

BNL-208004-2018-BOOK

Using YFP as a Reporter of Gene Expression in the Green Alga *Chlamydomonas reinhardtii*

C. Blaby,

To be published in "Methods in Molecular Biology"

April 2018

Biology Department
Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Using YFP as a reporter of gene expression in the green alga *Chlamydomonas reinhardtii*

Crysten E. Blaby-Haas^{1*}, M. Dudley Page², Sabeeha S. Merchant^{2,3}

¹Biology Department, Brookhaven National Laboratory, Upton, NY 11973

²Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

³Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095

Running title: Promoter- YFP fusions in *Chlamydomonas*

Keywords: algae, iron, zinc, copper, yellow fluorescent protein

***To whom correspondence should be addressed:**

Tel: 6313446038; email cblaby@bnl.gov

1

2

3 **ABSTRACT**

4 The unicellular green alga *Chlamydomonas reinhardtii* is a valuable experimental system in plant biology
5 for studying metal homeostasis. Analyzing transcriptional regulation with promoter-fusion constructs in *C.*
6 *reinhardtii* is a powerful method for connecting metal-responsive regulation with *cis*-regulatory elements,
7 but overcoming expression-level variability between transformants and optimizing experimental conditions
8 can be laborious. Here, we provide detailed protocols for the high-throughput cultivation of *C. reinhardtii*
9 and assaying Venus fluorescence as a reporter for promoter activity. We also describe procedural
10 considerations for relating metal supply to transcriptional activity.

11

12 **1. Introduction**

13 Originally isolated from the jellyfish *Aequorea victoria* (1, 2), green fluorescent protein (GFP) was quickly
14 adopted as a reporter in multiple organisms including bacteria (3, 4), plants (5, 6), and animals (3, 7). The
15 widespread use of GFP and its variants (fluorescent proteins (FPs) engineered to have different physical
16 and spectral properties (8)) is due in large part to their ease of use. FPs derived from GFP form their
17 chromophore autocatalytically (3); detection of fluorescence *in vivo* does not require the addition of a
18 substrate and does not necessarily require sample processing. The most common applications of FPs
19 include localization of FP-protein fusions *in vivo* and gene expression studies of promoter-*FP* fusions. In
20 the first case, the FP serves as a fluorescent label for proteins of interest; in the second case, the magnitude
21 of fluorescence is a proxy for promoter activity (Figure 1).

22

23 Here, we describe the use of promoter-*YFP* fusions to profile promoter activity in response to metal
24 availability in the green alga *Chlamydomonas reinhardtii*. YFP (Yellow Fluorescent Protein) is a general
25 term used to refer to variants of GFP that carry amino acid substitutions that shift the protein to a yellowish
26 emission (8, 9). This protocol specifically employs Venus, an engineered YFP resulting from several amino
27 acid substitutions that provide increased fluorescence intensity, faster maturation, and relative tolerance to
28 pH and chloride ions as compared to its predecessor (EYFP, enhanced yellow fluorescent protein) (10).
29 The exploitation of FPs, specifically YFP, in *C. reinhardtii* has been facilitated in recent years by the
30 availability of constructs and strains developed to overcome inherently poor protein expression associated
31 with non-native genes expressed from the nuclear genome (11). The robustness of FP-based systems in
32 *C. reinhardtii* (and thus the ability to use these reporter systems with promoters of lowly expressed genes)
33 continues to improve (12-14).

34

35 The YFP reporter protocol described here has several attractive qualities. Individual strains are arrayed in
36 96-well format, and fluorescence is measured on a plate reader, enabling multiple independent
37 transformants to be assayed simultaneously (see additional information about replicates in section 3.2).
38 This is an important consideration for any reporter system in *C. reinhardtii*, as introduced DNA
39 predominately recombines illegitimately into the nuclear genome, and the expression-level of the promoter

40 fusion varies between transformants in part because of the specific site of integration in each case (15-17).
41 Therefore, multiple independent transformants are essential for assessing the significance of variation in
42 promoter fusion activity between conditions or between wild-type and mutated promoter regions. Samples
43 are assayed for YFP activity without upstream sample processing. As a result, assay time equates to the
44 speed of a plate reader, which is typically less than 5 min per plate. Because there is no need for sample
45 processing, fluorescence of whole cultures grown in the presence and absence of stimuli can be measured
46 over the course of the growth curve without removing cells. By using bottom-read fluorescence, which does
47 not require removal of the plate lid, cultures are more easily maintained free of contamination. Because of
48 these attributes, optimizing the growth conditions and optimal point in the growth curve to measure YFP
49 fluorescence for a subsequent mutational analysis (i.e. largest difference between WT promoter-YFP
50 fluorescence from test and control conditions, see Figure 3C for an example) is straightforward and
51 relatively simple.

