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Three algorithms that improve the performance of

the asymptotically-optimal Rapidly-exploring Random Tree

(RRT*) are presented in this paper. First, we introduce the

Goal Tree (GT) algorithm for motion planning in dynamic

environments where unexpected obstacles appear sporadi-

cally. The GT reuses the previous RRT* by pruning the

affected area and then extending the tree by drawing sam-

ples from a shadow set. The shadow is the subset of the free

configuration space containing all configurations that have

geodesics ending at the goal and are in conflict with the new

obstacle. Smaller, well defined, sampling regions are con-

sidered for Euclidean metric spaces and Dubins’ vehicles.

Next, the Focused-Refinement (FR) algorithm, which sam-

ples with some probability around the first path found by an

RRT*, is defined. The third improvement is the Grandparent-

Connection (GP) algorithm, which attempts to connect an

added vertex directly to its grandparent vertex instead of par-

ent. The GT and GP algorithms are both proven to be asymp-

totically optimal. Finally, the three algorithms are simulated

and compared for a Euclidean metric robot, a Dubins’ vehi-

cle, and a seven degree-of-freedom manipulator.

1 Introduction

Sampling-based motion planning algorithms quickly

connect samples from the free configuration space in or-

der to find a collision-free path from an initial configura-

tion to a goal configuration. Improving the performance

of sampling-based algorithms, in convergence speed and its

adaptation to moving obstacles, is key in the development

of real-time motion planning algorithms. Motivated by this,

∗Address all correspondence to this author.

we present three different variants to the asymptotically opti-

mal Rapidly-exploring Random Tree (RRT*) algorithm and

evaluate their potential gains on several examples.

Rapidly-exploring Dense Tree algorithms (RDTs, also

known as RRTs) [1] and Sampling-Based Roadmaps (SBRs,

including Probabilistic Roadmaps (PRMs) [2]) are sampling-

based motion planners which are resolution or probabilisti-

cally complete, and find a feasible path to the goal without

the explicit modeling of the configuration space. As opposed

to SBRs, RDTs do not require pre-processing and can find

a path relatively quickly. The path produced by these plan-

ners can be very jagged, resulting in unnecessary motion that

increases the execution time. Consequently, this motivated

research into obtaining better paths from these planners.

One way to improve paths is to apply a post-processing

algorithm. In [3], one such algorithm limits the allowable de-

viation from the original path and results in a new path with

fewer nodes. A divide and conquer method is used in [4] to

shorten a given path by connecting the first and last nodes in

the path directly. If not successful, the path list is bisected

until the connection is successful. For a predetermined num-

ber of times, the post-processing algorithm in [5] randomly

selects two points from the path list and attempts to replace

the segment between them with a straight line.

A subsequent effort focuses on obtaining paths that

guarantee asymptotic optimality with probability one. At the

core of this line of work are the PRM* and RRT* [6]. The

RRT* can handle any-time applications [7] and manipula-

tors [8]. The Ball-tree algorithm, [9], improves the perfor-

mance of the RRT and RRT* by using volumes of free-space

instead of points as the vertices of the tree. The RRT# [10] is

another planner that returns an optimal path by maintaining a
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graph and a spanning subtree. The RRT# separates the explo-

ration and exploitation tasks so they can be run in parallel to

improve performance. The Fast Marching Tree (FMT*) [11],

performs a “lazy” dynamic programming recursion on sam-

ples from the configuration space to produce a tree of paths.

A key result from [11] is the algorithm convergence rate.

The following papers also study the effects of exploita-

tion versus exploration on the RRT*. Akgun et al. [12] uses

local biasing to choose the sampling point based upon the

current best path to the goal. The RRT*-Smart in [13] finds

an initial path to the goal, then it optimizes it using first a

smoothing technique, and then it further shapes it by bias-

ing sampling to balls around the nodes in the optimized path.

While these two papers share the same idea of exploitation

of a given path to the goal, the method focuses on a single

path only, which results, at most, in a locally-optimal path.

The idea of re-adapting motion plans when finding new

unexpected obstacles has been exploited significantly in the

literature. The discrete-time D*, and D* lite algorithms [14],

[15] re-adapt A* algorithms to find the optimal path in a

discretized space. However, these algorithms become in-

tractable as the dimensionality increases, while they have a

limited ability to handle differential constraints.

The sampling-based algorithms in [16], [17] [18], [19],

and [20] all extend the RRT algorithm to deal with dy-

namic environments. The Dynamic Rapidly-exploring Ran-

dom Tree (DRRT) [16] roots the tree at the goal and trims

branches in the tree that are obstructed by the new obstacle.

The trimming is done by removing nodes that are within a

region that contains the obstacle and whose edge is in con-

flict. The descendants of the affected nodes are also removed

so that only one tree is maintained. The remaining paths in

the tree still lead to the goal but are not optimal.

In [19], the Reconfigurable Random Forest (RRF) algo-

rithm maintains a forest of trees from previous plannings that

have been broken apart according to the new obstacle infor-

mation. The RRF attempts to connect the trees as in the RRT-

connect [21] making this framework good for multi-query

problems. The trees are trimmed by removing all nodes from

within a bounding box containing the obstacle that are deter-

mined to be in conflict with the new obstacle. The RRF also

prunes its trees to maintain a manageable number of nodes to

reduce searching time. The lazy reconfiguration forest (LRF)

is presented in [20], and uses the idea of maintaining multi-

ple RRT trees from the RRF but only checks for invalid edges

along the task path instead of checking the entire tree.

To rebuild a tree from the initial position, way points

from the previous tree are reused to increase the likelihood

of a successful connection in the execution extended RRT

(ERRT) [18]. The ERRT also uses an adaptive cost func-

tion that improves the generated paths. The multipartite RRT

(MP-RRT) [17] combines several of the above mentioned

planners and an opportunistic strategy for reusing informa-

tion during replanning in a dynamic environment. However,

none of these algorithms produce optimal paths. An asymp-

totically optimal replanning algorithm, RRT X , was devel-

oped by the authors of [22]. The RRT X maintains a graph and

a shortest path sub-tree rooted at the goal. When an obstacle

is added or removed only the effected edges are updated.

This manuscript builds on the authors’ two previous pa-

pers on motion planning, [23, 24]. The first paper, [23],

proposes the Goal Tree (GT) replanning algorithm to han-

dle unexpected obstacles. The second paper, [24], pro-

poses the Grandparent-Connection (GP) and the Focused-

Refinement (FR) algorithms. Compared with previous work,

this manuscript revisits the algorithms and presents an anal-

ysis of them with complete proofs and additional extended

simulations. The results are shown to move us closer to

real-time motion planning by finding near optimal paths in

a shorter amount of time compared to the RRT*. The GT

algorithm is (to the best of the authors’ knowledge) one of

only two sampling-based asymptotically optimal replanners.

