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ABSTRACT
Top supercomputers in the TOP500 list have transitioned
from homogeneous node architectures toward heterogeneous
manycore nodes with accelerators and CPUs. These new ar-
chitectures present significant challenges to developers of
large-scale multiphysics applications, especially at DOE lab-
oratories that have invested heavily in scalable MPI codes
over decades. Much of these scientific application porting
efforts for the new heterogeneous architectures are focused
on running the computation on the accelerators, which usually
comprise >90% of the FLOPS of the system. We describe
an approach to utilizing the remaining FLOPS on a heteroge-
neous machine by running a portion of the computation on the
CPUs cooperatively with the GPU computation. We present
a proof-of-concept implementation in ARES, a multiphysics
ALE-AMR code at LLNL. ARES uses a portability layer,
RAJA, which enables us to utilize the same source code for
both the CPU and the GPU. We develop an approach to utilize
both types of processors cooperatively in a mixed-processor
system. Our implementation divides the work between the
computing resources via domain decomposition, and utilizes
all cores of the CPU and all of the GPUs on the node for
computation. Load balancing is necessary to use the hetero-
geneous resources effectively. We present preliminary results
on early delivery pre-Sierra machines at LLNL, showing up
to an 18% performance benefit of using the CPUs on the
heterogeneous nodes for computing in addition to using the
GPUs.
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1 INTRODUCTION
Until recently, the supercomputers on the TOP500 [1] list
were primarily architectures with homogeneous nodes. One
of the first mixed-processor systems, Roadrunner [6], took
the number one spot on the TOP500 list in June 2008, and
became the first petaflop machine. It paired IBM PowerXCell
8i coprocessors with standard dual-core x86 CPUs. Difficult
to program, Roadrunner became a one-off machine, but its
heterogeneous design foreshadowed the coming age of HPC
accelerators. NVIDIA brought to HPC its general-purpose
GPUs and its CUDA programming environment, while Intel
introduced its manycore Xeon Phi, offering an x86-flavored
coprocessor with a more CPU-like software development
model. Currently, accelerators are the only commodity-based
technology enabling multi-petaflops within reasonable power
envelopes, and several supercomputers with heterogeneous
nodes are poised to headline the upcoming TOP500 lists.

While much of the scientific application porting efforts
for the new heterogeneous architectures focus exclusively
on utilizing the accelerators, accelerator performance can be
limited by such restrictions as memory size and bandwidth,
data transfer overhead, and kernel launch overhead. At the
same time, the heterogeneous nodes often contain top of the
line CPUs, computational resources of which should not be
overlooked when trying to achieve optimal performance.

Heterogeneous computing has long utilized both types of
processors on a system for improved performance. Many of
the heterogeneous computing efforts utilize separate code
paths for the different processors, an approach not feasible
for large scientific simulations with hundreds of thousands of
lines of code. In this work, we employ a performance portable
approach which enables us to explore the different modes of
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Figure 1: CPU only: Computing kernels on the CPU cores only, all of
the GPUs are idle
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Figure 2: 1 MPI/GPU: One CPU core drives each GPU, computing
kernels on the GPUs only

utilizing the heterogeneous nodes while maintaining a single
source code of the application. We present a proof of concept
implementation in a large multi-physics application, ARES.
We compare the performance of using the CPU solely to
offload the computation to the GPU, and utilizing both the
CPUs and the GPUs cooperatively for computation.

Our contributions include:
(1) An approach to utilize both types of processors cooper-

atively in a mixed-processor system.
(2) A proof of concept implementation for utilizing the

GPUs and all CPU cores cooperatively to perform
loop computation in a large multi-physics application,
ARES.

(3) A hierarchical domain decomposition scheme for the
heterogeneous node.

(4) Performance comparison of three different modes of
utilizing a heterogeneous node: 1. One MPI process per
GPU to drive the GPU; 2. Multiple MPI processes per
GPU to drive the GPU; 3. One MPI process per GPU
to drive the GPU, and other MPI processes executing
on the remaining CPU cores.