52

53 Since *C. reinhardtii* is a valuable single-celled reference organism for understanding metal homeostasis in
54 the plant lineage (18-20), we also provide details for growing cultures with controlled metal nutrition.
55 Because many metal ions are nutrients and potential toxins, plants must fine-tune morphological,
56 physiological, and molecular responses to meet the catalytic demand for these elements while avoiding
57 toxicity. How the cell achieves this balance through gene regulation is an active field of investigation. For
58 studies of metal-responsive gene regulation, *C. reinhardtii* is an advantageous experimental system for
59 several reasons (21, 22), including: (1) metal supply can be tightly controlled without the need to resort to
60 using metal chelators, aiding reproducibility and avoiding mis-interpretation of results due to the non-
61 specific nature of chelators, (2) the ability to distinguish between absence of a metal and presence of the
62 metal but with reduced accessibility (a distinction that is missing in many papers in the literature), and (3)
63 availability of transcriptomic datasets and well characterized markers of iron, zinc and copper deficiency
64 (23-25). To identify *cis*-acting regulatory sequences and the *trans*-acting metalloregulators in *C. reinhardtii*,
65 we detail several considerations that should be made when correlating promoter activity with metal
66 availability.

67

68 **2. Materials, equipment and experimental considerations**

69 1. *Chlamydomonas reinhardtii* str. UVM11; this strain has higher YFP expression from the nuclear
70 genome than typical laboratory strains (11).

71 2. DNA for transformation: 1) pJR39GW containing the promoter fusion construct to be analyzed
72 (referred to in the protocol as the “test promoter”), 2) pJR39GW (or other appropriate negative
73 control), and 3) pJR39GW containing a promoter fragment that can be used as a positive control,
74 such as the *FOX1* promoter (26), *ZRT1* promoter (23) or *CYC6* promoter (27) as a positive control
75 for iron-, zinc- or copper-responsive YFP expression, respectively. pJR39GW is a Gateway-
76 adapted version of pJR39 (11) and was constructed by replacing the *PsaD* promoter of pJR39 with
77 a Gateway cassette. pJR39GW contains *aphVIII*, which encodes resistance to paromomycin for
78 selection of *C. reinhardtii* transformants, *bla* for selection of *E. coli* transformants with ampicillin,
79 and the Venus variant of YFP as the reporter protein. See (XXCITEXX Blaby and Blaby-Haas) in
80 this series for details regarding the cloning of a promoter fragment into Gateway-adapted vectors.

81 3. Growth conditions for *C. reinhardtii*: Aseptic technique and clean, organized working practices
82 should be applied at all stages. These practices are important to avoid contamination of cultures
83 with both unwanted organisms and metals (28). *C. reinhardtii* and sterile media should be handled
84 in a laminar flow hood with pre-sterilized culture plates, pipette tips, and pipettor (the barrel can be
85 sprayed with 70% ethanol). Standard growth conditions are 23°C, ~80 $\mu\text{mol m}^{-2} \text{s}^{-1}$ with a ratio of
86 1 warm fluorescent light bulb (3,000K) to 2 cool fluorescent light bulbs (4,100K) and rotational
87 shaking at 180 rpm, e.g. in Innova 44 incubators (Innova, New Brunswick Scientific, Edison, NJ),
88 for liquid cultures, or stationary in growth chambers (Percival CU-36L6 or similar) for petri dishes
89 and 96-well plates.

90 4. *C. reinhardtii* “metal-free” growth medium (as described in Quinn and Merchant (28)): Tris-acetate
91 phosphate (TAP) medium (29) with high purity (>99.9% trace metals basis) chemicals (available
92 from Sigma-Aldrich, ACROS organics or AlfaAesar; certificates of analysis are typically available
93 before purchase of chemicals and can be used to estimate whether concentrations of
94 contaminating metals in the prepared medium would be acceptable) and milliQ-H₂O: each liter of
95 TAP contains 10mL TAP salts solution (15g NH₄Cl, 4g MgSO₄•7H₂O, 2g CaCl₂•2H₂O, final volume