In particular, we present a simplified version of this al-

gorithm with respect to the version in [23] to rebuild the

original tree instead building a second tree and connecting

the two. We prove that the asymptotic optimality, node po-

sition, and probabilistic completeness results for the RRT*

are maintained when using the GP modification. The GP is

also proven to recover the optimal path to the goal in the

visible set, all configuration that have geodesics to the goal

that are not in conflict with any obstacle. This paper also in-

troduces the approximation of the shadow as the collection

of nodes that were removed from the tree. This approxima-

tion is used as the sample set for rebuilding the tree during

the GT algorithm. The simulations have been expanded to

include a seven degree-of-freedom manipulator and include

results that combine the GT and GP algorithms.

The Goal Tree (GT) algorithm reuses information from

a RRT* rooted at the goal configuration, TG, to reduce the

replanning time in the presence of a new obstacle. When a

previously unknown obstacle obstructs the best path, TG is

trimmed to reflect this information. The tree is then incre-

mentally extended in the affected region of the configuration

space. In this setting, we identify a new sampling region,

strictly contained in the configuration space, such that, when

used with the GT algorithm, guarantees the recovery of an

asymptotically optimal path. First, a region is proven to ex-

ist, then a characterization is provided for a general robot in

a d dimensional environment. By exploiting the known path

types of vehicles with no differential constraints in a d di-

mensional configuration space and a Dubins’ vehicle, alter-

native characterizations of the new planning region are given.

The Focused-Refinement (FR) algorithm is a modifica-

tion of RRT* that reduces the computation time needed to

obtain a low-cost path to the goal. This is done by explor-

ing the environment quickly until a set of paths to the goal

is found. Then, the algorithm focuses on lowering the cost

of this set of paths while periodically exploring the environ-

ment. In this way, the algorithm quickly returns an asymp-

totically optimal path within the regions that are more in-

tensively exploited. We present a novel way of uniformly

sampling randomly within these regions that, with the right

parameters, can recover the entire configuration space.

The Grandparent-Connection (GP) is a modification to

the RRT* algorithm that attempts to connect the added vertex

to its grandparent instead of its parent vertex. This essentially
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straightens the computed paths and lowers the cost.

Simulations for all three algorithms and the combination

of GP with GT are given in Euclidean space, for a Dubins’

vehicle, and a seven degree-of-freedom manipulator. A Du-

bins’ vehicle running the GT algorithm is shown to improve

replanning performance compared to rerunning the RRT*.

The GP and FR are shown to find better cost paths more

quickly than the RRT*.

This paper is organized as follows. The RRT* algorithm

is reviewed in Section 2. Sections 3 and 4 detail the proposed

algorithms and Section 5 analyzes the optimality of the Goal

Tree and GP algorithms. Simulations test the algorithms in

Section 6. Section 7 concludes the paper.

2 The Rapidly-exploring Random Tree Star Algorithm

This section briefly describes the RRT* algorithm by

Karaman and Frazzoli which is theoretically analyzed in [6].

The kinodynamic RRT* is presented in [25].

The RRT*, outlined in Algorithm 1, builds a tree, T ,

which is dense with probability one in the entire configura-

tion space, X , as the number of samples, n, goes to infin-

ity. Denote by Xfree the free configuration space in X and

Xobs as the obstacles space. The tree is composed of a set

of vertices, v ∈ T .V , and edges, e ∈ T .E . Each edge is

an ordered pair of vertices e1,2 = (v1,v2), where v1 is the

parent and v2 is the child. We use Cost as the notation for

the cost function being minimized. Each edge added to T

has a cost,denoted cedge(e), where e ∈ T .E . In the original

work by [6], the edge cost considered is the cost-to-go,the

cost of moving from the parent v1 to the child v2. Then,

the cost of a vertex, Cost(v), is the sum of the costs of the

edges connecting the root to v. The paths in T are asymp-

totically optimal, as n→ ∞ the optimal path from the initial

configuration, xI ∈ Xfree, to any other configuration in Xfree is

recovered. The functions involved in the RRT* process are

described as follows. With some abuse of notation, we will

define a robot configuration as xv instead of v.

After initializing T at xI , the RRT* begins by using the

Sample function to output xrand, a uniformly sampled ran-

dom configuration from Xfree. The Nearest function finds the

nearest vertex, xnearest ∈T , and extends T a distance ε from

xnearest to get xnew.

Next, the set of near vertices from T with respect to

xnew are output as the set Xnear from the function Near.

Vertices that are farther than r = min(ε,γ(log(nv)/nv)
(1/d)),

where nv is the number of vertices in T , d is the dimension

of the configuration space, and γ is an independent param-

eter, are omitted from Xnear. The best parent for xnew, de-

termined in FindBestParent, is the vertex in Xnear that has a

collision-free path with the lowest Cost(xnew), outlined in

Algorithm 2. The paths that connect the vertices to each

other (determined using Steer), satisfy the system dynam-

ics. Only collision-free edges are added to T . The collision

checker, CollisionCheck, returns true if the edge is collision-

free. If xnew is added to T , then Rewire, outlined in Algo-

rithm 3, attempts to add the other vertices in Xnear as children

of xnew based upon a lower cost and collision-free edge.

Algorithm 1 T = (V,E)← RRT∗(xI ,ε)

T ← InitializeTree();
T ← InsertNode( /0,xI ,T );
for i = 1 to i = N do

xrand← Sample(i);
xnew← Nearest(T ,xrand,ε);
Xnear← Near(T ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

T ← InsertNode((xparent,xnew),xnew,T );
T ← Rewire(T ,Xnear,xnew);

end if

end for

return T

Algorithm 2 xparent← FindBestParent(Xnear,xnew)

xparent← /0;

cmin← ∞;

for xnear ∈ Xnear do

enear,new← Steer(xnear,xnew);
cnear← Cost(xnear)+ cedge(enear,new);
if cnear < cmin and CollisionFree(enear,new) then

xparent← xnear;

cmin← cnear;

end if

end for

return xparent;

Algorithm 3 T ← Rewire(T ,Xnear,xnew)

for (xnear) ∈ Xnear do

enear,new = Steer(xnew,xnear);
if Cost(xnew)+ cedge(enear,new)< Cost(xnear) then

if CollisionFree(enear,new) then

xoldparent← Parent(T ,xnear);
T .remove((xoldparent,xnear));
T .add((xnew,xnear));

end if

end if

end for

return T ;

3 The Goal Tree Algorithm

In this section, the Goal Tree (GT) algorithm is de-

scribed in detail. The GT is a method for replanning when

unexpected or moving obstacles obstruct the execution of the

path determined by the RRT*. The RRT* produces paths that

are asymptotically optimal from the initial configuration to

any other point in the configuration space. By a slight mod-

ification to the RRT* algorithm, one can produce a tree, TG,

rooted at the goal configuration, xG, such that the asymp-

totically optimal path from any point in Xfree to xG can be

recovered. To do this, the cost associated with each edge

e1,2 = (v1,v2) in the RRT* tree becomes the cost-to-come;

i.e. the cost of traveling from the child v2 to the parent v1.
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Once the new obstacle, O , has been discovered, the GT

trims TG and then it is extended in some subset R ⊆ X \O .

