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Abstract. The prediction of heat flux over a sphere in hypersonic flow is an interesting and
challenging problem. When using solutions to the Navier-Stokes equations to predict the heat flux,
a common source of numerical error is a phenomenon known as 'grid imprinting'. Rather than the
axisymmetric heat flux profile expected for a spherical surface, the topology of the grid can be seen
in the surface heat flux distribution. We will examine the origin of this phenomenon; specifically
the regions of the grid that contribute most. Comparisons will be made between second order finite
volume and Discontinuous Galerkin (DG) results — the DG results will range from 2nd to 4Th order.
The Dual Weighted Residual (DWR) framework is used to obtain local error estimates for the heat
flux integrated over the surface with respect to the grid for the DG results.

1. Introduction. A common source of numerical error in the prediction of heat
fluxes using solutions to the Navier-Stokes equations over spheres in high-speed flows
is a phenomenon described as grid imprinting. Rather than the axisymmetric heat
flux profile expected for a spherical surface, the topology of the grid can be seen in the
heat flux prediction, as shown in Figure 1.1, a similar feature is found in the results
for Kirk et al. [7].

Fig. 1.1: Heat flux over the Blottner Sphere

In this paper we will investigate the origin of the grid imprinting phenomenon;
specifically, in which regions of the computational domain does the grid topology
effect the heat flux on the surface of the sphere. We examine the origin of these errors
using Discontinuous Galerkin (DG) solutions to the Navier-Stokes equations, and the
Dual-Weighted Residual (DWR) error estimation. This allows us to determine which
regions of the computational domain are contributing most to the error in heat flux.
The DG results are obtained using the Solution Adaptive Numerical Solver (SANS)
from MIT. The finite volume results are obtained using Sandia Parallel Aerosciences
Research Code (SPARC).
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We intend to answer the following research questions:
• Can we get good quality high-order heat fluxes on cylinders and spheres?
• Can we use features of the numerical solution to understand the error sources?
• What is the origin of this grid imprinting?

1.1. Mathematical Model. We solve the steady Navier-Stokes equations in
conservation form, as given in Equation 1.1,

where,

V • F (u)

pV

— V • Ev (u, Vu)= 0,

0

(1.1)

F (u) = pVV
pVH

F, (u, Vu) = T

q+pV +TV
(1.2)

Where p is the density, V is the velocity, p is the pressure, H is the total enthalpy,

q = kVT is the heat flux, T = [(VV. (VV)T) — (V • V) i] is the viscous shear

stress tensor, k is the Thermal conductivity, and it is the viscosity.
These equations are closed under the assumption that the gas is calorificially

perfect air with a gas constant (R) of 287J/kg/K and a ratio of specific heats (7) of
1.4. The viscosity is obtained using Sutherland's Law as reported by Blottner[4],

T1.5 = 1.458 x 10-6
T + 110.4 

(1.3)

where the temperature is in Kelvin, and the viscosity is in Pa. s. The thermal con-
ducitity is determined assuming a constant Prandtl number of 0.72[4].

1.2. Numerical Method. The DG discretization finds a solution to the weak
form of the Navier-Stokes equation in the space Wh,,p = {20 E L2 (C2) : tulk E PP, Vk E Th}.1
This is the space of pth order polynomials on each element of Th, which is the trian-
gulation of the domain Q. This corresponds solving,

Rh,p (uh,p, wh,p) = 0 VWh,p E Wh,p,

the semi-linear weighted residual, which is defined as,

(1.4)

Rh,p (11,h,p, W h ,p) = Rild; (uhIP W 11,19) 4,pse (uh,P • W h,P) RC?' ce (uh,P1 W h,P) • (1•5)

Note that while the Navier-Stokes equations do not have a source term, an additional
PDE to drive the artificial viscosity will be added to the system. This additional
equation does contain a source term, which requires discretization.