This paper is organized as follows. Section 2 describes the
different modes of utilizing heterogeneous nodes. Section 3
describes the multi-physics application we use for this study,
ARES. Section 4 introduces RAJA, the performance porta-
bility layer we use in this study. We introduce our approach
to utilize both types of processors cooperatively in a mixed-
processor system in Section 5. Section 6 describes how we
divide work between the two types of processors. Section 7
compares performance of different modes of utilizing the
heterogeneous nodes. We discuss related work in Section 8.

CPU
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Figure 3: n MPI/GPU: Multiple CPU cores drive each GPU,
computing kernels on GPUs. Requires MPS.
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Figure 4: Heterogeneous: Subset of CPU cores drive the GPUs (GPUs
compute kernels), the rest of CPU cores compute kernels

2 MODES TO UTILIZE HETEROGENE-
OUS NODES

The next flagship supercomputer at the Lawrence Livermore
National Laboratory will be SIERRA, with 2-socket nodes
containing two POWER9 CPUs and four Volta GPUs. With
the GPUs comprising 95% of the FLOPs of the machine,
the main focus of the application porting work has been to
utilize the GPUs effectively. We explore the different modes
to utilize these heterogeneous nodes.

Figure 1 shows a single socket of a SIERRA node. The
lightning bolts on the CPU cores indicate the traditional way
scientific applications use a node of the supercomputer: an
MPI task is bound to each core and executes its own work.

Figure 2 shows how this MPI application might utilize
the heterogeneous node when first ported to the GPUs: an
MPI task is bound to a single core per GPU, and is used to
launch kernels on the GPU. The lightning bolts over the GPUs
indicate that the GPUs are executing their portions of work.
Two CPU cores (in red) are used to drive the GPUs, while the
remaining CPU cores are idle.

Figure 3 shows the MPI application using all cores on the
CPU to offload work to the GPUs. Because each process has
a unique context and only a single context can be active on a
device at a time, multiple processes (e.g., MPI processes) can-
not operate concurrently on a single GPU. NVIDIA provides
a Multi-Process Service (MPS) [2], a software layer between
the application and the driver. MPS routes all CUDA calls
through a single context, allowing for the multiple processes
to execute concurrently. With MPS, there is a potential for the
different GPU operations to overlap. The caveat is that the
kernel launch overhead is higher.
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C-style for-loop: RAJA-style loop:
1: double* x; double* y;
2: double a;
3: for (int i = begin; i < end; ++i ) {
4: y[i] += a * x[i];
5: }

1: double* x; double* y;
2: double a;
3: RAJA::forall<exec policy>(begin, end, [=] (int i) {
4: y[i] += a * x[i];
5: });

Figure 5: RAJA abstraction

Figure 4 shows our proposed approach to utilizing the
heterogeneous node. We propose to bind an MPI task to each
CPU core. We then use a single CPU core to launch kernels
on the GPU. We use the remaining CPU cores to perform
additional computation cooperatively with the GPUs.

While using a single core to launch kernels on the GPU
may be sufficient when the kernels are large, it has been
informally stipulated that multiple cores may be necessary to
keep the GPU occupied if the kernels are small. When a single
core is sufficient to drive the GPU, we propose to utilize the
remaining cores for additional computation. Although it is
hard to project performance to future hardware and software
stack, in this work we explore the performance of these three
approaches on the currently available early delivery systems.

3 MULTIPHYSICS SIMULATIONS
Multidimensional multiphysics simulations are widely used
to simulate physics phenomena. Running multiphysics sim-
ulations is computationally expensive, and utilizing super-
computers is key to advancing our understanding of science
through simulation. With the advance of heterogeneous archi-
tectures, multiphysics simulations are now poised to utilize
these new architectures to advance science.