96 of 1L milliQ-grade H₂O; to avoid precipitation dissolve the CaCl₂ in 300mL milliQ-grade H₂O and
97 the NH₄Cl and MgSO₄ in 500mL milliQ-grade H₂O; then mix the two solutions together and bring
98 up to the final volume), 8.3mL phosphate solution (18.5g K₂HPO₄ and KOH to pH of 7.1 (about
99 28mL of 20% KOH), final volume 1L), 10mL Tris-acetate solution (242g Tris, 100mL glacial acetic
100 acid, final volume of 1L milliQ-grade H₂O) and 1mL each component of high-purity Kropat trace
101 metal solutions (30). Media stock solutions (TAP salts, phosphate and Tris-acetate solutions) and
102 Kropat trace metal solutions are stored in metal-free plastic (to prevent metal contamination of
103 solutions in the laboratory, storage containers for metal stock solutions should not be reused to
104 make other solutions or washed with general-use laboratory glassware). Dedicated “metal-free”
105 plastic graduated cylinders should be used. To make appropriate metal-deficient or –free medium,
106 reduce or leave out, respectively, the necessary metal stock solution. When making TAP, use
107 disposable plastic serological pipette tips and make media in freshly acid-washed glassware (rinsed
108 3 times with 6N HCl followed by 7 rinses with milliQ-grade H₂O, the glassware should be used
109 within two days or re-acid washed). Media should be made no earlier than the day before (or
110 morning of) 96-well plates are to be filled to prevent leaching of metals from the glass/plastic into
111 the media.

- 112 5. Select agar (Thermo Fisher 30391-023), washed three times in milliQ-grade H₂O, is used at 1.5%
113 w/v for solid growth medium.
- 114 6. Agar-solidified TAP in deep-dish petri dishes (Fisher Scientific FB0875711) containing 5 μ g/mL
115 paromomycin (Sigma P5057).
- 116 7. Light microscope (such as a ZEISS Primo Star; bright-field illumination is sufficient for counting C.
117 *reinhardtii* cells).
- 118 8. Hemocytometer with cover slip (Sigma Z359629).
- 119 9. Low-adhesion microcentrifuge tubes, 2mL (USA Scientific 1420-2600), filled to the 250 – 300 μ L
120 demarcation with glassbeads (particle size, 425-600 μ m, acid-washed; Sigma G8772), autoclaved.
- 121 10. Sterile 50mL and 15mL conical polypropylene centrifuge tubes (Thermo Scientific 339652 and
122 339650, respectively)
- 123 11. Centrifuge and rotors appropriate for centrifuging 50mL tubes (Thermo Scientific 339652) at 2000

124 x g and for 15mL tubes (Thermo Scientific 339650) at 1000 x g.

125 12. Vortex mixer.

126 13. Sterile 96-well plates: for master plates can use clear plates with clear lids (such as the Nunc™
127 Edge 96-Well Plate, which has a moat for humidity control, Thermo Scientific 267313); for culture
128 plates used for fluorescence measurements use black with clear, flat bottoms and clear lids
129 (Thermo Scientific 165305).

130 14. Cell culture roller drum (Fisher Scientific 14-277-2) or tube rotator.

131 15. Multi-channel pipette, 10 – 100 μ L and 30 – 300 μ L, and sterile pipette tips.

132 16. Pre-sterilized multichannel basins (Fisher Scientific 13-681-500).

133 17. Plate reader capable of taking measurements of $A_{750\text{nm}}$, and bottom-read fluorescence with
134 Emission (Em): 514nm / Excitation (Ex): 530nm and Em:440nm/Ex:680nm (such as a Tecan
135 M1000 Pro).

137 3. Methods

138 3.1. Bombardment by glass beads – see Figure 2 for a workflow schematic (please refer to Neupert, 139 et al. (31) for additional details regarding transformation and Kindle (32) for original protocol)

140 1) Using Psil (or any restriction enzyme that cuts the plasmid outside of the promoter- YFP fusion and
141 *aphVII* region) linearize the negative control, positive control and test promoter plasmids.

142 2) Grow a 300mL liquid culture of UVM11 under standard growth conditions to a density of 1×10^6 cells
143 mL^{-1} . Cell density is determined using a light microscope and a hemocytometer (33).

144 3) Transfer 50mL of culture to sterile centrifuge tubes (eg 50mL Falcon tubes).

145 4) Collect cells by centrifugation at 2000 x g for 5min, room temperature. Pour off the supernatant.