We will make use of the following notation,

{v} = 
2 
—
1 
(v+ + v—) H = v+n+ + v—n—, (1.6)

if v is a scalar, and,

{v} = —
1 
(v+ + v—) = v+ • n+ + v— • n—, (1.7)

2

if v is a vector. The terms (v)— and (v)+ are the values of v evaluated from either
side of a face.
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The DG discretization of the advective term is given by,

RCitid; (u, w)= E f - (Vw)T • F (u) c/SZ
kETh C2k

+ E f (w+ _ H (u+, u—, n) dr
feri f

+ E f wT • HB (u+, uB , n) dF, (1.8)
f Er B f

where F/ is the set of interior faces, rB is the set of boundary faces, H is the approx-
imate Riemann flux of Roe, using Harten's entropy fix, and HB is a numerical flux
function on the boundary faces used to enforce the boundary conditions.

We define the viscous flux as Fins, (u, Vu) A (u) Vu, which allows the DG
discretization of the viscous terms using the BR2 method [2],

(u, w) = f TOT • A (u) Vu dS2
k ETh

+ E f (ATV OT • IIVIT • (AV u) + Lai • (An fr f (iuD) dr

f f

- E f Vw+) • (U± — UB) — (711+ n+ )7' • ABVILB dr

f Err, f

- :E. f.
f Er B

(w+n+)T • A f r f (0-1+ — uB) n+) dF, (1.9)

where AB is the viscous diffusion tensor evaluated at the boundary, r is the lifting
operator, and ne is the BR2 stabilization parameter which must be greater than or
equal to the number of faces in an element. The lifting operator is defined on an
interior face (f) by,

0 = f TT • r f (q) dSZ + f N
T 

• q dr VT, q E [Wh,A
d

kEk f

and on the boundary by,

0 = f TT • r f (q) + f 7-+T • q dr vT, q E [WhAd •
kB

(1.10)

The set of elements sharing the interior face (f) is k f , and the element on the interior
of a boundary face is k B. Essentially, the lifting operator penalizes the gradient on u
based on the jumps present between elements.

The DG discretization of a source term (S (u)) is given by,

insou 
13 
rce u, w) E

"“11, 
S (u) dQ.

kETh fl2k

(1.12)

In the DG method, the solution is represented as a polynomial defined piecewise
within each element. This means straight-sided elements are not required by the
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DG method. Instead, we can use elements with curved faces. This is advantageous
since approximating a curved geometery with straight-sided elements introduces a
discretization error that scales with the characteristic size of the mesh.

Since the integrals present in the DG method cannot be performed analytically, we
use Gaussian Quadrature to approximate the integrals. The order of the quadrature
is dependent on the order of the approximtation space (p) as 3 (p + 2) — 1. Note that
it is independent of whether the grid is curved or straight sized.

1.2.1. Shock Capturing. To regularize the solution around shocks, an artificial
viscosity term added to the Navier-Stokes equations. The artificial viscosity formu-
lation is based on the work of Barter and Darmofal [1], and Yano [8]. An additional
PDE is solved to drive the artificial viscosity, which we will refer to as the 'sensor
PDE'. The sensor PDE used to create a smooth shock-sensor field (s) is given by,

0 = V • (riVs) + (u) — s] , (1.13)

where nu = C2717,04k3 . This PDE is sovled subject to Robin boundary conditions,

with coefficients,

as

rlij 
„, ni -VC2aiRijnis = 0.
j0/X 

C2=5 C3 — 1.

We use Barter's element-based source term [1] to drive the sensor PDE,

1 f  (u)]] 

Jk 
(u) =

laKI fa, fg (n)} '
(A) = loglo (Jk + 1O-16),
6 = 3 + 21og10 P + 0.5,

(Jk
Sk 

6 )
(u) = f switch (

 (u)) —  
; 10

(1.14)

(1.15)

(1.16a)

(1.16b)

(1.16c)

(1.16d)

where P is the polynomial order of the basis functions used. This sensor is driven by
inter-element jumps in a solution quanity (g (u)), which we are free to specify. In this
paper we have used inter-element pressure jumps to detect shocks (i. e. g (u) = p).
The parameter ,g governs the width over which the switch goes from fully on to fully
off. We use ,g = 2, which means the switch turns on over 2 orders of magnitude
change in Jk. The non-linear switch is given by,

f switch (; a) = + log [1
a

e—a (1-0 
— 

e—ce

e—a(1-0 — 1 ].
(1.17)

