT* algorithm in [6], also hold true
for the GP algorithm. Theorem 5 is a restatement of Theo-
rems 23 and 38 from [6] but for the GP algorithm.

Proposition 1. [f the RRT* and GP algorithms solve the
same path planning problem, using the same parameters,

then the vertex sets of both graphs are equal, VRRT" = VP,

VnelN

Proof. Proof by induction. When n = 1, no Grandparent-
Connection is possible, therefore, both the vertex and edge
sets are identical. When n = 2, even though in the last step of
the iteration the added vertex may connect to its grandparent
the vertex is still added to the tree, making both vertex sets
identical but the edges set different. When n = 3, because
the vertex sets are the same, the vertex to be added, xyew, 1S
the same for both algorithms, so is the set Xpear. Then, if an
edge exists between Xpey and an x € Xpeyr in one algorithm
it also exists in the other. Therefore, even if the parents are
different xney Will be added to both trees, maintaining the
identical vertex sets. ]

Theorem 5. The GP algorithm is probabilistically com-
plete. Furthermore, for any robustly feasible path plan-
ning problem (Xfree,.x,‘,Xgoa_[), there exist constants a > 0 and
no € N, both dependent only on Xfee and Xgoa, such that,

PV, NXgout #0}) > 1 —e ™™ ¥ > np.

Also, if y> (2(1 + ;11)5 (%)37, then the GP algorithm is
asymptotically optimal.

Proof. First, from Prop. 1, we have V,FRT* = VnGP . Then,
by construction, the GP builds a connected graph. There-
fore, the probabilistic completeness of the GP follows from
the probabilistic completeness of the RRT*. Finally, the
asymptotic optimality result comes from costRRT"(x; x) >
costSP (x;, x) for all x € (VRRT" = yGP), O

Lemma 6. When Xy, is convex, the GP recovers the opti-
mal path from x; t0 Xgoq1. Furthermore, define the visibility
set of x; as the subset of Xgee such that ¥V x € Vis(x;) there
exists a collision-free geodesic from x; to x. Then, the GP
algorithm will recover the optimal paths in Vis(x;).

Proof. By construction, with a convex Xfee, €very vertex in
the graph has x; as its parent. Then, extending to other metric
spaces, any node in the visibility set has x; as its parent. [

6 Simulations

There are three different robot types simulated in this
section: Euclidean metric, Dubins’ vehicle, and a seven
degree-of-freedom manipulator. The Euclidean metric and
Dubins’ vehicle simulations were run on a MacBook Pro
with a 2.6GHz Intel Core i7 processor and 8 GB of mem-
ory. The manipulator simulation was run on a HP Z640 with
2.20 GHz Intel Xeon processor and 32 GB of memory. The
metrics used for the comparison are the average time it takes
for an algorithm to first return a path (Initial Time), and the
cost of that initial path (Initial Cost). The percent difference
compares the algorithms to the RRT* as a benchmark. All
the algorithms in a specific simulation are run for the same
amount of time, the cost of the best path returned by the al-
gorithm at that time is labeled the Final Cost. There are two
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different types of environments: static and dynamic. In the
static environments, the obstacles are completely known to
the robot. The FR, GP, and FR-GP algorithms were devel-
oped for use in static environments. In a dynamic environ-
ment the obstacles are changing in a manner that is not com-
pletely known to the robot. In these simulations an obstacle
will appear in the robot’s path that was not previously known
to the robot. The GT algorithm was developed for dynamic
environments. While the nature of the FR algorithm does not
make it suitable for dynamic environments, the GP algorithm
integrates easily with the GT algorithm. The Goal Tree sim-
ulations find an approximation of the shadow for use as their
sampling set when replanning. The shadow approximation,
7, is a collection of all the vertices removed from the origi-
nal tree as a consequence of ¢. The .¥ can be made denser
by adding samples via the primitive NewPointPathSet.

6.1 Euclidean Metric

This set of simulation results is for a point robot with
no dynamics and Euclidean Metric edge cost. A collision
checker that checks for the intersection between a line and a
polygon is used. There are three environments, 25, 50, or 75
obstacles, which were chosen to compare how the different
algorithms do with various obstacle densities. The results are
an average of 25 simulations.