146 5) Gently resuspend the pellet in sterile TAP by slowly pipetting up and down with a 1mL pipette tip
147 to a final cell density of 4×10^8 cells mL^{-1} .

148 6) Transfer 200 μ L aliquots of cells to a pre-autoclaved 2mL low adhesion tube containing glass beads
149 and DNA (500ng linearized DNA in total volume of 5 μ L).

150 7) Vortex at highest setting for 15s.

151 8) The beads will settle quickly to the bottom of the tube. Gently collect the cells using a 100 – 1000 μ L
152 single-channel pipette and sterile pipette tip. Transfer cells to a 15mL sterile centrifuge tube pre-
153 loaded with 5mL TAP.

154 9) Allow the cells to recover by incubating on a benchtop roller drum, 1 x g (~50 – 60 rpm), for 8h, in
155 low light (<40 μ mol m⁻² s⁻¹). The purpose of this step is to allow the cells to recover and express the
156 resistance marker before selection, and it is important that the cells do not undergo a round of cell
157 division to ensure that each colony is from an independent integrant.

158 10) Collect the cells by centrifugation at 1000 x g for 5min, room temperature, and pour off the
159 supernatant.

160 11) Gently resuspend the pellet by slowly pipetting up and down with a 1mL pipette tip in the remaining
161 volume of TAP left in the tube after decanting.

162 12) Gently spread cells with an ethanol-sterilized glass spreader or a pre-sterilized plastic spreader
163 onto agar-solidified TAP containing 5 μ g/ml paromomycin.

164 13) Incubate in growth chamber under standard growth conditions until colonies are visible (~5 – 7
165 days).

166

167 **3.2. YFP assay – see Figure 3A for a workflow schematic**

168 1) Using a multi-channel pipette with sterile tips, fill three 96-well plates with 200 μ L TAP per well.
169 These are the master plates for growing cells transformed with the 1) test promoter, 2) the
170 negative control, and 3) the positive control.

171 2) Using sterile pipette tips (we find 20 – 200 μ L size tips to be the most appropriate) array
172 transformants by hand into a 96-well plate (use aseptic technique when handling, open only in
173 laminar flow hood). To keep track of inoculation, leave tip in the well of the master plate until
174 an entire row is inoculated. Then swirl tips to ensure transfer of cells from tip to medium and
175 throw tips away. To avoid confusion between constructs and to have plenty of transformants
176 for robust statistics (since YFP level from each transformant will vary due to positional effects)
177 inoculate an entire 96-well plate with 96 individual colonies per construct and label plate
178 appropriately. Since variability due to the site of integration is substantially greater than

179 technical variability (due to investigator handling, aspects of the protocol or plate reader), it is
180 advantageous to have independent transformants rather than technical replicates (repeated
181 measurements of the same sample); for further discussion on experimental replicates, the
182 reader is encouraged to refer to Blainey, Krzywinski, and Altman (34).

183 3) Place plates in growth chamber and incubate under standard growth conditions as described
184 above for 5 days.

185 4) Using a multi-channel pipette and sterile tips, fill three clear-bottom, black-sided 96-well plates
186 with 200 μ L TAP per well and three clear-bottom, black-sided 96-well plates with 200 μ L TAP
187 minus the metal of interest or TAP with a reduced concentration of the metal of interest per
188 well. For the rest of the protocol, TAP with minus/reduced metal content will be referred to as
189 "inducing medium".

190 5) Working with a single master plate at a time, start by resuspending the cells in row A by gently
191 pipetting up and down with a multichannel pipette using sterile tips. Without removing tips from
192 the multi-channel pipette, transfer 10 μ L from row A of the master plate to row A of a fresh 96-
193 well plate (with black sides and clear bottoms to avoid fluorescent signal bleed-through
194 between wells) containing TAP, then add 10 μ L from row A of the master plate to row A of a
195 second plate containing inducing medium. Change tips to prevent cross-contamination of wells
196 and repeat with row B, then C and so on. Once finished inoculating from the first master plate,
197 start with the second master plate, followed by the third master plate.

198 6) Incubate the 96-well plates in a growth chamber under standard growth conditions. Care should
199 be taken to ensure that plates receive the same light intensity, thus ensuring similar growth
200 rates between plates.

201 7) After 24 hours measure the absorbance (750nm), chlorophyll fluorescence (Ex: 440nm, 9nm
202 bandwidth; Em: 680nm, 20nm bandwidth) and YFP fluorescence (Ex: 514nm, 5nm bandwidth;
203 Em: 530nm, 5nm bandwidth) of each plate. Subsequent to reading, place the plates back in
204 the growth chamber.