We interpret the sensor variable (s) as the inverse of the Peclet number required
locally. So the artificial viscosity is calculated from the solution to the sensor PDE
as,

= 2 (u) 'H&j max {0, .9} .
p

(1.18)



A final correction is applied such that this artificial viscous term is applied to V (pH),
rather than V (pE). Thats is the flux due to the artificial viscosity is given by,

p
FAV = [PAT . (1.19)

pH

This is the final viscous term added to the Navier-Stokes equations to regularize the
solution around shocks.

1.2.2. Error Estimation. We now give an overview of the error estimation
methodology used. A more complete discussion can be found ny Yano[8]. Consider
an output function derived from the solution to the PDE, J (in this case the heat flux
over the surface). The error between the approximation (based on the discrete PDE
solution) and the true value can be defined as,

etrue = J (u) J (1111,2)) . (1.20)

Using dual weighted residual (DWR) methodology described by Becker and Rannacher [3]
this error can be written as,

etrue = Rh,p (uh,p, (1.21)

where is the adjoint solution given by,

fh,p, [U, Uh,p] (w = Jh,P[u, uh,p] (w) vw E W. (1.22)

The quantities R;,‘75 and A45 are mean-value linearizations,

1

kh [u, uh,p] (w, v) = I R' h,73 [(1 — 0) U+Ouh,p] (w, v) dB (1.23)

1

4245 [u, Uh,p] (W) = I 4,43 [(1 — 0) u Uh,p] (w) dB . (1.24)

The Frechet derivatives of R and J about u with respect to w (i. e. the first argument)
are denoted by R;,,i3 [u] and 475 [u] respectively.

Since the true adjoint solution is not available, an approximation to the adjoint
in an enriched space (we use /5 = p 1) linearized about uh,p is obtained by solving
the problem,

Rfh,13 [uh,p] (W h 5, 4 h 43) = 4,23 [Uh,p] (wh,23) Ywh,25 e Wh,23• (1.25)

We can now obtain the DWR error estimatate approximation,

E = —Rh,p (tth,p,Oh,p) •

Finally, the local error estimate (TA) corresponding to element k is defined as,

71k = 1 1:11i,p (Uh,p, Oh>15101 •

5

(1.26)
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1.3. Blottner Sphere. We have chosen to use the sphere case examined by
Blottner[4] for our investigation. Blottner used a shock-fitting axisymmetric Navier-
Stokes code to obtain high quality heat flux results, which we use as our reference
values.

The Blottner sphere is in a Mach 5 flow, with a Reyonlds Number (based on sphere
diameter) of 1.8875 x 106. Using a diameter of 0.127m, we obtain the following inflow
conditions in Table 1.1. The wall temperature is 98.89K.

2. Two-Dimensional Results. We start by examining a two dimensional ana-
logue before performing full 3D calculations. Heat flux results are obtained for a 2D
cylinder with the same diameter as Blottner's Sphere. Since Blottner only provides
results for a sphere, we correct the stagnation heatflux from axisymmetric to 2D ac-
cording to Equation 1 of Reference [6]. We use this as our reference value, however it
is important to note that this is an approximation to the stagnation point heat flux,
so it is considered a guide rather than the truth value.

2.1. Provided Q1 Grids. We start by calculating the heat flux over the sphere
using a family of Q1 grids which are considered best practice for finite volume calcula-
tions. The grid parameters are given in Table 2.1. These are structured quadrilateral
grids with the same number of elements in each direction.

In Figure 2.1b the near-wall region of Grid 2 is shown, where we have reflected
the grid in x = 0, and overlayed the upper and lower portions of the grid. Note that
the upper and lower portions of the grid do not lay over each other — that is the grid
is slightly asymmetric. This manifests in an asymmetry in the heat flux of order 1%
on the coarsest grid.