First, the Grandparent-Connection and Focused-
Refinement are compared to the RRT*, RRT*-Smart, and
RRT with path smoothing, Table 1. The algorithms were
run for 100 seconds in the 25 obstacle environment, 120
seconds in the 50 obstacle environment, and 450 seconds in
the 75 obstacle environment. The mean initial cost of each
algorithm is compared to the RRT*’s mean initial cost to
obtain the percent difference. A negative percent difference
indicates that the cost is less than the RRT*’s cost. As
expected the GP algorithms find the lowest cost initial path,
without incurring much of a time increase. While the GP
algorithms’ initial path cost is about the same as the path
found by an RRT with a post-processing path smoothing
technique, the cost difference in the final path is much
larger. The GP and FR algorithms have lower final path
costs than the RRT*. It is also of interest to take note of
how the increase in obstacles affects the performance on the
various algorithms. The 75 obstacle environment while not
increasing the best cost found much, does increase the cost
to find that path. Specifically, note the initial cost for the GP
algorithm with 25 obstacles is 14.78 while the initial cost
with 75 obstacles is 17.90, only an increase of 3.12. But, the
difference in time it take to reach those costs increases by
102.7 seconds. Also, note the increase in standard deviation.
These trends can be seen across all the algorithms.

Table 2 compares replanning in the 50 obstacle environ-
ment using the GT with the RRT* algorithms. The replan-
ning region R is a box that is just large enough to contain the
new obstacle and current robot position. The Goal Tree’s ini-
tial path cost and its path cost at the mean time the RRT* first
finds a path are compared to the initial path cost of the RRT*.
The GT algorithm out performs the RRT* in initial path cost

by 13%. The cost of the final path found, after 80 seconds,
by each algorithm is much closer, only a 2.7% difference.

6.2 Dubins’ Vehicle

The simulations results in this section are for a Dubins’
vehicle in the 25 and 50 obstacle environment. The cost min-
imized is the distance traveled by the vehicle. The primitive
CollisionCheck discretizes the path and then checks that none
of the configurations in the path are inside an obstacle. Each
algorithm is averaged over 10 runs in each environments.
Typical trees found by the RRT* and GT algorithm’s are in
Figs. 3a- 3f. The tree produced by the RRT* is the only one
with many excessive loops in its final path.

Table 3 compares the Grandparent-Connection and
Focused-Refinement algorithms to the RRT*, RRT*-smart,
and RRT with path smoothing. The loops and curves of
the path found by the RRT* increase the path cost signifi-
cantly. This translates to the GP algorithms finding initial
paths that have costs 50% less than the initial cost of the
RRT#*. The RRT with path smoothing and GP algorithms
have initial path costs that are about the same. The excess
loops and curves are not present in the GP algorithms fi-
nal paths, and are reduced in the FR and RRT*-smart algo-
rithms’ final path. The GP algorithm has the highest aver-
age Initial Times, 63.5%. Running the RRT*-Smart to the
GP algorithm’s Initial Time (47.64 seconds for 25 obstacles
and 130.5 for 50 obstacles) produces an average path cost
of 131.68 for 25 obstacles, very close to the GP algorithm’s
cost, and 151.87 for the 50 obstacle case, which is 7% higher
than the GP algorithm’s cost at that same time. Our results
indicate that it is best to use the first path returned by the GP
algorithm. A benefit of executing the first path is removing
the need to determine when to terminate the algorithm based
on algorithm run-time or number of samples.

Figs. 4a and 4b show two typical trees produced by the
RRT#* and GT algorithms when replanning. The original en-
vironment has 25 obstacles, one unknown obstacle is found,
therefore the replanning is done in a 26 obstacle environ-
ment. The empty space in Fig. 4b is from trimming. The
Dubins’ vehicle Goal Tree simulation comparison results are
in Table 4. The GT has a mean initial cost that is higher than
the RRT*, but that path is found much quicker. By the time
the GT algorithm reaches the mean time it take the RRT* to
find an initial path (6 seconds) the GT has reduced the path
cost significantly. The GT, after 6 seconds, has a path cost
8% lower than the RRT* initial path cost. The comparison
of the final path cost (at 80 seconds) drops to 3%.

The Grandparent-Connection can be incorporated into
the Goal Tree Algorithm. Table 5 compares the Goal Tree
with Grandparent-Connection (GT-GP) to the Grandparent-
Connection algorithm. The GT with GP was able to find an
initial path quicker in comparison to the GP. At the mean
time the GP finds an initial path to the goal, the GT with GP
has a path to the goal whose cost is 5.4% better. The final
cost for both algorithms, after running for 2500 seconds, is
very close, with only a 0.48% difference.
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Table 1: Mean with standard deviation Euclidean metric results summarizing the comparison of the Grandparent-Connection
and Focused-Refinement algorithms to the RRT*, RRT*-Smart, and RRT with path smoothing.