205 8) Repeat measurements every 24h for 7 days. For fluorescence measurements, the gain should
206 not be changed between measurements. We routinely use a gain of 50 for chlorophyll

207 fluorescence and 150 for YFP (using a Tecan M1000 PRO; for other plate readers these
208 parameters should be determined empirically). Two 96-well plates, one filled with sterile TAP
209 medium and one filled with sterile inducing medium should be used as blanks.

210 9) If the YFP fluorescence signal from the cells transformed with the test promoter in inducing
211 medium is not significantly higher than from those same transformants grown in TAP medium
212 after 4 days, perform a second round of metal depletion. The purpose of this step is to further
213 deplete the cells of metal ions that had been transferred during inoculation from the master
214 plate, as the carry over may be sufficient to suppress the activity of the metal-responsive
215 promoter fragment (see section 3.3.3 for a note on positive controls). Using a multi-channel
216 pipette and pre-sterilized filter tips, repeat steps 4 and 5, except that instead of inoculating fresh
217 plates from the master plates, transfer $\leq 10\mu\text{L}$ from the 96-well plate containing transformants
218 grown in inducing medium into fresh, sterile inducing medium, and transfer the same volume
219 from the 96-well plate containing transformants grown in TAP into fresh TAP.

220 10) Repeat steps 7 and 8.

221 222 3.3. Data Analysis

223 1) **Normalization:** YFP fluorescence can be normalized to absorbance and/or chlorophyll
224 fluorescence, which are used as proxies for cell density. Which normalization to use should be
225 determined empirically by calculating the proportionality of absorbance and chlorophyll
226 fluorescence as a function of cell number when cells are grown in TAP and inducing medium, i.e.
227 make standard curves. If growth in inducing medium negatively impacts chlorophyll content (for
228 example, cells grown with suboptimal iron nutrition are chlorotic compared to growth with sufficient
229 iron nutrition (35)) then the amount of YFP per cell will be overestimated when normalized to
230 chlorophyll fluorescence. Cell size can also change in response to metal nutrition (for example, the
231 average cell size is larger when *C. reinhardtii* is grown in the absence of zinc compared to the
232 presence of zinc (23)), which will affect the absorbance measurement (36). If both measurements
233 are inappropriate for normalization between the two growth conditions, an option is to take a subset

234 of transformants (such as the 3 transformants that appear to have the highest inducible YFP
235 activity) and quantify the cell number using a hemocytometer and microscope. However, this
236 measurement will reduce the volume of the corresponding wells by 20 μ L and should only be done
237 as an endpoint.

238 2) **Plotting data:** The normalized YFP fluorescence for each transformant from a single time point
239 can be plotted for TAP and inducing medium as in Figure 2B. Additionally, YFP fluorescence for
240 each transformant can be plotted as a fold-change between normalized YFP fluorescence
241 measured from TAP and inducing medium. Time course data can also be plotted, but for ease of
242 visualization (since 96 transformants in 2 growth conditions will generate 192 curves per construct)
243 the normalized YFP fluorescence from 2 or 3 transformants grown in TAP and inducing medium
244 can be plotted (Figure 2C).

245 3) **Statistics, controls and troubleshooting:** Possible sources of false negative and false positive
246 results include expression-level variability due to genome position effects of the YFP-construct,
247 background fluorescence (detection of fluorescence with Ex: 514nm / Em: 530nm not due to YFP),
248 and data normalization. Therefore, there are several ways to analyze the data to provide confident
249 conclusions about the activity of the test promoter.

250 a. Is there a statistically significant difference between the normalized YFP fluorescence of
251 test promoter transformants grown in TAP and inducing medium?

252 1. Calculate the probability associated with a Student's *t*-test. The convention in most
253 biological research is to use a significance level of 0.05.

254 b. If the answer is **yes** to (a):

255 1. Is the average fold-change for the test promoter significantly different from the
256 average fold-change for the negative control?

257 i. Calculate the fold-change in normalized YFP fluorescence between
258 inducing medium and TAP for each transformant.

259 ii. Calculate the probability that the average test-promoter fold-change is
260 different from the average negative-control fold-change with a Student's *t*-
261 test. The convention in most biological research is to use a significance

262 level of 0.05.

