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Part 1: Kokkos’ Back-ends
 Map algorithms and arrays to underlying NGP node architecture

 Productive, performance-portable abstractions / programming model

 Map onto architecture’s best programming mechanism: CUDA, OpenMP, ...

 Abstractions and programming mechanisms are evolving

Part 2: Kokkos’ Task-DAG Pattern/Policy
 Previously only data parallel patterns / policies

 parallel_for, parallel_reduce, parallel_scan patterns over range policy [0..N)

 Optional hierarchical thread team policy to maximize available parallelism

 New directed acyclic graph of tasks parallel patterns / policies

 Tasks: Can be heterogeneous collection of parallel computations

 DAG: Tasks may have acyclic execute-after dependences

 Dynamic: Tasks can be spawned within executing tasks
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FY17-18 evolution of Kokkos’ Back-ends

 OpenMP for CPU and KNL+
 Require OpenMP 4+ for proper granularity of thread-binding

 Compatibility / interoperability with nested parallel regions

 Continue optional use of hwloc to choose performant sizes for nesting

 Leverage matured OpenMP 4+ features

 Scheduling, loop collapse, customized reductions, ...

 Strategy for performant AMT / Kokkos / OpenMP interoperability

 Outcome of collaboration with U-Utah’s “Uintah” framework

 CUDA 9+ for NVIDIA GPU
 Proper collectives and controls provided by CUDA thread groups

 Address warp divergence bug

 Sub-block thread teams to improve flexibility of hierarchical parallelism

 Best realized on Volta architecture

 Full host-device lambda capability with C++17 capture: [=,*this]
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FY17-18 evolution of Kokkos’ Back-ends

 C++11 std::thread for CPU and KNL+
 Portability to OS/runtime that does not OpenMP (e.g., Windows)

 Performance comparison with OpenMP

 Research thread synchronization and collectives, runtimes

 Backend for ARM (CPU)
 OS/runtime/compiler stack? tbd

 Best thread parallel mechanism: OpenMP, std::thread, ...? tbd

 ROCm for AMD GPU; developed by AMD

 OpenMP 4.5 offload for GPU

 Clang-CUDA for GPU
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 Pattern

 Parallel execution of computations (tasks)

 That have “execute after” dependences

 Policy

 Scheduling ready tasks

 Updating dependences as tasks complete

 Dynamic and Heterogeneous Task-DAG

 Manage tasks’ lifecycle – tasks spawned within executing tasks

 Manage tasks’ memory – task and workspace allocated/deallocated

 Each task may be a different function (C++ closure)

 Static and Homogeneous Work-DAG

 Single function, similar to data parallel patterns

 Predefined DAG of ”execute after” work indices: { k executes-after { i, j, ... } }

Directed Acyclic Graph (DAG) of Tasks
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Task-DAG Motivating Use Cases

1. Multifrontal Cholesky factorization of sparse matrix

 Frontal matrices require different 
sizes of workspace (green) for sub-assembly

 Hybrid task parallelism: tree-parallel & 
matrix-parallel within supernodes (brown)

 Dynamic task-dag with memory constraints

 Matrix computation is internally data parallel

 Lead: Kyungjoo Kim / SNL

2. Triangle enumeration in social networks, highly irregular graphs 

 Discover triangles within the graph

 Compute statistics on those triangles

 Triangles are an intermediate result
that do not need to be saved / stored

 Challenge: memory “high water mark”

 Lead: Michael Wolf / SNL
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Work-DAG Motivating Use Case

 Neutral Particle Transport via Sweeps

 Tycho2 mini-application (https://github.com/lanl/tycho2)

 “A neutral particle transport mini-app to study performance of sweeps on 
unstructured, 3D tetrahedral meshes.”