We explored our ideas on how to use the heterogeneous ar-
chitectures in ARES, a massively parallel, multi-dimensional,
multi-physics code at the Lawrence Livermore National Labo-
ratory (LLNL). ARES supports an array of physics, including
arbitrary Lagrangian-Eulerian (ALE) hydrodynamics, high-
order Eulerian hydrodynamics, elastic-plastic flow, 3T plasma
physics, high-explosive modeling, diffusion, S𝑁 radiation,
particulate flow, laser ray-tracing, MHD, dynamic mixing,
and non-LTE opacities. ARES is capable of running mas-
sively parallel applications on millions of processors [8],[14].
ARES applications include pulsed power, high-explosive ex-
periments, Inertial Confinement Fusion (ICF) modeling, Na-
tional Ignition Facility (NIF) debris, and instability experi-
ments.

Excluding libraries, ARES has roughly 700,000 lines of
primarily C/C++ code. ARES uses MPI for inter-node par-
allelism. Its 2D/3D block-structured mesh, with or without
Adaptive Mesh Refinement (AMR), is spatially decomposed
into domains, and domains are assigned to MPI processes.

For fine-grained intra-node parallelization needed to uti-
lize accelerators, ARES has been ported to the RAJA loop
abstraction described in Section 4.

4 RAJA PROGRAMMING MODEL
Developers of large scientific simulations have a strong in-
centive to have a single source code of their applications
for maintainability. Several programming model abstractions
have been proposed (Kokkos [10], RAJA [16]) to provide an
ability to execute a single source code on multiple platforms.
For this work, we use RAJA [16], a performance portability
layer developed at the Lawrence Livermore National Labora-
tory and used for on-node parallelization in ARES.

RAJA is an on-node parallelization approach for C++ ap-
plications. RAJA uses C++ lambda functions and templates to
separate loop traversal from a loop body. The mechanism en-
abling various loop traversal schemes (e.g., sequential, SIMD,
parallel across multiple cores) is implemented in the RAJA
library and is invisible to the application developer. RAJA
provides multiple programming model backends (e.g., CUDA,
OpenMP).

Figure 5 shows how to convert a simple C++ loop to RAJA.
The left side shows a C++ style loop, and the right side shows
the same loop with RAJA constructs. On the right, the loop
body is expressed as a lambda function parameterized by the
iteration variable. The lambda captures the variables used
within it by reference, so they are visible at the scope of the
call site. The RAJA::forall is templated with an execution
policy, and takes the loop body and its iteration bounds as the
parameters.

The execution policy specified controls which RAJA pro-
gramming model backend executes the loop. Figure 6 shows
an outline of two RAJA backend implementations, OpenMP
and CUDA. The backends hide specific compiler directives
and lower level programming models from the user. The user
only sees the abstract execution intent shown in Figure 5.

5 COMPUTING ON BOTH TYPES OF
PROCESSORS ON A
HETEROGENEOUS NODE

To compute cooperatively on different types of processors, an
application needs to have the control code to specify which of
the tasks each process should perform, a way to execute the
kernels on the different types of processors, and application
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OpenMP backend outline: CUDA backend outline:
1: template <typename LOOP BODY>
2: inline void forall(
3: omp parallel exec, int begin, int end,
4: LOOP BODY loop body)
5: {
6: #pragma omp parallel for
7: for (int i = begin; i < end; ++i ) {
8: loop body(i);
9: }

10: }

1: template <typename LOOP BODY>
2: inline void forall(
3: cuda parallel exec, int begin, int end,
4: LOOP BODY loop body)
5: {
6: //setup begin, end, len, gridSize, ...
7: forall cuda kernel<<<gridSize,
8: BLOCK SIZE, 0, stream>>>(
9: createLaunchBody(...,loop body(i)),begin,len);

10: }

Figure 6: RAJA backends

1: if (run on gpu) then
2: //RAJA backend: GPU specific (CUDA, OpenMP)
3: typedef DynamicPolicy<AresPolicy, GPU> AresArchPolicy;
4: RAJA::forall<AresArchPolicy>(. . . , kernel);
5: else
6: //RAJA backend: CPU specific (Serial, OpenMP)
7: typedef DynamicPolicy<AresPolicy, CPU> AresArchPolicy;
8: RAJA::forall<AresArchPolicy>(. . . , kernel);