To trim TG, the edges are checked for conflict with O and re-

moved usingPropagateCost. Instead of checking every edge

in TG we can define a subregion that contains all possible

vertices whose trajectories are in conflict with O . We want

to define the region as all points within some Euclidean dis-

tance from a point in O . Denote the center point of O as xc,

and the maximum Euclidean distance from xc to the bound-

ary of O as rmax. A graph search is done over TG to deter-

mine the maximum edge cost, rcost = maxe∈T .E{cedge(e)}.
Since cedge(e1,2) ≥ ‖x1− x2‖, the set of vertices whose tra-

jectories are in conflict with O is contained in

Vconflict = {v ∈ TG.V | ‖xc,xv‖ ≤ rmax + rcost}.

All trajectories of the vertices in Vconflict are checked for con-

flict with O . All vertices found in conflict with O , and their

descendants, are trimmed from TG.

4 The Focused-Refinement and Grandparent-

Connection Modifications

The following section describes the two extensions to

the RRT* in detail. The first is the Focused-Refinement

(FR) modification that attempts to recover a near optimal

path much quicker than the RRT*. The second extension,

the Grandparent-Connection (GP), is aimed at reducing the

number of nodes in the path to the goal and reducing the

computation time needed to discover a near optimal path.

4.1 The Focused-Refinement algorithm

As shown in [6], the RRT* initially constructs a tree

that is the same as the RRT and then, as more nodes are

added, the RRT* begins to look at many neighboring ver-

tices to recover an asymptotically optimal path. The RRT*

finds and refines all paths in the configuration space. The

refinement extension, Focused-Refinement (FR), focuses on

refining only those paths that have already reached the goal

region in hopes of reducing the amount of time needed to

find a sufficiently optimal path.

The FR begins the construction of a tree using the RRT*

algorithm until there exists at least one path that reaches the

goal region. This set of paths is denoted as Π, with p ver-

tices defining a set VΠ. The FR has two options: exploring

the configuration space or exploiting Π to lower its cost. If

exploring, the algorithm proceeds as the RRT*, but if exploit-

ing, the set of vertices in Π, VΠ, is determined. The sample

xnew is determined by perturbing a vertex randomly drawn

from the set VΠ. The FR then proceeds as the RRT*.

The pseudo code for the FR is presented in Algorithm 4,

and uses three parameters. The first is Cexploit ∈ N, the num-

ber of consecutive iterations the FR will exploit Π. The num-

ber of consecutive iterations to explore Xfree is the second pa-

rameter needed, Cexplore ∈N. The third parameter, Creset ∈N,

tells the algorithm when to update VΠ. The sampling re-

gion defined by VΠ does not change dramatically every it-

eration, therefore, to save computation time, the set VΠ is

only updated every Creset +Cexplore iterations. If Cexploit = 0

and Cexplore = ∞, the FR becomes the RRT*. The parameters

are chosen by the user to best reflect their desired ratio of

exploration versus exploitation. It is recommended to keep

the numbers small relative to the total number of samples to

allow for swapping between the explore and exploit natures

of the FR algorithm. In order to take advantage of the ex-

ploitation property of the FR, Cexploit should be greater than

Cexplore. In environments with multiple routes to the goal,

Cexplore can be increased in hopes of finding a better route

than what was initially found.

Exploitation only occurs if GoalReach returns true

(there exists at least one path to XG) and exploitation has oc-

curred less than Cexploit consecutive times. Once Π has been

exploited Cexploit iterations, the RRT* is allowed to explore

the space for Cexplore iterations. The following are the details

on choosing xnew during the exploitation stage of the FR.

The new sample, xnew, is determined as illustrated in

Fig. 1 and in Algorithm 5. Given a d-dimensional config-

uration space, X ⊂ Rd , consider k ∈ {1,2, · · · ,d}. First,

the minimum and maximum k-component from VΠ ∈ Rd×p,

wmin = minV k
Π and wmax = maxV k

Π, are found. Here, V k
Π

is the set of all k-components of the vertices in VΠ. Next,

the k-component of xnew (xk
new) is taken as a uniformly

random sample between wmin − ε and wmax + ε , ε > 0.

For every j 6= k, the j-component of the vertex whose k-

component is nearest to xk
new is determined, x

j
nearest, xnearest =

argminx∈VΠ
‖xk

new− xk‖. The j-component of xnew is uni-

formly sampled between x
j
nearest− ε and x

j
nearest + ε . The FR

alternates which k-component is used to determine xnew, this

provides a uniform distribution of samples around Π. As ε
is increased, the entire configuration space is uniformly sam-

pled randomly, thus recovering the original RRT*.

Note that VΠ can consist of multiple distinct paths to

the goal. Determining distinct paths is non-trivial and poten-

tially time-consuming. In general, and in the simulation sec-

tion, VΠ is only the current best path. Efficiently determining

distinct paths is a subject of future work. Because the FR

restricts exploration of the free configuration space, it is not

for use in conjunction with the GT replanning algorithm.

4.2 The Grandparent-Connection modification

The GP was inspired by reducing the number of nodes

in, and cost of, a given path. Before adding a node to the

tree, the modified algorithm attempts to connect directly to

its grandparent node, as outlined in Algorithm 6. A suc-

cessful connection to the grandparent occurs when a lower

cost, collision-free path is found. It is also predicted that the

Grandparent Connection will produce smoother paths with

fewer nodes. Because the Grandparent-Connection is ap-

plied during construction of the tree as every node is added to

the tree, the grandparent connection smooths out every path

in the tree. The GP gains the advantage over smoothing a

single path when paired with the GT or similar replanning

algorithms. The grandparent connection can also be used in

combination with the FR algorithm.
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ε

ε ε

x
k

x
j
new

x
k

new

xnearest

wmin wmax

x
j

Fig. 1: An illustrative example on choosing xnew when refin-

ing a single path. The red rectangle is an obstacle in the en-

vironment. The blue dots are the the set of vertices, VΠ, used

to determine the region from which xnew is sampled. The k-

component of xnew is a uniform random sample between the

maximum and minimum (plus and minus ε , respectively) k-

component values from VΠ. Next, with respect to xk
new, de-

termine the nearest k-component from VΠ and label its cor-

responding j-component as x
j
nearest. Finally, the x

j
new is a ran-

dom value from between x
j
nearest− ε and x

j
nearest + ε , ε > 0.

Sample xnew is represented as the green dot.

Algorithm 4 T = (V,E)←
FR(xi,ε,d,Cexploit,Cexplore,Creset)

T ← InitializeTree();
T ← InsertNode( /0,xi,T );
creset = 1; cexploit = 1; cexplore = 1; k = 1;

for i = 1 to i = N do

if GoalReach and cexploit <Cexploit then

if creset = 1; then

VΠ = PathSet(T );
end if

(creset,cexploit)←UpdateParameters(creset,cexploit,Creset);
xnew = NewPointPathSet(VΠ,ε,k,d);
k← UpdateDimension(d);

else

(cexplore,cexploit)←UpdateParameters(cexplore,cexploit,Cexplore);
xrand← Sample(i);
xnew← Nearest(T ,xrand,ε);

end if

Xnear← Near(T ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

T ← InsertNode((xparent,xnew),xnew,T );
T ← Rewire(T ,Xnear,xnew);

end if

end for

return T

5 Analysis

In this section, we analyze the optimality of the GT and

GP algorithms.

