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Deformation Induced Mobility Results
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Mission Relevancy and Findings

e Current Sandia NLVE models are built on the assumption that deformation enhances the mobility of the material. If this assumption is not true at small strain rates (e.g., thermal fluctuation in
stockpile storage), then models will not be able to accurately predict the stress evolution and potential failure of (e.g., polymer encapsulated) components during stockpile storage

* |n order for non-linear effects associated with deformation to reverse the strain-dependent ordering of the normalized stress relaxation response (from that of LVE) in a deformation induced
mobility manner, the material “clock” must be “significantly” perturbed by the deformation...this does not occur when loading rates are not sufficiently fast relative to material relaxation rates

The experimentally observed “decrease in mobility with increasing deformation” based on analysis of normalized stress relaxation response does not preclude the ability of thermorheologically
simple material clock constitutive models to predict this behavior. Rather, Sandia’s SPEC model has been shown to predict this exact behavior by examining conditions under which the clock was
perturbed to varying levels by the deformation. Further, the model predicts the post-yield relaxation behavior observed in the experiments. This speaks to the physical basis of the model.
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