AresArchPolicy is now:
∙ CUDA exec policy on GPU-driving

MPI processes
∙ Sequential exec policy on CPU-only

MPI processes

Figure 7: Dynamically selecting a RAJA policy in ARES

data should be allocated accordingly. We will address the
performance optimization side of work division in Section 6,
and describe the code necessary for executing cooperatively
on a heterogeneous node in this section.

An application needs robust control code which directs
some of the MPI processes to offload work to the GPUs, while
the remaining MPI processes compute on the CPU cores
directly. Our experience indicates that the CPU core/GPU
binding needs to be carefully set up to avoid performance
degradation.

First, the application has to be able to execute the kernel
code on the specified processor. In our case, we instruct some
of the MPI processes to offload the kernels to the GPU, while
other MPI processes execute their kernels on the CPU cores
directly.

Second, the application needs a memory allocation scheme
that can allocate the memory according to the task specific to
each CPU core. In a spatially decomposed MPI application
where each MPI process owns its data, it was a matter of
specifying what to do for each MPI task.

Finally, MPI communication can become more complex
on heterogeneous machines.

5.1 Heterogeneous kernels
In order to execute kernels on different types of processes, a
single-source application would need to use a performance
portability layer that enables it to specialize the code for both
types of processes.

In our experiments, we use RAJA, a loop abstraction uti-
lized by several multiphysics simulations at LLNL, including

ARES. Our application, ARES, defines several execution poli-
cies, indicating whether the loop is thread safe, not thread
safe, has a significant amount of work, etc. These execution
policies can then be defined to use different RAJA back-
ends depending on the architecture. We leveraged the existing
RAJA-based implementation but added the control code to
inject additional context, specifying where the process should
execute the loop by defining an architecture-specific policy.
AresArchitecturePolicy is the architecture-appropriate policy
selected at runtime from predefined RAJA policies, as shown
in Figure 7. In the future, we plan to use the MultiPolicy
runtime policy selection mechanism in RAJA.

Our runtime policy selection results in CUDA-specific poli-
cies used on MPI processes driving the GPU, and sequential
execution policies on the CPU-only MPI processes.

We did come across a compiler issue hampering the perfor-
mance of this approach. We rely on host device deco-
rated lambdas for our performance portable implementation.
The CUDA Toolkit 8.0 EA release has support for host

device decorated lambdas. However, when running such
code on the CPU (e.g., using a RAJA CPU execution policy),
the performance is substantially worse than running the same
code on the CPU without any CUDA host-device decorations
(execution time can be 100x to 300x slower). The issue is that
nvcc passes the lambda back to the host compiler wrapped in
a std::function object. The effect is that each time the lambda
is invoked (e.g., at each loop iteration) a virtual function dis-
patch is required. We expect this compiler issue to be resolved
in the future, which will allow us to assign more work to the
CPU.
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Data type: Process executes on CPU core: Process offloads execution to GPU:
Control code Malloc Malloc
Mesh data Malloc cudaMallocManaged(UM)
Temporary data Malloc cudaMalloc (cnmem memory pools)

Figure 8: ARES memory allocation

5.2 Heterogeneous memory allocation
Application memory should be allocated according to where
the kernels will be executed. The application we studied,
ARES, differentiates memory use by context, whether it is
control code, mesh data, or temporary data. We used the
control code to inject additional context, specifying where
the process executes the kernels, as shown in Figure 8. When
executing on the CPU, all data should be allocated on the
CPU. When executing on the GPU, mesh data is allocated in
Unified Memory (UM) so it can be accessed from the CPU
and the GPU. ARES uses memory pools for the temporary
data for performance optimization.