Algorithm 5 xnew← NewPointPathSet(V,ε,k,d)

wmin = min(V k);
wmax = max(V k);
xk

new = Rand(wmin− ε,wmax + ε);
xnearest = NearestComponent(V,xk

new);
for j = 1 to j = d; do

if j 6= k then

vmin = x
j
nearest− ε;

vmax = x
j
nearest + ε;

x
j
new = Rand(vmin,vmax);

end if

end for

Algorithm 6 xparent← FindBestParent(Xnear,xnew)

xparent← /0;

cmin← ∞;

for xnear ∈ Xnear do

enear,new← Steer(xnear,xnew);
cnear← Cost(xnear)+ cedge(enear,new);
if cnear < cmin and CollisionFree(enear,new) then

xparent← xnear;

cmin← cnear;

end if

if xparent 6= /0 then

xgrandparent←T .parent(xparent);
egrandparent,new← Steer(xgrandparent,xnew);
cgrandparent ← Cost(xgrandparent) +
cedge(egrandparent,new);
if cgrandparent < cmin and CollisionFree(egrandparent,new)
then

xparent← xgrandparent;

cmin← cgrandparent;

end if

end if

end for

return xparent;

5.1 Optimality of Goal Tree

Reducing the sampling region for rebuilding TG can

lead to faster cost rate-of-change but can also prevent global

asymptotic optimality. We prove that there exist a generic

restricted region of the space which when used to extend TG

guarantees convergence to a globally optimal path. Then we

aim to characterize these regions for common cases.

Theorem 1. Let X = [0,1]d be a d-dimensional C-space,

d ∈N and d ≥ 2. Let Xobs be the C-obstacles space. Assume

O is newly found obstacle information, i.e. O 6⊂ Xobs, and

there exists a ball, B(xG,r) ⊂ (Xobs ∪O)c, r > 0. Suppose

the feasible dynamic paths of vehicles in a free environment

are at least C 3. Then, there exists a generic R ( X such that

if TG is originally built in X using the RRT* with informa-

tion Xobs, then trimmed using O , and finally extended in R

using the RRT* with information Xobs ∪O , then an optimal

path, π : xI→ xG, can be asymptotically recovered by the GT
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algorithm as n→ ∞.

Proof. The ball B(xG,r) is an obstacle free environment

where the restricted optimal solution is a sufficiently smooth

curve. A generic property of smooth curves is that they have

a finite number of inflection points and vertices; see [26] fo-

cusing on planar curves, but from which results are valid for

curves in any dimensions. Thus, there exists a final piece of

the optimal path, say σ , to xG which is convex or concave and

does not contain any vertex or inflection point in it. Using σ ,

there exists a smaller radius r′ < r such that B(xG,r
′)∩σ re-

duces to a single intersection point. The optimal path π from

xI′ to xG must go through the ∂B(xG,r
′) at this point. Then,

taking R = X \B(xG,r
′) will yield π asymptotically. �

In d dimensional environments, a rebuilding region

guaranteed to recovery an asymptotically optimal trajectory

can be found as follows. Consider the goal and new initial

configurations, xGand xI′ , and a new obstacle O such that

xI′ ,xG /∈ O . For simplicity, assume that O ∩Xobs =∅.

First, a region in the environment is defined and then,

using this region for sampling, the GT is proven to recover a

geodesic from xI′ to xG. Due to the obstacles in the environ-

ment, any configuration in Xfree could have more than one

geodesic to xG. Note that in the following, the distinction

is made between position and configuration. Position is the

(p1, p2, ...) position in the environment, while configuration

can also include orientations or velocities.

Definition 1. Shadow Set: The shadow of xG on O , SO , is

the envelope or hull, as defined by position rather than con-

figuration, formed by the geodesics from all configurations

in Xfree going to xG that are in conflict with O .

Note that xI′ ∈SO must be true, otherwise, there is no need

for replanning. Also note that SO is a set of positions and

not configurations. In this way each position could have an

infinite number of possible configurations associated with it.

Definition 2. Outgoing Configuration: Let S ⊂ X be a set

such that xI′ ∈ S and whose boundary is denoted as ∂S. Then,

an outgoing configuration on ∂S is defined as a configuration

whose position is in ∂S and whose orientation or velocity

will force the vehicle to leave S.

Lemma 1. All outgoing configurations on ∂SO have

geodesics to xG that are not in conflict with O .

Proof. Let x be an outgoing configuration on ∂SO . Con-

sider a geodesic from x to xG which is in conflict with O ,

then by the definition of an outgoing configuration on ∂SO ,

any motion from x forces the vehicle position strictly outside

∂SO . However, this is in contradiction with the definition

of SO , which contains all positions obtained from geodesics

to xG that are in conflict with O . Therefore, there must only

exist geodesics from x to xG that are not in conflict with O .�

The main result, Theorem 2, states that using the shadow

of xG on O as the new sampling region will allow the Goal

Tree to asymptotically recover an optimal path from xI′ to

xG. Due to the tree structure used by the GT, only one of the

geodesics from xI′ to xG will be recovered.

Theorem 2. Let SO be as in Definition 1. If the Goal Tree

algorithm uses SO as the new sampling region to rebuild

TG, then it will converge to a globally optimal path as n→∞.

Proof. Let π be an optimal path from xI′ to xG. If π lies

entirely in SO , then, it will be recovered by sampling in SO .

Otherwise, π must cross ∂SO at an outgoing configuration.

Let x1 be the outgoing configuration in π that first crosses

∂SO . Then the subpath of π , from xI′ to x1, lies entirely in

SO and can be recovered by sampling in SO . By Lemma 1,

a geodesic from x1 to xG is in TG. Thus, the GT algorithm

can recover a geodesic from xI′ to xG by sampling in SO . �

By exploiting what is known about geodesics in the Eu-

clidean metric, we can provide an alternative characteriza-

tion of a feasible sampling region for use in the GT by a

robot with no differential constraints.

Theorem 3. Let X be a d-dimensional C-space such that

d ∈ N and d ≥ 2. Let the initial obstacle space be Xobs and

let O 6⊂ Xobs be new obstacle information. For simplicity,

assume that O ∩Xobs =∅. If

1. X is the Euclidean metric space,

2. O ⊂ R⊂ X,

3. R is convex, and

4. xI′ ∈ R

then the GT algorithm will converge to a globally optimal

path, π , as n→ ∞ by employing TG with the previous Xobs

and trimming TG using the O information and then extend-

ing TG in R.