-0.15

(b) Comparison of upper and lower near-
(a) Grid 2 wall grids

Fig. 2.1: Grid 2

The DG het flux results on this family of grids are given in Figure 2.2, along
with the finite volume results on the same grid. As the grid resolution is increased,
the quality of the predictions improve. Moving away from the stagnation point, the
DG results tend to overpredict the heat flux. This overheating reduces as the grid is
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refined. This is due to the fact that the sensor variable is non-zero in the boundary
layer away from the stagnation point.
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The adjoint P1 solutions are given in Figures 2.3 to 2.18 for Grids 1 to 4 repec-
tively. All of the adjoints exhibit oscillation in the boundary layer. While the extent
of these oscillations reduces as the number of elements increases, the oscillations are
present even in the finest grid.

The error indicator predicted by the DWR is given in Figures 2.19 to 2.22 for
Q1 Grids 1 to 4 respectively. As both the order is increased and the grid is refined,
the sources of error in the integrated heat flux narrow to the shock, the boundary
layer, and the stagnation streamline. Increasing the grid resolution shifts the source
of error from being approximately equal between the shock and the boundary layer,
to the shock being the most significant contribution to the error. As the order of
the solution increases, the ratio of the shock and boundary layer resolutions remains
approximately fixed. Note that on these Q1 grids, the inability of the grid to account
for the curvature of the sphere introduces error near the boundary in the higher-order
results.

2.2. Provided Q3 Grids. Since the quality of solution using higher-order DG
is known to be poor when using Q1 grids, the provided Q1 grids are projected to Q3,
by interpolation in the (r, B)-space to generate the higher-order nodes. These grids
share the same slight near-wall asymmetry of the original Q1 grids.
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The poor quality heat fluxes in Figure 2.24a is due to the fact that the grid around
the boundary layer is relatively coarse. This results in a non-zero sensor value in the
boundary layer for the P2 and P3 results, as can be seen in Figure 2.25. Thus there
is non-zero artificial viscosity in the boundary layer, which is the cause of the poor
quality heat fluxes.

The surface pressure profiles are given in Figure 2.26, and the surface shear profiles
are given in Figure 2.27. There is good agreement between the finite volume and DG
results, except on Grid 1, where the effect of the artificial viscosity in the boundary
layer can be seen in both the pressure and shear stress profiles.

The primal P1 solutions are given in Figures 2.28 to 2.31 for Grids 1 to 4 repec-
tively. Note that while the maximum sensor value remains approximately constant
as the grid resolution is varied, the artificial viscosity applied is proportional to the
grid size (see Equation 1.18), so the artificial viscosity decreases as the grid resolution
increases.

The density, velocity and temperature profiles along the stagnation line are given
in Figure 2.32 to 2.43, with the results from SPARC for comparison. While the density
and temperature results are similar, we can see that velocity profiles in the boundary
layer are converging to different profiles.

The adjoint P1 solutions are given in Figures 2.44 to 2.59 for Grids 1 to 4 repec-
tively. Since Grid 1 is so coarse, the adjoint result for that grid is of low quality, and
exhibits instability in the boundary layer (e. g. see Figure 2.44a). On the finer grids,
the adjoint features are primarily the bounday layer, and the stagnation streamline.
The sensor equation adjoint is active almost exclusively in the boundary layer, how-
ever on the finest grids, a feature can be seen where the shock intersects the stagnition
streamline.

The P3 adjoints on the coarsest grid are given in Figures 2.60 and 2.61. This
corresponds to one of the low quality heat flux results in 2.2a. We can see significantly
more oscillation in these results than the P1 results, which indicates that the grid
resolution is insufficient to capture the adjoint solution correctly. This feature is at
the sonic line, and is due to the log-type signularity that occurs in the Euler equations
when flow accelerated from subsonic to supersonic Mach numbers[5].

The DG results on these grids are given in Figure 2.24, along with the finite
volume results on the same grid. As the grid resolution is increased, the quality of
the predictions improve. Comparing to the Q1 results, we can see that a significant
improvement in the quality of the DG results is obtained due to curving the grid to
better conform to the spherical surface. In fact, the results are now comparable in
quality to the finite volume results on the same grid.