During the implementation, we encountered assumptions
made by the libraries used by ARES. When the libraries are
compiled to use CUDA, they often allocate memory on the
GPU. We had to break these assumptions to avoid touching
the GPU memory from the processes executing solely on
the CPU; touching the GPU memory from these processes
degraded the performance of the application.

5.3 Heterogeneous communication
Communication on a machine with heterogeneous nodes is
more complicated as well. Currently in ARES, the commu-
nication happens through the host (CPU) only. Future hard-
ware and software will enable direct communication between
GPUs, called GPU direct. We plan to explore how GPU di-
rect communication impacts the performance of the different
approaches to utilizing the heterogeneous nodes.

6 DIVIDING WORK ON A
HETEROGENEOUS NODE

6.1 Domain Decomposition
Physical simulations typically divide the simulated space into
domains (spatial decomposition), and assign each domain to
an MPI process. This MPI process is then responsible for com-
puting its portion of the answer on its domain. For many algo-
rithms, this means traversing the domain (e.g., some portion
of the mesh) and performing computation per domain element
(e.g., mesh zone). Domain decomposition has a strong impact
on the performance of the application because it impacts load
balance, memory accesses, communication overhead, and in
some cases method convergence.

Communication overhead tends to be lowest when the de-
composed domains are near squares in 2D or cubes in 3D,
rather than long slabs. Figure 9 gives a simplified illustration

(a) 1MPI/GPU (b) 4MPI/GPU

Figure 9: Domain decomposition: 4 vs. 16 domains

of a decomposition in 2D, with ‘square’ domains for 4 MPI
ranks (an equivalent of one MPI rank per each GPU on the
node) vs. 16 MPI ranks (an equivalent of four MPI ranks
per each GPU on the node). Consider the halo exchange for
a single node; the communication overhead is significantly
higher when using 16 MPI ranks than when using four. Addi-
tionally, on a small scale, the number of neighbors in the halo
exchange goes up dramatically when increasing the number
of ranks on the node. Therefore, if using ‘square’ decompo-
sition, the approaches of utilizing the heterogeneous node
which have more than a single MPI rank per GPU have the
potential of having significantly higher communication costs
than the default approach with a single MPI rank per GPU.

To avoid higher communication costs, we introduced a hi-
erarchical domain decomposition method. The first step in
our hierarchical domain decomposition method is to divide
the work into the number of GPUs available to solve the
problem, as shown in Figure 10 (a). Then, for the approaches
utilizing more than one MPI process per GPU, we further
divided the domain into smaller domains as appropriate. For
the 4 MPI ranks per GPU approach with MPS, in this second
step we subdivided the work on a GPU in a single dimension,
as shown in Figure 10 (b). The subdivision in a single di-
mension kept the number of neighbors communicating in the
halo exchange minimal. We experimentally verified that this
approach does in fact minimize the communication overhead
of using additional MPI ranks on the node.

6.2 Heterogeneous Load Balancing
In a heterogeneous case, additional care should be taken to
load balance the workload between the CPUs and the GPUs
since their loads will be processed at different speeds. How
quickly each type of processor can process the work depends
on many factors:
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(a) 1MPI/GPU (b) 4MPI/GPU + MPS (c) Heterogeneous

Figure 10: Domain decomposition in ARES: Keeping the size of the x-dimension the same for all approaches

∙ Processor speed;
∙ Memory capacity and bandwidth;
∙ Additional data transfers that may be necessary (as is

the case for the GPU);
∙ Kernel launch overhead (as is the case for the GPU);
∙ Communication overhead.

To achieve load balance in the heterogeneous case, we used
a weighted decomposition between the CPU cores and the
GPUs, assigning less work to the CPU cores, as illustrated
by the thin slabs in Figure 10 (c). We started with an initial
guess of work split between the processors based on FLOPS.
We measured the respective contributions of CPU vs. GPU,
and adjusted the split to achieve load balance. However, we
discovered that on the Sierra early delivery systems at LLNL,
performance of the CPU is hampered by the compiler issue de-
scribed in Section 5.1. While we were able to account for this
performance issue and adjust the load balance accordingly,
the compiler bug severely limits the effective CPU speed and
therefore the amount of work we are currently able to assign
to the CPU cores. Once the compiler issue is resolved, we
expect to be able to assign significantly more work to the CPU
cores, speeding up overall execution using the heterogeneous
approach.