Proof. In Euclidean space, an optimal path, π , is composed

of straight lines and segments that follow the boundary of the

obstacles. In particular, an optimal path from xI′ to any point

on ∂R, with respect to the new obstacle information, is a con-

catenation of path segments included among the following:

1. collision-free straight line paths from xI′ to a point on

the boundary of O; i.e., a visible point on ∂O from xI′ .

2. any path along the boundary of O and the boundary of

the convex hull of O , and

3. collision-free straight line paths from ∂O to the visible

boundary of R.

The convexity of R implies that all straight lines that begin

and end in R are entirely contained in R. Any path that fol-

lows ∂O is entirely in R because O ⊂ R. A globally optimal

path from xI′ to xG will have to cross ∂R if xG /∈ R. Let the

boundary point at this crossing be xB. By the above discus-

sion, the subpath from xI′ to xB can be recovered asymptot-

ically by means of sampling in R with the new obstacle in-

formation. Consider the optimal subpath from xB to xG with

respect to the old obstacle information Xobs. By the same

considerations as above, this optimal subpath is made of a

concatenation of segments from the list above but with re-

spect to Xobs. Thus, it can be asymptotically recovered by

means of TG with information in Xobs. �

Note that, if O ∩Xobs 6=∅, then R would have to be a convex

region containing the connected component of O ∪Xobs that
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contains O . This connected set would then be used in the

above proof in place of O .

The region characterization from Definition 1 can be

used to approximately determine where to sample from the

geodesics obtained from the initial tree for planning prob-

lems. However, and as for the Euclidean case, alternative

regions can be used if the particular dynamics are amenable

to direct analysis. The following leads to a characterization

of a new sampling region, R, for use in rebuilding TG during

replanning with the Dubins’ vehicle. The Dubins’ vehicle

has three states, x- and y-position and orientation θ . The

dynamics for the Dubins’ vehicle are

ẋ(t) = vcos(θ )

ẏ(t) = vsin(θ )

θ̇ (t) = u, |u| ≤
v

ρ
,

where v is the speed of the vehicle and ρ is the minimum

turning radius. It is assume that both v and ρ are constant.

The optimal trajectory between two configurations for these

dynamics are discussed in [27]. The locally optimal trajec-

tory defined by the above dynamics is one of six paths, RSL,

LSR, RSR, LSL, RLR, and LRL, where L means left, R

means right, and S means straight. Geodesics with respect

to Euclidean length are characterized as concatenations of

circular arcs and straight lines. The minimum turning radius

for the Dubins’ vehicle is denoted as ρ .

The following lemmas are useful in obtaining the main

Dubins’ vehicle result of this subsection.

Lemma 2. Given a circular arc that begins at x1 and ends

at x2, that has an angle strictly less than π radians, let xc be

the point where the tangent lines of the arc at x1 and x2 cross.

Then, the outer approximation is defined as the union of the

line from x1 to xc with the line from xc to x2. Then, the length

of the outer approximation of a given circular arc is greater

than or equal to the arc length.

Lemma 3. Given a circular arc that begins at x1 and ends

at x2, define the inner approximation as the straight line con-

necting x1 to x2. Then, the length of the inner approximation

of a given circular arc is less than or equal to the arc length.

The proof of Lemma 2 and 3 follows directly from basic ge-

ometric considerations employing the triangular inequality

and the convexity of circular arcs. It can be seen that the

result can be extended to any convex curve and any inner

approximation defined using points on the curve and joining

them through lines in a similar way.

Now, using O , a region that contains at least one valid

path around O is defined.

Definition 3. RO Region: Define the region RO as the

smallest convex set that contains the union of O with circles

of radius 2ρ centered at each corner of O .

Now, RO is extended to contain feasible paths from xI′ to the

previous region RO .

Obstacle

Fig. 2: The sampling region for a Dubins’ vehicle as de-

scribed in Definition 4.

Definition 4. R Region: Define the region R, as the small-

est convex region that contains RO and B(xI′ ,2ρ).

Fig. 2 pictorially explains the Dubins’ vehicle sampling re-

gion from Definition 4. The first Dubins’ vehicle result of

this subsection states the existence of valid trajectories in R.

Lemma 4. The region R, as in Definition 4, contains at

least one feasible Dubins’ vehicle trajectory from xI′ to any

outgoing configuration on ∂R.

Proof. First, it is shown that the Dubins’ vehicle dynam-

ics can be satisfied while traveling from xI′ to any point on

∂B(xI′ ,2ρ). To do this, note that the Dubins’ vehicle can

leave xI′ and travel on a curve of radius ρ for π radians that

places the vehicle on the boundary of R. This will put the Du-

bins’ vehicle 2ρ way from xI′ and the vehicle can now travel

along ∂B(xI′ ,2ρ). From ∂B(xI′ ,2ρ), the Dubins’ vehicle can

travel to RO along the tangent line forming the boundary of

the convex hull between RO and B(xI′ ,2ρ). The Dubins’

vehicle is now on ∂RO , the circles centered at the corners

with radius 2ρ allow it to stay on ∂RO traveling completely

around the obstacle. Given that ∂R is 2ρ from ∂O , implies

that the vehicle can do a circular maneuver from some point

on ∂R to get to a specific outgoing configuration on ∂R.

Thus, R will contain at least one trajectory, not necessarily

optimal, from xI′ to any outgoing configuration on ∂R. �

The second result is that, the optimal path, from a con-

figuration inside R to an arbitrary outgoing configuration on

∂R, will be entirely inside R.

Lemma 5. Let σ be a feasible path for a Dubins’ vehicle

that starts at xI′ and ends at an outgoing configuration xend ∈
∂R. If σ leaves and returns to R, then there exists another

path, π , from xI′ to xend, that is entirely in R and that has a

lower path length than σ .

Proof. Define Bρ to be a ball

1. of radius ρ
2. that is tangent to both ∂R and σ
3. that is contained in R, Bρ ⊆ R.

Every time σ crosses ∂R, two such balls can be created. Take

Bρ1 to be the Bρ that is tangent to σ before leaving R and

that is closest to where σ crosses back into R. Let x1 be the

configuration in σ that is tangent to Bρ1. Now, take Bρ2 to

be the Bρ that is tangent to σ after returning to R and that
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is closest to where σ crossed outside of R. Let x2 be the

configuration in σ that is tangent to Bρ2.

Break σ into three subpaths: σI′1 from xI′ to x1, σ12

from x1 to x2, and σ2end from x2 to xend. Now, construct π as

follows. Let πI′1 = σI′1 and π2end = σ2end. The subpath π12

is taken to be the path from x1 that travels along ∂Bρ1 until

it reaches ∂R, concatenated with the path that travels along

∂R until it reaches ∂Bρ2, and concatenated with the path that

travels along ∂Bρ2 until it reaches x2.