RRT* GP FR FR-GP RRT*-Smart Smoothing
25 | 17.65(0.83) | 14.78(0.55) | 17.65(0.83) | 14.78(0.55) | 17.65(0.83) | 15.13(0.65)
Initial Cost 50 | 18.08(1.01) | 15.99(1.02) | 18.08 (1.01) | 15.99(1.02) | 18.08(1.01) | 16.39 (0.98)
75 | 18.84(1.23) | 17.90(1.20) | 18.84(1.23) | 17.90(1.20) | 18.84(1.23) | 18.74(1.23)
25 0 -16.30 0 -16.30 0 -14.29
% Difference 50 0 -11.53 0 -11.53 0 -9.32
75 0 -4.98 0 -4.98 0 -0.53
25 | 13.77(7.39) | 12.98(6.62) | 13.77(7.39) | 16.20(9.31) 9.69 (6.07) 11.92 (5.23)
Initial Time 50 | 37.72(16.82) | 32.92(15.38) | 35.61 (16.53) | 32.87 (15.30) | 22.10 (11.32) | 34.00 (13.64)
75 | 139.3(47.4) | 115.7(554) | 140.2(47.4) | 119.4(57.1) | 137.2(46.7) | 81.19(30.72)
25 | 15.33(0.32) | 14.60(0.34) | 14.59(0.37) | 14.54(0.27) | 15.01(0.59) | 15.13(0.65)
Final Cost 50 | 15.93(0.50) | 15.45(0.78) | 15.15(0.64) | 14.98(0.64) | 15.80(0.72) | 16.39 (0.98)
75 | 16.85(0.90) | 16.60(1.05) | 16.67 (0.98) | 16.46(0.94) | 16.46(0.94) | 18.74 (1.23)
25 0 -4.79 -4.89 -5.21 -2.15 -1.33
% Difference 50 0 -2.98 -4.91 -5.95 -0.78 2.92
75 0 -1.52 -1.12 -2.31 -2.31 11.2

(d) Focuses Refinement

(e) RRT*-Smart

o

o 4 N W A O D N ® ©

o

2 3 4 5

(f) RRT with Path Smoothing

Fig. 3: Typical Dubins’ vehicle trees in the 25 obstacle environment found by the RRT*, Grandparent-Connection, Grand-
parent Connectio with Focused-Refinement, Focused-Refinement, RRT*-Smart, and RRT with path smoothing algorithms.
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Table 2. Mean with standard deviation Euclidean metric re-
sults the comparing the Goal Tree and RRT* Algorithms.

Time (s) Cost %
0.69 (0.76) | 7.23(0.90) | -13.5
- Goal Tree
Initial 2.02 (0.01) | 7.19(0.90) | -13.9
RRT* 2.02 (2.16) | 8.35(1.33) 0
) Goal Tree | 80.01 (0.01) | 6.37 (0.14) | -2.8
Final
RRT* 80.01 (0.01) | 6.55(0.22) 0

5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

(a) RRT* (b) Goal Tree
Fig. 4: Typical Dubins’ vehicle trees after replanning in the
26 obstacle environment using the RRT* and GT algorithms.

6.3 Seven Degree-of-Freedom Manipulator

A Motoman seven degree-of-freedom manipulator is
simulated using Movelt! in Robot Operating System (ROS).
The Goal Tree and RRT* algorithms are run in the Open Mo-
tion Planning Library (OMPL), using the default collision
checker. The RRT* finds the best path for the manipulator in
an obstacle free environment. Next, a box that is in conflict
with the manipulator’s path is introduced to the environment,
Fig. 5. The Goal Tree and RRT* algorithms are used to re-
plan and find a collsion-free path. The RRT* algorithm in the
obstacle free environment is run 10 times. For each of these
trees, the Goal Tree algorithm is run 10 times. Each 10 runs
of the Goal Tree algorithm is referred to as a set, therefore
there are 10 sets of 10 runs. Fig. 6 is a typical collision-free
path found by the Goal Tree algorithm. For comparison, the
RRT#* algorithm is run in the same environment 25 times.
The results of this setup are summarized in Table 6.

Table 6 compares the mean costs and initial iterations.
The table shows that the Goal Tree algorithm out performs
the RRT* in the quality of the initial path. While the mean
cost of the final path found by the Goal Tree algorithm is
better than the mean cost of the RRT* algorithm it is not sig-
nificantly less. The percent difference is calculated as the dif-
ference between the mean costs divided by the RRT* mean
cost. These percentages reiterate that the Goal Tree finds a
much better mean initial path compared to the RRT*. The
mean number of iterations to find an initial path is signifi-
cantly lower for the Goal Tree compared to the RRT*. This
is because the Goal Tree algorithm reuses part of the original
tree, therefore it already starts with nodes in the tree. At the
bottom of the table is the failure rate that was encountered

Fig. 5: The box is added to the environment so that it is in
conflict with the manipulator’s path.

Fig. 6: The Goal Tree algorithm successfully replans to find
a collision-free path.

during the simulations. The percentage is calculated as the
number of failures divided by the total number of attempted
runs for each algorithm. The Goal Tree algorithm is prob-
ably less likely to fail because it reuses part of the original
tree, therefore has a shorter path to determine.