263 c. If the answer is **no** to (a):

264 1. Is the average fold-change for the positive control significantly different from the
265 average fold-change for the negative control?

266 i. Calculate the fold-change in normalized YFP fluorescence between
267 inducing medium and TAP for each transformant.

268 ii. Calculate the probability that the average positive-control fold-change is
269 different from the average negative-control fold-change with a Student's *t*-
270 test. The convention in most biological research is to use a significance
271 level of 0.05.

272 iii. The normalized YFP fluorescence from the positive control transformants
273 should be significantly different from the negative control. If not, then there
274 was either contaminating metal in the inducing medium leading to
275 repression of the promoter construct or absence of induction, or technical
276 issues with the plate reader. Differentiating between technical issues due
277 to the growth conditions or plate reader can be tested for by repeating this
278 protocol with a constitutively expressed YFP construct (such as pJR39
279 (11)). The resulting transformants should have statistically significantly
280 more YFP fluorescence when grown in TAP as compared to the negative
281 control.

282 **3.6. Notes**

283 1) Unfortunately, not all promoters have strong enough expression levels for detectable YFP
284 fluorescence with this system. Recently, several codon-optimized YFP constructs have been
285 published that may aid in studying these types of promoters (13, 14).

286 2) YFP has a relatively long half-life (37). Therefore, if time-resolved down-regulation of promoter
287 activity is to be studied, the reader is pointed to the luciferase reporter gene system (38-40).
288 Luciferase has a relatively short half-life (*Renilla reniformis* luciferase expressed in *C. reinhardtii*
289 and targeted to the cytosol has a half-life estimated to be 2 h (38)). In theory, if promoter activity of

290 the reporter fusion is repressed, less time is required to observe an equivalent repression of
291 luciferase activity compared to YFP activity, however, these two reporter systems have yet to be
292 examined side-by-side in *C. reinhardtii*.

293

294 **ACKNOWLEDGMENTS**

295 This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of
296 Basic Energy Sciences of the US Department of Energy (DE-FD02-04ER15529) and the National Institutes
297 of Health (NIH) R24 GM42143 to SM, and the Office of Biological and Environmental Research of the
298 United States Department Of Energy (CEB-H). We are grateful to Dr. Ian Blaby for critical reading of the
299 manuscript and Britany Reddish for technical support during protocol development.

300

301

302

303 **Figure Captions**

304 **Figure 1. Diagram of promoter-YFP fusions.** In panels A and B, expression of YFP is dependent on a
305 promoter fragment that contains a binding site for a transcriptional inducer. When transferred to inducing
306 medium the transcription factor binds to the promoter fragment, transcription occurs, and YFP
307 accumulates in the cytosol. If the binding site for an inducer is deleted, YFP will no longer be expressed in
308 the inducing medium. In panels C and D, expression of YFP is dependent on a promoter fragment that
309 contains a binding site for a transcriptional repressor. In non-repressing medium, the transcription factor
310 no longer binds to the promoter fragment, transcription is allowed to occur, and YFP accumulates in the
311 cytosol. If the binding site for a repressor is deleted, YFP will be expressed in both media. In the protocol,
312 the medium that leads to YFP expression is referred to as the “inducing medium” without an assumption
313 of the regulatory mechanism. Abbreviations: RNAP, RNA polymerase; YFP, yellow fluorescent protein.

314

315 **Figure 2. An experimental workflow of protocol step 3.1.** Circled numbers correspond to steps in the
316 protocol for UVM11 transformation by glass bead bombardment. Three plasmids – the first contains a

317 promoter-less *YFP* construct (negative control), the second contains the promoter of interest upstream of
318 *YFP* (test promoter) and the third contains a promoter-*YFP* fusion that is metal-responsive (positive
319 control) – are linearized with a restriction enzyme. Prior to transformation in step 6, this DNA should be
320 added to the pre-autoclaved glass beads. Since there are three *YFP* constructs, steps 6 – 13 are carried
321 out on three separate aliquots of cells.