Now, π has been constructed to be a path, from xI′ to

xend, that is entirely inside R. To prove that π has a shorter

path length than σ , outer approximate every arc in π12, πo
12,

and inner approximate every arc in σ12, σ i
12. This leaves us

with two paths that start at x1 and end at x2 and that are only

composed of straight lines. By construction, πo
12 is convex

(because R and the outer approximation are convex). From

the triangle inequality and the convexity of πo
12, the length of

σ i
12 cannot be longer than the length of πo

12. Which means the

length of π12 must be less than the length of σ12. Combining

this with the fact that the length of πI′1 is equal to the length

of σI′1 and the length of π2end is equal to the length of σ2end,

the length of π is less than the length of σ . Therefore, any

feasible Dubins’ vehicle path that leaves and returns to R can

be shortened to a path that is entirely inside R. �

The main Dubins’ vehicle result of this subsection says

that R is a sampling region that allows the GT to recover the

optimal path. This is stated more precisely in Theorem 4.

Theorem 4. Consider a Dubins’ vehicle at xI′ for which

minimum-length paths are to be found to xG. Assume that

the new obstacle, O , is a convex polygon and does not in-

tersect any other obstacles. Let R be as in Definition 4 and

assume xG /∈ R. If the Goal Tree algorithm uses R as the

new sampling region to rebuild TG, then it will converge to

a globally optimal path as n→ ∞.

Proof. By Lemma 4, there exists a path in R from xI′ to any

xend, an outgoing configuration on ∂R. Then, by Lemma 5,

if the optimal path π∗ to any xend leaves and returns to R, a

shorter path can be found, which contradicts the optimality

of π∗. Therefore π∗ must be entirely in R and can be found

by sampling in R. Let xB be the outgoing configuration on

∂R where the optimal path from xI′ to xG crosses outside of

R. From the above, the path from xI′ to xB can be recovered

asymptotically by sampling in R with the information from

O . Now consider the path from xB to xG, this path is outside

of R and can be asymptotically constructed by sampling out-

side of R with respect to Xobs. Thus, the optimal path from

xB to xG can be recovered asymptotically from TG. �

5.2 Analysis of Grandparent-Connection

The same probabilistic completeness and asymptotic op-

timality results for the RRT* algorithm in [6], also hold true

for the GP algorithm. Theorem 5 is a restatement of Theo-

rems 23 and 38 from [6] but for the GP algorithm.

Proposition 1. If the RRT* and GP algorithms solve the

same path planning problem, using the same parameters,

then the vertex sets of both graphs are equal, V RRT*
n = V GP

n ,

∀ n ∈ N.

Proof. Proof by induction. When n = 1, no Grandparent-

Connection is possible, therefore, both the vertex and edge

sets are identical. When n= 2, even though in the last step of

the iteration the added vertex may connect to its grandparent

the vertex is still added to the tree, making both vertex sets

identical but the edges set different. When n = 3, because

the vertex sets are the same, the vertex to be added, xnew, is

the same for both algorithms, so is the set Xnear. Then, if an

edge exists between xnew and an x ∈ Xnear in one algorithm

it also exists in the other. Therefore, even if the parents are

different xnew will be added to both trees, maintaining the

identical vertex sets. �

Theorem 5. The GP algorithm is probabilistically com-

plete. Furthermore, for any robustly feasible path plan-

ning problem (Xfree,xi,Xgoal), there exist constants a > 0 and

n0 ∈ N, both dependent only on Xfree and Xgoal, such that,

P({V GP
n ∩Xgoal 6= /0})> 1− e−an ∀ n > n0.

Also, if γ > (2(1+ 1
d
)

1
d ( µ(Xfree)

ζd
)

1
d , then the GP algorithm is

asymptotically optimal.

Proof. First, from Prop. 1, we have V RRT*
n = V GP

n . Then,

by construction, the GP builds a connected graph. There-

fore, the probabilistic completeness of the GP follows from

the probabilistic completeness of the RRT*. Finally, the

asymptotic optimality result comes from costRRT*
n (xi,x) ≥

costGP
n (xi,x) for all x ∈ (V RRT*

n =V GP
n ). �

Lemma 6. When Xfree is convex, the GP recovers the opti-

mal path from xi to Xgoal. Furthermore, define the visibility

set of xi as the subset of Xfree such that ∀ x ∈ Vis(xi) there

exists a collision-free geodesic from xi to x. Then, the GP

algorithm will recover the optimal paths in Vis(xi).

Proof. By construction, with a convex Xfree, every vertex in

the graph has xi as its parent. Then, extending to other metric

spaces, any node in the visibility set has xi as its parent. �

6 Simulations

There are three different robot types simulated in this

section: Euclidean metric, Dubins’ vehicle, and a seven

degree-of-freedom manipulator. The Euclidean metric and

Dubins’ vehicle simulations were run on a MacBook Pro

with a 2.6GHz Intel Core i7 processor and 8 GB of mem-

ory. The manipulator simulation was run on a HP Z640 with

2.20 GHz Intel Xeon processor and 32 GB of memory. The

metrics used for the comparison are the average time it takes

for an algorithm to first return a path (Initial Time), and the

cost of that initial path (Initial Cost). The percent difference

compares the algorithms to the RRT* as a benchmark. All

the algorithms in a specific simulation are run for the same

amount of time, the cost of the best path returned by the al-

gorithm at that time is labeled the Final Cost. There are two
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different types of environments: static and dynamic. In the

static environments, the obstacles are completely known to

the robot. The FR, GP, and FR-GP algorithms were devel-

oped for use in static environments. In a dynamic environ-

ment the obstacles are changing in a manner that is not com-

pletely known to the robot. In these simulations an obstacle

will appear in the robot’s path that was not previously known

to the robot. The GT algorithm was developed for dynamic

environments. While the nature of the FR algorithm does not

make it suitable for dynamic environments, the GP algorithm

integrates easily with the GT algorithm. The Goal Tree sim-

ulations find an approximation of the shadow for use as their

sampling set when replanning. The shadow approximation,

S̃ , is a collection of all the vertices removed from the origi-

nal tree as a consequence of O . The S̃ can be made denser

by adding samples via the primitive NewPointPathSet.

6.1 Euclidean Metric

This set of simulation results is for a point robot with

no dynamics and Euclidean Metric edge cost. A collision

checker that checks for the intersection between a line and a

polygon is used. There are three environments, 25, 50, or 75

obstacles, which were chosen to compare how the different

algorithms do with various obstacle densities. The results are

an average of 25 simulations.

First, the Grandparent-Connection and Focused-

Refinement are compared to the RRT*, RRT*-Smart, and

RRT with path smoothing, Table 1. The algorithms were

run for 100 seconds in the 25 obstacle environment, 120

seconds in the 50 obstacle environment, and 450 seconds in

the 75 obstacle environment. The mean initial cost of each

algorithm is compared to the RRT*’s mean initial cost to

obtain the percent difference. A negative percent difference

indicates that the cost is less than the RRT*’s cost. As

expected the GP algorithms find the lowest cost initial path,

without incurring much of a time increase. While the GP

algorithms’ initial path cost is about the same as the path

found by an RRT with a post-processing path smoothing

technique, the cost difference in the final path is much

larger. The GP and FR algorithms have lower final path

costs than the RRT*. It is also of interest to take note of

how the increase in obstacles affects the performance on the

various algorithms. The 75 obstacle environment while not

increasing the best cost found much, does increase the cost

to find that path. Specifically, note the initial cost for the GP

algorithm with 25 obstacles is 14.78 while the initial cost

with 75 obstacles is 17.90, only an increase of 3.12. But, the

difference in time it take to reach those costs increases by

102.7 seconds. Also, note the increase in standard deviation.