7 Conclusion

The Goal Tree, Focused-Refinement, and Grandparent-
Connection are the three algorithms presented in this paper
to improve the performance of the asymptotically optimal
Rapidly-exploring Random Tree (RRT*). The GT and GP
algorithms are proven to maintain the asymptotic optimally
of the RRT*. The simulations for the Euclidean metric show
that our algorithms improve performance in the initial cost.
The Dubins’ vehicle simulations show the GP and FR algo-
rithms can lower the initial and final path cost significantly.
The GP algorithm simulations revealed that it is best to use
the initial path found due to the already low cost; continued
sampling only decreased the cost marginally. The GT algo-
rithm simulation, when run on the seven degree-of-freedom
manipulator, showed the most improvement in the initial path
cost and that the initial path was found more quickly.

Future work includes implementing the three algorithm
modifications on robots in more complex environments. An-
other research direction is using the Goal Tree algorithm with
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Tabie 3. Mean with standard deviation results summarizing the comparison of the Grandparent-Connection and Focused-
Refinement algorithms to the RRT*, RRT*-Smart, and RRT with path smoothing for Dubins’ Vehicle.

RRT* GP FR FR-GP RRT*-Smart Smoothing
o 25 | 342.1(39.1) 132.6 (7.8) 342.1 (39.1) 132.6 (7.8) 342.1 (39.1) 126.9 (3.0)
Initial Cost
50 | 365.6(45.4) 140.9 (51.5) 365.6 (45.4) 158.3(19.2) 365.6 (45.4) 131.6 (7.4)
) 25 0 -61.23 0 -61.27 0 -62.90
% Difference
50 0 -61.45 0 -56.71 0 -64.00
o ) 25 9.46 (9.02) 47.64 (44.17) 9.05 (8.71) 34.27 (17.51) | 14.63(15.93) | 18.73 (11.73)
Initial Time
50 | 34.70(19.79) | 130.5(102.4) | 44.63(26.37) | 116.2(44.1) | 38.82(21.21) | 187.6 (226.8)
) 25 | 300.1(61.1) 131.2(7.2) 260.0 (52.0) 128.7 (4.0) 134.4 (6.0) 126.9 (3.0)
Final Cost
50 | 349.4(32.2) 152.3(12.0) 280.9 (28.3) 149.9 (16.2) 151.9 (11.8) 131.6 (7.4)
25 0 -56.29 -13.36 -57.12 -55.72 -57.70
% Difference
50 0 -56.40 -19.59 -57.09 -56.53 -62.33

Table 4: Mean with standard deviation results summarizing
the comparison the Goal Tree and RRT* Algorithms for Du-

Table 6: Mean results summarizing the comparison between
the Goal Tree algorithm and RRT* algorithm for the seven

bins’ Vehicles in the 25 obstacle environment.

degree-of-freedom manipulator.

Time (s) Cost % o Goal Tree 8.83 (0.84)
Initial Cost
0.16 (0.03) | 260.8 (68.1) | 4.5 RRT* | 9.66 (1.95)
» Goal Tree
Initial 6.13(0.03) | 228.4(44.5) | -8.4 ) Goal Tree | 7.694 (0.65)
Final Cost
RRT* 6.10(5.15) | 249.6(478) | O RRT* | 7.78 (0.93)
) Goal Tree | 80.03 (0.03) | 209.8 (16.1) | -3.2 i Initial Cost -8.7%
Final % Cost Difference
RRT* 80.01 (0.01) | 216.8(21.8) | O Final Cost -1.1%
. . Goal Tree | 19.54 (17.66)
) o Initial Iterations
Table 5: Mean with standard deviation results summa- RRT* | 143.0 (151.2)
rizing the comparison of the Goal Tree and Grandparent-
Connection Algorithms for Dubins’ Vehicles in the 25 ob- % Failure Goal Tree -23.7%
stacle environment. RRT* -39.0%

Time (s) Cost %
4.97 (1.45) 106.9 (22.1) | 3.2
. GT-GP
Initial 241.5(0.3) 98.1(15.1) | -54
GP 240.6 (201.8) | 103.6 (17.1) 0
) GT-GP | 2500.6 (0.5) | 92.92 (5.36) | -0.48
Final
GP 2500.7 (0.6) | 93.36 (5.74) 0

multiple robots in the same environment. The GT could also
handle the removal of an obstacle, such as running the ex-
isting path through a path smoothing algorithm. Another re-
search direction is to extend the GT algorithm for partially
known moving obstacles. These dynamic obstacles would
introduce uncertainty into the problem that the motion plan-

ning tree would have to consider. One option is to handle the
dynamic obstacles using a reactive collision avoidance algo-
rithm and then fuse that information with the motion plan-
ning tree to determine how best to move.
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