Changing hardware and software stacks make it difficult
to project performance of Sierra based on the early delivery
Sierra systems we are working with currently. Our study of
the performance implications of different modes of using the
heterogeneous nodes and varying the work assignment to
processors is exploratory and a snapshot in time.

7 PERFORMANCE COMPARISON
In this section, we compare the performance of running a
single MPI process per GPU, using 4 MPI processes to drive
the GPU with MPS, and our heterogeneous approach which
uses 4 MPI processes to drive the GPU, and the remaining 12
cores on the CPU to perform a portion of the computation.

For all the studies below, we use a single node of RZHas-
GPU, a small cluster with GPUs at Lawrence Livermore
National Lab (LLNL). Each node of RZHasGPU has two 8
core Intel Xeon E5-2667 v3 processors and 4 NVIDIA Tesla
K80 GPUs. Each node has 128 GB of memory (8 GB per
CPU core), and each GPU has 12 GB of GPU global memory.
RZHasGPU runs the TOSS 2 operating system.

We study the performance of a common hydrodynamics
test problem, a 3D Sedov blastwave problem [18] shown in
Figure 11. The Sedov problem stresses the hydrodynamics
calculation in ARES. For the GPUs, we use the RAJA CUDA
backend.1 For our experiments, we varied the size of the
problem in all three dimensions.

Figure 12 shows the performance of a single MPI process
per GPU (four MPI processes total), using 4 MPI processes to
drive each GPU with MPS (16 MPI processes total), and our
heterogeneous approach with a single MPI process to drive
each GPU and 12 more MPI processes (16 MPI processes to-
tal). The y-axis shows the runtime for the different approaches.
The main x-axis shows the total size of the problem in zones,
while the top x-axis shows the size of the y-dimension of
the problem in zones. As shown in Figure 10, we cut the y-
dimension to form the domains for the CPU cores to process.
At the higher end of the y-dimension size, we are assigning
1.5% of zones to the CPU, so the 12 cores are executing 1.5%
of work while the four GPUs execute the remaining 98.5% of
work. At the lower end of the y-dimension size, the smallest
number of zones we are able to assign to the CPU (12 cores)
is 15% of zones, which is more than the relative compute
power available on the CPU in this heterogeneous node. As
a result, for the lower problem sizes in the figure, the CPU
cores are the bottleneck, resulting in slower execution times
in the Heterogeneous mode. For the higher problem sizes, the

1All results generated with pre-release versions of IBM compilers; improve-
ments in performance expected in future releases.
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Figure 11: 3D Sedov blastwave problem, a hydrodynamics calculation with 80 kernels
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Figure 12: Varying the size of the y-dimension (x=320, z=320)

CPU cores are not overloaded, and the Heterogeneous mode
performs well.

Figure 12 also indicates that the Default approach (one
process per MPI) hits a memory threshold when the problem
size reaches ≈37 million zones (9 million zones per MPI).
The other approaches do not hit this threshold because they
have four times more domains, and therefore fewer zones per
domain. Until the memory threshold point, the MPS and the
Default approaches perform similarly. After the threshold, the
Default approach pays a penalty while the MPS approach
and the Heterogeneous approach continue to scale linearly
with the size of the problem. We speculate that this threshold
may be due to CPU memory bandwidth utilization, where
more MPI ranks (and therefore cores utilized) add additional
capacity; the tools to verify this speculation are expected to
become available later this year, at which point we intend to
verify whether memory bandwidth utilization is in fact the
cause for the difference.
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Figure 13: Varying the size of the x-dimension (y=240, z=320)
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Figure 14: Varying the size of the x-dimension (y=240, z=160)
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Figure 15: Varying the size of the x-dimension (y=360, z=320)