These trends can be seen across all the algorithms.

Table 2 compares replanning in the 50 obstacle environ-

ment using the GT with the RRT* algorithms. The replan-

ning region R is a box that is just large enough to contain the

new obstacle and current robot position. The Goal Tree’s ini-

tial path cost and its path cost at the mean time the RRT* first

finds a path are compared to the initial path cost of the RRT*.

The GT algorithm out performs the RRT* in initial path cost

by 13%. The cost of the final path found, after 80 seconds,

by each algorithm is much closer, only a 2.7% difference.

6.2 Dubins’ Vehicle

The simulations results in this section are for a Dubins’

vehicle in the 25 and 50 obstacle environment. The cost min-

imized is the distance traveled by the vehicle. The primitive

CollisionCheck discretizes the path and then checks that none

of the configurations in the path are inside an obstacle. Each

algorithm is averaged over 10 runs in each environments.

Typical trees found by the RRT* and GT algorithm’s are in

Figs. 3a- 3f. The tree produced by the RRT* is the only one

with many excessive loops in its final path.

Table 3 compares the Grandparent-Connection and

Focused-Refinement algorithms to the RRT*, RRT*-smart,

and RRT with path smoothing. The loops and curves of

the path found by the RRT* increase the path cost signifi-

cantly. This translates to the GP algorithms finding initial

paths that have costs 50% less than the initial cost of the

RRT*. The RRT with path smoothing and GP algorithms

have initial path costs that are about the same. The excess

loops and curves are not present in the GP algorithms fi-

nal paths, and are reduced in the FR and RRT*-smart algo-

rithms’ final path. The GP algorithm has the highest aver-

age Initial Times, 63.5%. Running the RRT*-Smart to the

GP algorithm’s Initial Time (47.64 seconds for 25 obstacles

and 130.5 for 50 obstacles) produces an average path cost

of 131.68 for 25 obstacles, very close to the GP algorithm’s

cost, and 151.87 for the 50 obstacle case, which is 7% higher

than the GP algorithm’s cost at that same time. Our results

indicate that it is best to use the first path returned by the GP

algorithm. A benefit of executing the first path is removing

the need to determine when to terminate the algorithm based

on algorithm run-time or number of samples.

Figs. 4a and 4b show two typical trees produced by the

RRT* and GT algorithms when replanning. The original en-

vironment has 25 obstacles, one unknown obstacle is found,

therefore the replanning is done in a 26 obstacle environ-

ment. The empty space in Fig. 4b is from trimming. The

Dubins’ vehicle Goal Tree simulation comparison results are

in Table 4. The GT has a mean initial cost that is higher than

the RRT*, but that path is found much quicker. By the time

the GT algorithm reaches the mean time it take the RRT* to

find an initial path (6 seconds) the GT has reduced the path

cost significantly. The GT, after 6 seconds, has a path cost

8% lower than the RRT* initial path cost. The comparison

of the final path cost (at 80 seconds) drops to 3%.

The Grandparent-Connection can be incorporated into

the Goal Tree Algorithm. Table 5 compares the Goal Tree

with Grandparent-Connection (GT-GP) to the Grandparent-

Connection algorithm. The GT with GP was able to find an

initial path quicker in comparison to the GP. At the mean

time the GP finds an initial path to the goal, the GT with GP

has a path to the goal whose cost is 5.4% better. The final

cost for both algorithms, after running for 2500 seconds, is

very close, with only a 0.48% difference.
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Table 1: Mean with standard deviation Euclidean metric results summarizing the comparison of the Grandparent-Connection

and Focused-Refinement algorithms to the RRT*, RRT*-Smart, and RRT with path smoothing.

RRT* GP FR FR-GP RRT*-Smart Smoothing

Initial Cost

25 17.65 (0.83) 14.78 (0.55) 17.65 (0.83) 14.78 (0.55) 17.65 (0.83) 15.13 (0.65)

50 18.08 (1.01) 15.99 (1.02) 18.08 (1.01) 15.99 (1.02) 18.08 (1.01) 16.39 (0.98)

75 18.84 (1.23) 17.90 (1.20) 18.84 (1.23) 17.90 (1.20) 18.84 (1.23) 18.74 (1.23)

% Difference

25 0 -16.30 0 -16.30 0 -14.29

50 0 -11.53 0 -11.53 0 -9.32

75 0 -4.98 0 -4.98 0 -0.53

Initial Time

25 13.77 (7.39) 12.98 (6.62) 13.77 (7.39) 16.20 (9.31) 9.69 (6.07) 11.92 (5.23)

50 37.72 (16.82) 32.92 (15.38) 35.61 (16.53) 32.87 (15.30) 22.10 (11.32) 34.00 (13.64)

75 139.3 (47.4) 115.7 (55.4) 140.2 (47.4) 119.4 (57.1) 137.2 (46.7) 81.19 (30.72)

Final Cost

25 15.33 (0.32) 14.60 (0.34) 14.59 (0.37) 14.54 (0.27) 15.01 (0.59) 15.13 (0.65)

50 15.93 (0.50) 15.45 (0.78) 15.15 (0.64) 14.98 (0.64) 15.80 (0.72) 16.39 (0.98)

75 16.85 (0.90) 16.60 (1.05) 16.67 (0.98) 16.46 (0.94) 16.46 (0.94) 18.74 (1.23)

% Difference

25 0 -4.79 -4.89 -5.21 -2.15 -1.33

50 0 -2.98 -4.91 -5.95 -0.78 2.92

75 0 -1.52 -1.12 -2.31 -2.31 11.2

(a) RRT* (b) Grandparent-Connection (c) Grandparent and Focused-Refinement

(d) Focuses Refinement (e) RRT*-Smart

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4
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6
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8
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10

(f) RRT with Path Smoothing

Fig. 3: Typical Dubins’ vehicle trees in the 25 obstacle environment found by the RRT*, Grandparent-Connection, Grand-

parent Connectio with Focused-Refinement, Focused-Refinement, RRT*-Smart, and RRT with path smoothing algorithms.
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Table 2: Mean with standard deviation Euclidean metric re-

sults the comparing the Goal Tree and RRT* Algorithms.

Time (s) Cost %

Initial
Goal Tree

0.69 (0.76) 7.23 (0.90) -13.5

2.02 (0.01) 7.19 (0.90) -13.9

RRT* 2.02 (2.16) 8.35 (1.33) 0

Final
Goal Tree 80.01 (0.01) 6.37 (0.14) -2.8

RRT* 80.01 (0.01) 6.55 (0.22) 0

(a) RRT* (b) Goal Tree

Fig. 4: Typical Dubins’ vehicle trees after replanning in the

26 obstacle environment using the RRT* and GT algorithms.