The improvement in the result moving from a Q1 to a Q3 grid is so striking due to
the artificial viscosity method used. The artificial viscosity is driven by a resolution
detector. That is the source term in the sensor PDE is designed to be active in
regions where the resolution of the grid is insufficient to resolve the solution features.
This is the case in the boundary layer for the Q1 grids, due to a curved geometry
being approximated with straight sides. This results in a non-zero sensor field in the
boundary layer (leading to non-zero artificial viscosity) for the Q1 case, which is not
present in the Q3 case (see Figure 2.62).

The error indicator predicted by the DWR is given in Figures 2.63 to 2.66 for Q3
Grids 1 to 4 respectively. While the trends are similar to those for the error indicator
on the Q1 grids, the magnitude of the error contribution due to the boundary layer
mesh resolution is significantly reduced. The grid resolution at the shock around the
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stagnation streamline is now the prime contributor to the error.
Our results exhibit two limiting cases of boundary layer resolution. The first is

when the boundary layer is too coarse, which results in poor heat flux predictions (see
Figure 2.24a). In this case we can see oscillations in the adjoint (Figures 2.44, and
2.60), as well as significantly higher error indicator values (Figure 2.63). The second
limit is when the boundary layer is sufficiently refined that the artificial viscosity is
essentially zero in the boundary layer. In this case, the heat flux is converging, the
adjoints as well behaved, and the error indiciator shows that the error in the heatflux
is primarily driven by the shock.

2.3. Synthesis. The variation of stagnation and surface integrated heat fluxes
with degrees of freedom are given in Figures 2.68 and 2.69 respectively. We use the
Gaussian weighted surface heat flux centered on the stagnation point as the stagnation
heat flux for the DG results. Projecting from the Q1 grids to Q3 results in a significant
improvement to the quality of the DG results. Using high-order grids, it is possible
to obtain DG heat flux results that are comparable to finite volume results.

3. Three-Dimensional Results. The heat flux over a 120K element grid of
Q1 hexerhedrals is shown in Figure 3.1. The heat flux matches the stagnation point
value from Blottner and the finite volume result well. However, it exhibits the same
overheating away from the stagnation point that the Q1 cylinder results have. Based
on the difference between the Q1 and Q3 cylinder results, we expect this is a feature
of using a Q1 grid. The DG heat flux also exhibits has the same 'grid imprinting'
phenomenon as the SUPG results in Figure 3.2.

We suspect the 'grid imprinting' in the DG results is due to the grid at the wall,
particularly when using a Q1 grid. The sensor equation (which drives the artificial
viscosity) is essentially a resolution indicator. Near the surface of the sphere, the Q1
grid poorly approximates the true geometry of the sphere, which causes generation
of the sensor variable. Since the sensor is non-zero in the boundary layer, artificial
viscosity is applied in the boundary layer which is a function of the grid size (see
Equation 1.18). Thus, in the region where the size of the surface grid rapidly increses,
the artificial viscosity also increases rapidly, which is shown in Figure 3.3.

In Figure 3.4 the error indicator is shown for horizontal and 45° inclined slices
through the domain normal to the sphere. Both the shock and the boundary layer
regions are significant sources of error in the domain. The sudden increase in error
in the boundary layer region corresponds to where the surface grid size also abruptly
changes.

The error indicator over the surface of the sphere is given in Figure 3.5. We can see
that a significant contribution to the error in the integrated heat flux comes from the
elements on the surface of the sphere. Furthermore, the error contribution increases
by nearly two-orders of magnitude in the region corresponding to 'grid imprinting'.
This, combined with the artificial viscosity result in Figure 3.3, suggests that it is the
sudden change in the size of elements on the surface of the sphere that results in the
`grid imprinting' observed in heat flux.