In Figure 13, we show problems with y-dimension of
240 zones, and z-dimension of 320 zones. We vary the x-
dimension as shown on the top x-axis; the total problem size
(in zones) is shown on the main x-axis. One MPI process
per GPU mode of utilizing the heterogeneous node performs
best until the memory threshold. Because the x-dimension
of the problems is relatively small, the MPS approach over-
laps execution of several kernels launched from different MPI
ranks, resulting in better performance. This set of problems
has a relatively small y-dimension, which is the dimension in
which we partition off work for the CPU, so we are unable
to assign small enough portions of work to the CPU cores in
the Heterogeneous approach. Since the GPUs have to wait for
the CPU cores to finish their work, the overall runtime of the
heterogeneous mode is longer for this problem set.

In Figure 14, we show problems with y-dimension of
240 zones, and z-dimension of 160 zones. We vary the x-
dimension as shown on the top x-axis. Because the z-dimension
is smaller than in Figure 13, the x-dimension size goes to a
larger value. The y-dimension is still too small to carve out
work for the CPU, thus the runtime of the Heterogeneous
approach is longer. One MPI process per GPU and the MPS
mode perform similarly.

In Figure 15, we show problems with y-dimension of
360 zones, and z-dimension of 320 zones. We vary the x-
dimension as shown on the top x-axis. Similarly to Figure 13,
the x-dimension is relatively small, and the MPS approach is
able to overlap multiple kernels launched from different MPI
ranks, outperforming the other modes. The y-dimension is
larger than in Figure 13, enabling better assignment of work
to the CPU cores and therefore lower runtime in the Heteroge-
neous mode. The memory threshold hampers the performance
of the single MPI process per GPU mode.
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Figure 16: Varying the size of the x-dimension (y=360, z=160)

In Figure 16, we show problems with y-dimension of
360 zones, and z-dimension of 160 zones. Because the z-
dimension is smaller than in Figure 15, the x-dimension size
goes to a larger value. Both the Heterogeneous mode and the
one MPI process per GPU mode utilize the GPU well. In this
case, the MPS mode is unable to overlap kernels launched
from different MPI ranks since they sufficiently occupy the
GPU on their own, therefore the MPS performs worse in this
set of experiments.

In Figure 17, we show problems with y-dimension of 480
zones, and z-dimension of 320 zones. Again, the x-dimension
is relatively small for these problems, resulting in a perfor-
mance gain from overlapping kernels launched from different
MPI processes with computation for the MPS mode. The
one MPI process per GPU mode is hampered by the small
inner most loop dimension, while the Heterogeneous mode
performs almost as well as the MPS mode.

In Figure 18, we show problems with y-dimension of
480 zones, and z-dimension of 160 zones. Because the z-
dimension is smaller than in Figure 17, the x-dimension size
goes to a larger value. Because the size of the y-dimension
is large, and we partition off work for the CPU cores in the
Heterogeneous mode in the y-dimension, this is the best case
scenario for the Heterogeneous mode. When the one MPI
process per GPU mode exceeds the memory bound, we see
the Heterogeneous mode continue to scale linearly, resulting
in up to 18% performance gain. Because the CPU perfor-
mance is currently hampered by the compiler issue described
in Section 5.1, we are only able to give 1-2% of work to the
CPU cores. When the compiler issue is resolved, we expect
to be able to give more work to the CPU, and see even better
performance in this mode.
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Figure 17: Varying the size of the x-dimension (y=480, z=320)

Overall, utilizing more than one MPI process per GPU can
result in performance benefits, either with using MPS or using
the Heterogeneous approach. The one MPI process per GPU
version has the largest domains, and crosses a memory bound
when problems become large. The mode utilizing MPS helps
performance when x-dimension is relatively small by over-
lapping kernels launched from different MPI processes. The
Heterogeneous approach is not useful when the dimension
used to carve out work for the CPU is too small, but can be
helpful otherwise and will likely become even more useful
when the current compiler issues are resolved.

