
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Kokkos Evolution:
Task-DAG and Back-ends

COE Performance
Portability
August 22-25, 2017
Denver, CO

H. Carter Edwards

SAND2017- C

SAND2017-8951PE

1

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Multi-Core Many-Core APU CPU+GPU

Drekar Trilinos
SPARC

Applications & Libraries

Kokkos*
performance portability for C++ applications

Albany
EMPIRE

LAMMPS

*κόκκος Greek: “granule” or “grain” ; like grains of sand on a beach

2

Part 1: Kokkos’ Back-ends
 Map algorithms and arrays to underlying NGP node architecture

 Productive, performance-portable abstractions / programming model

 Map onto architecture’s best programming mechanism: CUDA, OpenMP, ...

 Abstractions and programming mechanisms are evolving

Part 2: Kokkos’ Task-DAG Pattern/Policy
 Previously only data parallel patterns / policies

 parallel_for, parallel_reduce, parallel_scan patterns over range policy [0..N)

 Optional hierarchical thread team policy to maximize available parallelism

 New directed acyclic graph of tasks parallel patterns / policies

 Tasks: Can be heterogeneous collection of parallel computations

 DAG: Tasks may have acyclic execute-after dependences

 Dynamic: Tasks can be spawned within executing tasks

3

FY17-18 evolution of Kokkos’ Back-ends

 OpenMP for CPU and KNL+
 Require OpenMP 4+ for proper granularity of thread-binding

 Compatibility / interoperability with nested parallel regions

 Continue optional use of hwloc to choose performant sizes for nesting

 Leverage matured OpenMP 4+ features

 Scheduling, loop collapse, customized reductions, ...

 Strategy for performant AMT / Kokkos / OpenMP interoperability

 Outcome of collaboration with U-Utah’s “Uintah” framework

 CUDA 9+ for NVIDIA GPU
 Proper collectives and controls provided by CUDA thread groups

 Address warp divergence bug

 Sub-block thread teams to improve flexibility of hierarchical parallelism

 Best realized on Volta architecture

 Full host-device lambda capability with C++17 capture: [=,*this]

4

FY17-18 evolution of Kokkos’ Back-ends

 C++11 std::thread for CPU and KNL+
 Portability to OS/runtime that does not OpenMP (e.g., Windows)

 Performance comparison with OpenMP

 Research thread synchronization and collectives, runtimes

 Backend for ARM (CPU)
 OS/runtime/compiler stack? tbd

 Best thread parallel mechanism: OpenMP, std::thread, ...? tbd

 ROCm for AMD GPU; developed by AMD

 OpenMP 4.5 offload for GPU

 Clang-CUDA for GPU

5

 Pattern

 Parallel execution of computations (tasks)

 That have “execute after” dependences

 Policy

 Scheduling ready tasks

 Updating dependences as tasks complete

 Dynamic and Heterogeneous Task-DAG

 Manage tasks’ lifecycle – tasks spawned within executing tasks

 Manage tasks’ memory – task and workspace allocated/deallocated

 Each task may be a different function (C++ closure)

 Static and Homogeneous Work-DAG

 Single function, similar to data parallel patterns

 Predefined DAG of ”execute after” work indices: { k executes-after { i, j, ... } }

Directed Acyclic Graph (DAG) of Tasks

6

Task-DAG Motivating Use Cases

1. Multifrontal Cholesky factorization of sparse matrix

 Frontal matrices require different
sizes of workspace (green) for sub-assembly

 Hybrid task parallelism: tree-parallel &
matrix-parallel within supernodes (brown)

 Dynamic task-dag with memory constraints

 Matrix computation is internally data parallel

 Lead: Kyungjoo Kim / SNL

2. Triangle enumeration in social networks, highly irregular graphs

 Discover triangles within the graph

 Compute statistics on those triangles

 Triangles are an intermediate result
that do not need to be saved / stored

 Challenge: memory “high water mark”

 Lead: Michael Wolf / SNL

4
5 1

2

3

k2

k1

4

0

1

X X X X

XXX

X X

7 X

8

3

2 X

6

3

4

X X X

XX

X

8

7

5 X

6

7

X X

X

8

7

Work-DAG Motivating Use Case

 Neutral Particle Transport via Sweeps

 Tycho2 mini-application (https://github.com/lanl/tycho2)

 “A neutral particle transport mini-app to study performance of sweeps on
unstructured, 3D tetrahedral meshes.”

 Lead: Kris Garrett / LANL

 Tycho2 version using Kokkos Work-DAG

 All angle sweeps through unstructured mesh in a single DAG

 Work index: K = angle_index * number_elements + element_index

 Angle sweeps define work “execute after” dependences

 Running on CPU and KNL - as of July 27, 2017

 Next steps:

 Port data structures to Kokkos for performance portability to GPU

 Performance evaluation and improvements

parallel_for

parallel_reduce

8

Hierarchical, Thread Team Parallelism
 Shared functionality with hierarchical data-data parallelism

 The same kernel (task) executed on …

 OpenMP: League of Teams of Threads

 Cuda: Grid of Blocks of Threads

 Inter-Team Parallelism (data or task)
 Threads within a team execute concurrently

 Data: each team executes the same computation

Task: each team executes a different task

 Intra-Team Parallelism (data)
 Nested parallel patterns: for, reduce, scan

 Mapping teams onto hardware
 CPU : team == hyperthreads sharing L1 cache’

 GPU : team == warp, for a modest degree of intra-team data parallelism

9

Dynamic Task DAG Challenges

 A Dynamic DAG of Heterogeneous Functions (closures)

 Map functions onto a single thread or a thread team

 Scalable dynamic allocation / deallocation of tasks

 Scalable and low latency scheduling

 Scalable dynamic creation / completion of execute-after dependences

 GPU idiosyncrasies / constraints

Non-blocking tasks, forced a beneficial “respawn” reconceptualization!