4. Conclusions. The prediction of heat flux over a sphere in hypersonic flow is
an interesting and challenging problem. When using solutions to the Navier-Stokes
equations to predict the heat flux, a common source of numerical error is a phe-
nomenon known as 'grid imprinting'. Rather than the axisymmetric heat flux profile
expected for a spherical surface, the topology of the grid can be seen in the surface
heat flux distribution. We have examined the origin of this phenomenon; specifically
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the regions of the grid that contribute most. Comparisons have been made between
second order finite volume and Discontinuous Galerkin results, where the DG results
ranged from 2nd to 4th order. The Dual Weighted Residual framework was used to
obtain local error estimates for the heat flux integrated over the surface with respect
to the grid for the DG results.

We now refer back to our original research questions.
Can we get good quality high-order heat fluxes on cylinders and spheres?

Based on the results from the cylinders in two-dimensions, a curved (higher-
order) grid is important for obtaining good quality heat fluxes in the case. This
can be seen in the primal solution, where the sensor is non-zero (and significant) in
the boundary layer for the Q1 grids. The non-zero sensor field results in artificial
viscosity being applied in the boundary layer, which degrades the quality of the heat
fluxes significantly. The error indicator also shows that in the Q1 cases, the resolution
of the grid near the wall contributes much more to the error in heat flux than in the
Q3 case.
Can we use features of the numerical solution to understand the error
sources?

The adjoint and error indicator results show that our Q3 results span two limiting
cases of grid resolution. The coarsest grid is too coarse in the boundary layer, which
leads to poor heat flux predictions. The coarseness of the grid can be seen reflected in
the adjoints, where there is significant oscillation, as well as significantyl higher values
of the error indicator. The second limit is when the boundary layer is sufficiently
refined that the artificial viscosity is essentially zero in the boundary layer and the
hat flux is converging. In this case the adjoints do not exhibit and oscillations, and
the error indicator shows that the error is primarily driven by the grid resolution at
the shock.
What is the origin of this grid imprinting?

The 'grid imprinting' appears to be driven by the sudden change in the size of
surface elements. At the resolution that the sphere case was run at, the sensor is non-
zero in the boundary layer. Since the artificial viscosity is proportional to the grid
spacing, as the size of elements on the surface rapidly increases, so does the artificial
viscosity.This is reflected in the error indicator, which increases by nearly two-orders
of magnitude as the surface elements rapidly increase in size. That is, the error
indicator shows that the error in integrated heat flux has significant contributions
from the large elements on the surface of the sphere.

5. Future Work. As a result of this investigation, we have two new research
questions:

• Does using curved grids in 3D alleviate grid imprinting? Based on
the results for the cylinders, we would expect curved grids to significantly
reduce the magnitude of the sensor variable, and so artificial viscosity, in the
boundary layer. Since the artificial viscosity is element-size dependent, it is
reasonable to expect curved grids to reduce the 'grid imprinting'. However,
based on this work it is not clear if there are other contributing factors to the
'grid imprinting' which are unaffected by the grid curvature. To be able to
reliably predict high quality heat fluxes on these geometries, it is necessary
to further investigate the extent that curved grids improves heat fluxes in 3D
configurations

• Does output based mesh adaptation alleviate grid imprinting? If
'grid imprinting' is primarily caused by the rapid change in surface grid size,
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as the error indicator results suggest, then adapting the grid to reduce the
error in integrated heat flux (e. g. using the MOESS framework[8]) should
reduce 'grid imprinting', and result in a grid whose surface elements vary
smoothly in size. If output based mesh adapation is able to produce high
quality heat fluxes for reasonable computational expense, it would reduce the
effort required in grid generation for the user, and the dependence of the
quality of the final result on the grid generated.
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Property Value
Density [kg /m3] 8.788 x 10-2
Velocity [m/ s] 871.47
Temperature [K] 75.58

Table 1.1: Inflow conditions

Index Elements Wall Normal Spacing [m]
1 2, 500 1.6 x 10-6
2 10,000 8 x 10-7
3 40,000 4 x 10-7
4 160,000 2 x 10-7