8 RELATED WORK
The paradigm of executing on both types of processors within
a heterogeneous node has been explored in the context of
a single node. A contention aware technique schedules un-
related OpenCL kernels on a heterogeneous node by taking
into consideration historical performance, problem charac-
teristics, and device status [11]. A heterogeneous IR query
processing implementation uses queue-based runtime sched-
uling and applies different algorithms on the CPU and the
GPU [9]. A heterogeneous FFT approach uses a performance
model of both processors to schedule the load, while applying
different libraries on the CPU and GPU [15]. A heteroge-
neous QR factorization implementation proposes a hybrid
kernel which overlaps computation on both processors [4];
CPU-only, GPU-only, and hybrid kernels are then statically
scheduled, or scheduled dynamically using StarPU runtime
system [5].

For MPI applications, an MPI+OpenMP/CUDA parallel
programming model has emerged as a viable approach to
heterogeneous computing. In this model, a single MPI pro-
cess is launched on each node, and OpenMP threads are
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Figure 18: Varying the size of the x-dimension (y=480, z=160)

spawned. One of the OpenMP threads is then reserved to
interact with the GPU, while the rest are used for computa-
tion on the CPU. Examples include a long-wave radiation
simulation [3]. The workload can be divided into independent
columns and assigned to different processors using relative
CPU/GPU power [13].

Several approaches have been proposed to split data-parallel
tasks into sub-tasks and distribute across multiple devices. An
OpenCL approach uses machine learning to partition the tasks
into chunks [12]. An OpenMP proposal computes the iter-
ation split between the two types of processors via a linear
program [17]. Both are application-agnostic and therefore
treat the iteration space as flat, which may or may not lead to
the best performance.

Our approach is closest to the OpenCL and OpenMP ap-
proaches in that we use a performance-portable model and
divide iterations between the different processors. Instead
of relying on a runtime system, though, we decide on the
sub-tasks within the application, similar to how the MPI ap-
plications typically divide work. We find that in 3D iteration
spaces, the knowledge of the iteration space and the loop
structure can help in decomposing the space optimally.

Most of the above approaches explore load balancing among
the heterogeneous processes, stating that it is non-trivial. Even
for runtime-driven load balancing, there is a trade-off between
small work chunks which allow better balance, and large work
chunks which the GPU is able to process faster by overlapping
computation and communication (and streaming the remain-
ing data) and pipelining [7]. Our approach is static within
an iteration, but the decomposition can be adjusted between
iterations, meaning that while we cannot adjust work imme-
diately, we do not have the performance hit from scheduling
chunks that are too small.
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9 CONCLUSIONS
We proposed an approach for utilizing a heterogeneous node
by using the GPUs and CPU cores cooperatively to perform
loop computation. We presented a proof of concept implemen-
tation in ARES. Our implementation uses the same source
code for the CPU and the GPU by using the RAJA portability
layer for on-node parallelization. We divide work in the ap-
plication via domain decomposition, and observe that using
more than one MPI rank per GPU can result in significantly
higher communication overhead. For both the approach us-
ing MPS, and for our Heterogeneous approach, we develop
a hierarchical domain decomposition strategy which keeps
the work per GPU the same as 1 MPI process per GPU ap-
proach. We then propose how to divide the work further for
the MPS approach, and develop a load balancing strategy for
our Heterogeneous approach. We compared performance of
the one MPI process per GPU implementation, heterogeneous
implementation, and 4 MPI processes per GPU with MPS.
The heterogeneous implementation gets up to an 18% per-
formance improvement over the default mode of executing
ARES.

While load balancing between the CPUs and GPUs is non-
trivial, we expect higher benefits from the Heterogeneous
approach once the compiler issues currently hampering the
CPU performance are resolved. Additionally, using more
cores of the CPU may better utilize the CPU memory band-
width, which is not fully tapped by a single MPI rank per
GPU approach.
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