322

323 **Figure 3. An experimental workflow of protocol 3.2.** A, Circled numbers correspond to steps in protocol
324 section 3.2. Since there are three *YFP* constructs, step 1 involves three petri dishes of transformants
325 (corresponding to the negative control, test promoter and positive control) and three 96-well master plates
326 filled with TAP. Step 3 requires a total of 6 black-sided, clear-bottom plates; inducing medium is abbreviated
327 as IM. B, *YFP* fluorescence from 96 UVM11 cultures each transformed with the same WT promoter
328 fragment (WT) and 96 UVM11 cultures each transformed with the same promoter fragment that contains a
329 50 bp deletion (mutant) abolishing activity. The 192 transformants were grown in 96-well plates filled with
330 TAP (TAP) and 96-well plates filled with inducing medium (IM) for 6.5 days. In this example, *YFP*
331 fluorescence is normalized to chlorophyll fluorescence. C, plot of *YFP* fluorescence normalized to
332 chlorophyll fluorescence for two individual transformants (tf-1 and tf-2) containing the WT promoter
333 fragment grown in TAP (TAP) and inducing medium (IM).

334

335 References

336 1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties
337 of aequorin, a bioluminescent protein from the luminous hydromedusan,
338 *Aequorea*. *J Cell Comp Physiol* 59:223-239

339 2. Prasher DC, Eckenrode VK, Ward WW, et al (1992) Primary structure of the
340 *Aequorea victoria* green-fluorescent protein. *Gene* 111:229-233

341 3. Chalfie M, Tu Y, Euskirchen G, et al (1994) Green fluorescent protein as a marker
342 for gene expression. *Science* 263:802-805

343 4. Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize
344 the early events of symbiosis between *Rhizobium meliloti* and alfalfa (*Medicago*
345 *sativa*). *J Bacteriol* 178:7159-7166

346 5. Chiu W, Niwa Y, Zeng W, et al (1996) Engineered GFP as a vital reporter in plants.
347 *Curr Biol* 6:325-330

348 6. Pang SZ, DeBoer DL, Wan Y, et al (1996) An improved green fluorescent protein
349 gene as a vital marker in plants. *Plant Physiol* 112:893-900

350 7. Kain SR, Adams M, Kondepudi A, et al (1995) Green fluorescent protein as a
351 reporter of gene expression and protein localization. *Biotechniques* 19:650-655

352 8. Tsien RY (1998) The green fluorescent protein. *Annu Rev Biochem* 67:509-544

353 9. Ormö M, Cubitt AB, Kallio K, et al (1996) Crystal structure of the *Aequorea victoria*
354 green fluorescent protein. *Science* 273:1392-1395

355 10. Nagai T, Ibata K, Park ES, et al (2002) A variant of yellow fluorescent protein with
356 fast and efficient maturation for cell-biological applications. *Nat Biotechnol* 20:87-
357 90

358 11. Neupert J, Karcher D, Bock R (2009) Generation of *Chlamydomonas* strains that
359 efficiently express nuclear transgenes. *Plant J* 57:1140-1150

360 12. Rasala BA, Barrera DJ, Ng J, et al (2013) Expanding the spectral palette of
361 fluorescent proteins for the green microalga *Chlamydomonas reinhardtii*. *Plant J*
362 74:545-556

363 13. Barahimipour R, Strenkert D, Neupert J, (2015) Dissecting the contributions of GC
364 content and codon usage to gene expression in the model alga *Chlamydomonas*
365 *reinhardtii*. *Plant J* 84(4):704-717

366 14. Lauersen KJ, Kruse O, Mussgnug JH (2015) Targeted expression of nuclear
367 transgenes in *Chlamydomonas reinhardtii* with a versatile, modular vector toolkit.
368 *Appl Microbiol Biotechnol* 99:3491-3503

369 15. Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of
370 *Chlamydomonas reinhardtii*: an important tool for nuclear transformation and for
371 correlating the genetic and molecular maps of the ARG7 locus. *EMBO J* 8:2803-
372 2809

373 16. Kindle KL, Schnell RA, Fernández E, Lefebvre PA (1989) Stable nuclear
374 transformation of Chlamydomonas using the Chlamydomonas gene for nitrate
375 reductase. *J Cell Biol* 109:2589-2601

376 17. Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a
377 foreign gene in nuclear transformants of Chlamydomonas. *Plant Cell* 9:925-945

378 18. Hanikenne M, Merchant SS, Hamel P (2009) Transition metal nutrition: A balance
379 between deficiency and toxicity. In: Stern D (ed) *The Chlamydomonas*
380 Sourcebook, 2nd edn, vol 2. Academic Press, San Diego, CA, pp 333-399

381 19. Blaby-Haas C, Merchant S (2013) Metal homeostasis: Sparing and salvaging
382 metals in chloroplasts. In: Culotta V (ed) Metals in Cells. Encyclopedia of Inorganic
383 and Bioinorganic Chemistry, John Wiley & Sons Ltd., Chichester, West Sussex,
384 pp 51-64