Table 2.1: Q1 quad. grid parameters
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Fig. 2.3: Adjoint P1 solution on Q1 Grid 1
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Fig. 2.4: Adjoint P1 solution on Q1 Grid 1, focus on stagnation point
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Fig. 2.5: Adjoint P1 solution on Q1 Grid 1, focus on surface half way around compu-
tational domain
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Fig. 2.6: Adjoint P1 solution on Q1 Grid 1, focus on surface at edge of computational
domain
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Fig. 2.7: Adjoint P1 solution on Q1 Grid 2
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Fig. 2.8: Adjoint P1 solution on Q1 Grid 2, focus on stagnation point
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Fig. 2.9: Adjoint P1 solution on Q1 Grid 2, focus on surface half way around compu-
tational domain
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Fig. 2.10: Adjoint P1 solution on Q1 Grid 2, focus on surface at edge of computational
domain
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Fig. 2.11: Adjoint P1 solution on Q1 Grid 3
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(e) Sensor

Fig. 2.12: Adjoint P1 solution on Q1 Grid 3, focus on stagnation point

(a) Continuity (b) X-momentum
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Fig. 2.13: Adjoint P1 solution on Q1 Grid 3, focus on surface half way around com-
putational domain
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Fig. 2.14: Adjoint P1 solution on Q1 Grid 3, focus on surface at edge of computational
domain
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Fig. 2.15: Adjoint P1 solution on Q1 Grid 4
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Fig. 2.16: Adjoint P1 solution on Q1 Grid 4, focus on stagnation point
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Fig. 2.17: Adjoint P1 solution on Q1 Grid 4, focus on surface half way around com-

putational domain
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(a) Continuity (b) X-momentum

(d) Total internal energy

-***"

(e) Sensor

(c) Y-momentum

Fig. 2.18: Adjoint P1 solution on Q1 Grid 4, focus on surface at edge of computational
domain
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Fig. 2.19: Error indicator on Grid 1 for integrated surface heat flux using Q1 quadri-
lateral grids
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Fig. 2.20: Error indicator on Grid 2 for integrated surface heat flux using Q1 quadri-
lateral grids
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Fig. 2.21: Error indicator on Grid 3 for integrated surface heat flux using Q1 quadri-
lateral grids
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Fig. 2.22: Error indicator on Grid 4 for integrated surface heat flux using Q1 quadri-
lateral grids
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Fig. 2.23: Error indicator along stagnation line of provided Q1 quadrilateral grids
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Fig. 2.24: Heat flux predicted using provided Q3 quadrilateral grids
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Fig. 2.25: Sensor along stagnation line for Grid 1
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Fig. 2.26: Surface pressure predicted using provided Q3 quadrilateral grids
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Fig. 2.27: Surface shear predicted using provided Q3 quadrilateral grids
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Fig. 2.28: Primal P1 solution on Q3 Grid 1
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Fig. 2.29: Primal P1 solution on Q3 Grid 2
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Fig. 2.30: Primal P1 solution on Q3 Grid 3
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Fig. 2.31: Primal P1 solution on Q3 Grid 4
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Fig. 2.32: Stagnation streamline density profiles on Grid 1

800 -

600 -
7

L'cl 400 -

200 -

o -

• SANS P1

• SANS P2

• SANS P3

• SPARC

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Wall Distance

6
• SANS P1

• SANS P2

5 • SANS P3

• SPARC •

4

E

.•• . •3

. • • • • •

2

as!::•••

.

.
0
0.0000 0.0001

(a) Stagnation streamline to computa- (b) Stagnation
tional domain boundary boundary layer

0.0002 0.0003

Wall Distance

0.0004

streamline focus

Fig. 2.33: Stagnation streamline velocity profiles on Grid 1
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Fig. 2.34: Stagnation streamline temperature profiles on Grid 1
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Fig. 2.35: Stagnation streamline density profiles on Grid 2
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Fig. 2.36: Stagnation streamline velocity profiles on Grid 2
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Fig. 2.37: Stagnation streamline temperature profiles on Grid 2
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Fig. 2.38: Stagnation streamline density profiles on Grid 3
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Fig. 2.39: Stagnation streamline velocity profiles on Grid 3
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Fig. 2.40: Stagnation streamline temperature profiles on Grid 3