6.3 Seven Degree-of-Freedom Manipulator

A Motoman seven degree-of-freedom manipulator is

simulated using MoveIt! in Robot Operating System (ROS).

The Goal Tree and RRT* algorithms are run in the Open Mo-

tion Planning Library (OMPL), using the default collision

checker. The RRT* finds the best path for the manipulator in

an obstacle free environment. Next, a box that is in conflict

with the manipulator’s path is introduced to the environment,

Fig. 5. The Goal Tree and RRT* algorithms are used to re-

plan and find a collsion-free path. The RRT* algorithm in the

obstacle free environment is run 10 times. For each of these

trees, the Goal Tree algorithm is run 10 times. Each 10 runs

of the Goal Tree algorithm is referred to as a set, therefore

there are 10 sets of 10 runs. Fig. 6 is a typical collision-free

path found by the Goal Tree algorithm. For comparison, the

RRT* algorithm is run in the same environment 25 times.

The results of this setup are summarized in Table 6.

Table 6 compares the mean costs and initial iterations.

The table shows that the Goal Tree algorithm out performs

the RRT* in the quality of the initial path. While the mean

cost of the final path found by the Goal Tree algorithm is

better than the mean cost of the RRT* algorithm it is not sig-

nificantly less. The percent difference is calculated as the dif-

ference between the mean costs divided by the RRT* mean

cost. These percentages reiterate that the Goal Tree finds a

much better mean initial path compared to the RRT*. The

mean number of iterations to find an initial path is signifi-

cantly lower for the Goal Tree compared to the RRT*. This

is because the Goal Tree algorithm reuses part of the original

tree, therefore it already starts with nodes in the tree. At the

bottom of the table is the failure rate that was encountered

Fig. 5: The box is added to the environment so that it is in

conflict with the manipulator’s path.

Fig. 6: The Goal Tree algorithm successfully replans to find

a collision-free path.

during the simulations. The percentage is calculated as the

number of failures divided by the total number of attempted

runs for each algorithm. The Goal Tree algorithm is prob-

ably less likely to fail because it reuses part of the original

tree, therefore has a shorter path to determine.

7 Conclusion

The Goal Tree, Focused-Refinement, and Grandparent-

Connection are the three algorithms presented in this paper

to improve the performance of the asymptotically optimal

Rapidly-exploring Random Tree (RRT*). The GT and GP

algorithms are proven to maintain the asymptotic optimally

of the RRT*. The simulations for the Euclidean metric show

that our algorithms improve performance in the initial cost.

The Dubins’ vehicle simulations show the GP and FR algo-

rithms can lower the initial and final path cost significantly.

The GP algorithm simulations revealed that it is best to use

the initial path found due to the already low cost; continued

sampling only decreased the cost marginally. The GT algo-

rithm simulation, when run on the seven degree-of-freedom

manipulator, showed the most improvement in the initial path

cost and that the initial path was found more quickly.

Future work includes implementing the three algorithm

modifications on robots in more complex environments. An-

other research direction is using the Goal Tree algorithm with
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Table 3: Mean with standard deviation results summarizing the comparison of the Grandparent-Connection and Focused-

Refinement algorithms to the RRT*, RRT*-Smart, and RRT with path smoothing for Dubins’ Vehicle.

RRT* GP FR FR-GP RRT*-Smart Smoothing

Initial Cost
25 342.1 (39.1) 132.6 (7.8) 342.1 (39.1) 132.6 (7.8) 342.1 (39.1) 126.9 (3.0)

50 365.6 (45.4) 140.9 (51.5) 365.6 (45.4) 158.3 (19.2) 365.6 (45.4) 131.6 (7.4)

% Difference
25 0 -61.23 0 -61.27 0 -62.90

50 0 -61.45 0 -56.71 0 -64.00

Initial Time
25 9.46 (9.02) 47.64 (44.17) 9.05 (8.71) 34.27 (17.51) 14.63 (15.93) 18.73 (11.73)

50 34.70 (19.79) 130.5 (102.4) 44.63 (26.37) 116.2 (44.1) 38.82 (21.21) 187.6 (226.8)

Final Cost
25 300.1 (61.1) 131.2 (7.2) 260.0 (52.0) 128.7 (4.0) 134.4 (6.0) 126.9 (3.0)

50 349.4 (32.2) 152.3 (12.0) 280.9 (28.3) 149.9 (16.2) 151.9 (11.8) 131.6 (7.4)

% Difference
25 0 -56.29 -13.36 -57.12 -55.72 -57.70

50 0 -56.40 -19.59 -57.09 -56.53 -62.33

Table 4: Mean with standard deviation results summarizing

the comparison the Goal Tree and RRT* Algorithms for Du-

bins’ Vehicles in the 25 obstacle environment.

Time (s) Cost %

Initial
Goal Tree

0.16 (0.03) 260.8 (68.1) 4.5

6.13 (0.03) 228.4 (44.5) -8.4

RRT* 6.10 (5.15) 249.6 (47.8) 0

Final
Goal Tree 80.03 (0.03) 209.8 (16.1) -3.2

RRT* 80.01 (0.01) 216.8 (21.8) 0

Table 5: Mean with standard deviation results summa-

rizing the comparison of the Goal Tree and Grandparent-

Connection Algorithms for Dubins’ Vehicles in the 25 ob-

stacle environment.

Time (s) Cost %

Initial
GT-GP

4.97 (1.45) 106.9 (22.1) 3.2

241.5 (0.3) 98.1 (15.1) -5.4

GP 240.6 (201.8) 103.6 (17.1) 0

Final
GT-GP 2500.6 (0.5) 92.92 (5.36) -0.48

GP 2500.7 (0.6) 93.36 (5.74) 0

multiple robots in the same environment. The GT could also

handle the removal of an obstacle, such as running the ex-

isting path through a path smoothing algorithm. Another re-

search direction is to extend the GT algorithm for partially

known moving obstacles. These dynamic obstacles would

introduce uncertainty into the problem that the motion plan-

Table 6: Mean results summarizing the comparison between

the Goal Tree algorithm and RRT* algorithm for the seven

degree-of-freedom manipulator.

Initial Cost
Goal Tree 8.83 (0.84)

RRT* 9.66 (1.95)

Final Cost
Goal Tree 7.694 (0.65)

RRT* 7.78 (0.93)

% Cost Difference
Initial Cost -8.7%

Final Cost -1.1%

Initial Iterations
Goal Tree 19.54 (17.66)

RRT* 143.0 (151.2)

% Failure
Goal Tree -23.7%

RRT* -39.0%

ning tree would have to consider. One option is to handle the

dynamic obstacles using a reactive collision avoidance algo-

rithm and then fuse that information with the motion plan-

ning tree to determine how best to move.
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