385 20. Blaby-Haas CE, Merchant SS (2013) Iron sparing and recycling in a
386 compartmentalized cell. *Curr Opin Microbiol* 16(6):677-685

387 21. Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport.
388 *BBA - Mol Cell Res* 1823:1531-1552

389 22. Merchant S, Allen M, Kropat J, et al (2006) Between a rock and a hard place: Trace
390 element nutrition in *Chlamydomonas*. *BBA - Mol Cell Res* 1763:578-594

391 23. Malasarn D, Kropat J, Hsieh SI, et al (2013) Zinc Deficiency Impacts CO₂
392 Assimilation and Disrupts Copper Homeostasis in *Chlamydomonas reinhardtii*. *J*
393 *Biol Chem* 288:10672-10683

394 24. Urzica EI, Casero D, Yamasaki H, et al (2012) Systems and trans-system level
395 analysis identifies conserved iron deficiency responses in the plant lineage. *Plant*
396 *Cell* 24:3921-3948

397 25. Castruita M, Casero D, Karpowicz SJ, et al (2011) Systems biology approach in
398 *Chlamydomonas* reveals connections between copper nutrition and multiple
399 metabolic steps. *Plant Cell* 23:1273-1292

400 26. Deng X, Eriksson M (2007) Two iron-responsive promoter elements control
401 expression of FOX1 in *Chlamydomonas reinhardtii*. *Eukaryot Cell* 6:2163-2167

402 27. Quinn JM, Merchant S (1995) Two copper-responsive elements associated with
403 the *Chlamydomonas Cyc6* gene function as targets for transcriptional activators.
404 *Plant Cell* 7:623-628

405 28. Quinn JM, Merchant S (1998) Copper-responsive gene expression during
406 adaptation to copper deficiency. *Methods Enzymol* 297:263-279

407 29. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in
408 the photosynthetic electron transport chain of *Chlamydomonas reinhardi*. *Proc Natl
409 Acad Sci U S A* 54:1665-1669.

410 30. Kropat J, Hong-Hermesdorf A, Casero D, et al (2011) A revised mineral nutrient
411 supplement increases biomass and growth rate in *Chlamydomonas reinhardtii*.
412 *Plant J* 66:770-780

413 31. Neupert J, Shao N, Lu Y, Bock R (2012) Genetic transformation of the model green
414 alga *Chlamydomonas reinhardtii*. *Methods Mol Biol* 847:35-47

415 32. Kindle KL (1990) High-frequency nuclear transformation of *Chlamydomonas
416 reinhardtii*. *Proc Natl Acad Sci U S A* 87:1228-1232

417 33. Harris E (1989) The *Chlamydomonas* Sourcebook. A Comprehensive Guide to
418 Biology and Laboratory Use. Academic Press, San Diego, CA

419 34. Blainey P, Krzywinski M, Altman N (2014) Points of significance: replication. *Nat
420 Methods* 11:879-880

421 35. Glaesener AG, Merchant SS, Blaby-Haas CE (2013) Iron economy in
422 *Chlamydomonas reinhardtii*. *Front Plant Sci* 4:337

423 36. Stramski D, Kiefer D (1991) Light-scattering by microorganisms in the open ocean.
424 *Prog Oceanog* 28:343-383

425 37. de Ruijter N, Verhees J, van Leeuwen W, van der Krol A (2003) Evaluation and
426 comparison of the GUS, LUC and GFP reporter system for gene expression
427 studies in plants. *Plant Biol* 5:103-115

428 38. Fuhrmann M, Hausherr A, Ferbitz L, et al (2004) Monitoring dynamic expression
429 of nuclear genes in *Chlamydomonas reinhardtii* by using a synthetic luciferase
430 reporter gene. *Plant Mol Biol* 55:869-881

431 39. Shao N, Bock R (2008) A codon-optimized luciferase from *Gaussia princeps*
432 facilitates the *in vivo* monitoring of gene expression in the model alga
433 *Chlamydomonas reinhardtii*. *Curr Genet* 53:381-388

434 40. Ruecker O, Zillner K, Groebner-Ferreira R, Heitzer M (2008) Gaussia-luciferase
435 as a sensitive reporter gene for monitoring promoter activity in the nucleus of the
436 green alga *Chlamydomonas reinhardtii*. *Mol Genet Genomics* 280:153-162

437

438