37

0.0005

on



-0,

2.0

1.5

1.0

0 5

• SANS P1

• SPARC

0 0  ,

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Wall Distarice 8111

2.25

2.00 -

1.75

<E 1.50

• SANS PI

• SPARC

i• 1.25-

8 1.0)-

0.75 -

0.50 -

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030

Wall Distance [rn]

(a) Stagnation streamline to computa- (b) Stagnation streamline focus on
tional domain boundary boundary layer

Fig. 2.41: Stagnation streamline density profiles on Grid 4
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Fig. 2.42: Stagnation streamline velocity profiles on Grid 4
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Fig. 2.43: Stagnation streamline temperature profiles on Grid 4
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Fig. 2.44: Adjoint P1 solution on Q3 Grid 1
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Fig. 2.45: Adjoint P1 solution on Q3 Grid 1, focus on stagnation point
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Fig. 2.46: Adjoint P1 solution on Q3 Grid 1, focus on surface half way around com-
putational domain
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Fig. 2.47: Adjoint P1 solution on Q3 Grid 1, focus on surface at edge of computational
domain
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Fig. 2.48: Adjoint P1 solution on Q3 Grid 2
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Fig. 2.49: Adjoint P1 solution on Q3 Grid 2, focus on stagnation point
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Fig. 2.50: Adjoint P1 solution on Q3 Grid 2, focus on surface half way around com-
putational domain
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Fig. 2.51: Adjoint P1 solution on Q3 Grid 2, focus on surface at edge of computational
domain
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Fig. 2.52: Adjoint P1 solution on Q3 Grid 3
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Fig. 2.53: Adjoint P1 solution on Q3 Grid 3, focus on stagnation point
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(c) Y-momentum

Fig. 2.54: Adjoint P1 solution on Q3 Grid 3, focus on surface half way around com-
putational domain
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Fig. 2.55: Adjoint P1 solution on Q3 Grid 3, focus on surface at edge of computational
domain
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Fig. 2.56: Adjoint P1 solution on Q3 Grid 4
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Fig. 2.57: Adjoint P1 solution on Q3 Grid 4, focus on stagnation point
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Fig. 2.58: Adjoint P1 solution on Q3 Grid 4, focus on surface half way around com-
putational domain
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Fig. 2.59: Adjoint P1 solution on Q3 Grid 4, focus on surface at edge of computational
domain
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Fig. 2.60: Adjoint P3 solution on Q3 Grid 1
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(c) Edge of compuational
(a) Stagnition point (b) Mid-cylinder domain

Fig. 2.61: Sensor equation adjoint P3 solution on Q3 Grid 1
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Fig. 2.62: Sensor field for Grid 2 P1 solution
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Fig. 2.63: Error indicator on Grid 1 for integrated surface heat flux using Q3 quadri-
lateral grids
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Fig. 2.64: Error indicator on Grid 2 for integrated surface heat flux using Q3 quadri-
lateral grids
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Fig. 2.65: Error indicator on Grid 3 for integrated surface heat flux using Q3 quadri-
lateral grids
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Fig. 2.66: Error indicator on Grid 4 for integrated surface heat flux using Q3 quadri-
lateral grids
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Fig. 2.67: Error indicator along stagnation line of provided Q3 quadrilateral grids
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Fig. 2.68: Stagnation heat flux predicted using provided quadrilateral grids
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Fig. 2.69: Surface integrated heat flux predicted using provided quadrilateral grids
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Fig. 3.1: Heat flux over sphere using Q1 grid
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Fig. 3.2: Heat flux over the Blottner Sphere, as predicted by Kirk et al.[7]

56



Fig. 3.3: Surface artificial viscosity (exx) profile — looking along freestream velocity
vector
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Fig. 3.4: Error indicator slices for Q1 sphere grid

58



(a) Log scale (b) LinearScale

Fig. 3.5: Error indicator over surface of Q1 sphere grid result
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