 Eliminate context switching overhead: stack, registers, ...

 Heterogeneous function pointers (CPU, GPU)

 Creating GPU tasks on the host and within tasks executing on the GPU

 Bounded memory pool and scalable allocation/deallocation

 Non-coherent L1 caches

10

Scalable Memory Pool and Task Scheduler

 Memory Pool

 Lock-free and low latency via atomic operations

 Large chunk of memory allocated in Kokkos memory space

 From which smaller blocks are allocated and deallocated

 Task Scheduler

 Memory pool for tasks’ dynamic memory

 Multiple prioritized ready queues

 Per-task execute-after waiting queues

 Each queue is a simple linked list of tasks

 Lock free push/pop via atomic operations

 Explicitly manage GPU non-coherent L1 cache

 Problem: dynamic allocation/deallocation across GPU processors not automically
observed by GPU L1 cache hardware

 Solution: explicitly manage via GPU programmable L1 cache, a.k.a. __shared__

11

Memory Pool Performance

 Test Setup

 10Mb pool comprised of 153 x 64k superblocks, min block size 32 bytes

 Allocations ranging between 32 and 128 bytes; average 80 bytes

 [1] Allocate to N% ; [2] cyclically deallocate & allocate between N and 2/3 N

 parallel_for: every index allocates ; cyclically deallocates & allocates

 Measure allocate + deallocate operations / second (best of 10 trials)

 Deallocate much simpler and fewer operations than allocate

 Test Hardware: Pascal, Broadwell, Knights Landing

 Fully subscribe cores

 Every thread within every warp allocates & deallocates

 For reference, an “apples to oranges” comparison

 CUDA malloc / free on Pascal

 jemalloc on Knights Landing

12

Memory Pool Performance

 Memory pools have finite size with well-bounded scope

 Algorithms’ and data structures’ memory pools do not pollute (fragment)
each other’s memory

Fill 75% Fill 95% Cycle 75% Cycle 95%

blocks: 938,500 1,187,500

Pascal 79 M/s 74 M/s 287 M/s 244 M/s

Broadwell 13 M/s 13 M/s 46 M/s 49 M/s

Knights Landing 5.8 M/s 5.8 M/s 40 M/s 43 M/s

apples to oranges comparison:

Pascal
using CUDA malloc

3.5 M/s 2.9 M/s 15 M/s 12 M/s

Knights Landing
using jemalloc

379 M/s 4115 M/s

thread local caches, optimal blocking, NOT fixed pool size

13

Scheduler Unit Test Performance

 (silly) Fibonacci task-dag algorithm measures overhead

 F(k) = F(k-1) + F(k-2)

 F(k) cumulatively allocates/deallocates N tasks >> “high water mark”

 1Mb pool comprised of 31 x 32k superblocks, min block size 32 bytes

 Fully subscribe cores; single thread Fibonacci task consumes entire GPU warp

 Real algorithms’ tasks have modest internal parallelism

 Measure tasks / second; compare to raw allocate + deallocate performance

F(21) F(23) Alloc/Dealloc

cumulative tasks: 53131 139102 (for comparison)

Pascal 1.2 M/s 1.3 M/s 144 M/s

Broadwell 0.98 M/s 1.1 M/s 24 M/s

Knights Landing 0.30 M/s 0.31 M/s 21 M/s

14

Tacho’s Sparse Cholesky Factorization
 Multifrontal algorithm with bounded memory constraint
 Kokkos task DAG + Kokkos memory pool for shared scratch memory

 Task fails allocation => respawn to try again after other tasks deallocate

 Test setup: scratch memory size = M * sparse matrix supernode size

 Compare to Intel’s pardiso, sparse matrix N=57k, NNZ=383k, 6662 supernodes

0

100

200

300

400

500

600

700

0 20 40 60 80

fa
c

to
ri

za
ti

o
n

/m
in

u
te

threads

Knights Landing (1x68x4)

pardiso

tacho 4

tacho 8

tacho 16

0

50

100

150

200

250

300

350

400

0 20 40 60 80

p
e

a
k

 m
e

m
o

ry
 M

B

threads

pardiso

tacho

tacho

tacho

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80

fa
c

to
ri

za
ti

o
n

/m
in

u
te

threads

Haswell (2x16x2)

pardiso

tacho 4

tacho 8

tacho
16

0

50

100

150

200

250

300

350

400

0 20 40 60 80

p
e

a
k

 m
e

m
o

ry
 M

B

threads

pardiso

tacho 4

tacho 8

tacho
16

15

Summary

 Initial Task-DAG capability

 Portable: CPU and GPU architectures

 Dynamic DAG of heterogeneous tasks

 Hierarchical – thread-team data parallelism within tasks

 Evaluation/improvement underway via sparse matrix factorization mini-app

 Initial Work-DAG capability

 Portable: CPU and GPU architectures

 Static DAG of work indices for single work function

 Evaluation/improvement underway via sweep particle transport mini-app

 Challenges conquered, esp. for GPU portability and performance

 Non-blocking (non-waiting) tasks  new respawn pattern

 Lock free, scalable memory pool and scheduler

 GPU __shared__ memory to address non-coherent L1 cache