 Lead: Kris Garrett / LANL

 Tycho2 version using Kokkos Work-DAG

 All angle sweeps through unstructured mesh in a single DAG

 Work index: K = angle_index * number_elements + element_index

 Angle sweeps define work “execute after” dependences

 Running on CPU and KNL - as of July 27, 2017

 Next steps: 

 Port data structures to Kokkos for performance portability to GPU

 Performance evaluation and improvements
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Hierarchical, Thread Team Parallelism
 Shared functionality with hierarchical data-data parallelism

 The same kernel (task) executed on …

 OpenMP: League of Teams of Threads

 Cuda:        Grid      of Blocks of Threads

 Inter-Team Parallelism (data or task)
 Threads within a team execute concurrently 

 Data: each team executes the same computation

Task: each team executes a different task

 Intra-Team Parallelism (data)
 Nested parallel patterns: for, reduce, scan

 Mapping teams onto hardware
 CPU : team == hyperthreads sharing L1 cache’

 GPU : team == warp, for a modest degree of intra-team data parallelism
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Dynamic Task DAG Challenges

 A Dynamic DAG of Heterogeneous Functions (closures)

 Map functions onto a single thread or a thread team 

 Scalable dynamic allocation / deallocation of tasks

 Scalable and low latency scheduling

 Scalable dynamic creation / completion of execute-after dependences

 GPU idiosyncrasies / constraints

Non-blocking tasks, forced a beneficial “respawn” reconceptualization!  

 Eliminate context switching overhead: stack, registers, ...

 Heterogeneous function pointers (CPU, GPU)

 Creating GPU tasks on the host and within tasks executing on the GPU

 Bounded memory pool and scalable allocation/deallocation

 Non-coherent L1 caches
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Scalable Memory Pool and Task Scheduler 

 Memory Pool

 Lock-free and low latency via atomic operations

 Large chunk of memory allocated in Kokkos memory space

 From which smaller blocks are allocated and deallocated

 Task Scheduler

 Memory pool for tasks’ dynamic memory

 Multiple prioritized ready queues

 Per-task execute-after waiting queues

 Each queue is a simple linked list of tasks

 Lock free push/pop via atomic operations

 Explicitly manage GPU non-coherent L1 cache

 Problem: dynamic allocation/deallocation across GPU processors not automically
observed by GPU L1 cache hardware

 Solution: explicitly manage via GPU programmable L1 cache, a.k.a. __shared__
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Memory Pool Performance

 Test Setup

 10Mb pool comprised of 153 x 64k superblocks, min block size 32 bytes

 Allocations ranging between 32 and 128 bytes; average 80 bytes

 [1] Allocate to N% ;  [2] cyclically deallocate & allocate between N and 2/3 N

 parallel_for: every index allocates ;  cyclically deallocates & allocates

 Measure allocate + deallocate operations / second (best of 10 trials)

 Deallocate much simpler and fewer operations than allocate

 Test Hardware: Pascal, Broadwell, Knights Landing

 Fully subscribe cores

 Every thread within every warp allocates & deallocates

 For reference, an “apples to oranges” comparison

 CUDA malloc / free on Pascal

 jemalloc on Knights Landing
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Memory Pool Performance

 Memory pools have finite size with well-bounded scope

 Algorithms’ and data structures’ memory pools do not pollute (fragment) 
each other’s memory

Fill 75% Fill 95% Cycle 75% Cycle 95%

blocks: 938,500 1,187,500

Pascal 79 M/s 74 M/s 287 M/s 244 M/s

Broadwell 13 M/s 13 M/s 46 M/s 49 M/s

Knights Landing 5.8 M/s 5.8 M/s 40 M/s 43 M/s

apples to oranges comparison:

Pascal
using CUDA malloc

3.5 M/s 2.9 M/s 15 M/s 12 M/s

Knights Landing
using jemalloc

379 M/s 4115 M/s

thread local caches, optimal blocking, NOT fixed pool size
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Scheduler Unit Test Performance

 (silly) Fibonacci task-dag algorithm measures overhead

 F(k) = F(k-1) + F(k-2)

 F(k) cumulatively allocates/deallocates N tasks >> “high water mark”

 1Mb pool comprised of 31 x 32k superblocks, min block size 32 bytes

 Fully subscribe cores; single thread Fibonacci task consumes entire GPU warp

 Real algorithms’ tasks have modest internal parallelism

 Measure tasks / second; compare to raw allocate + deallocate performance

F(21) F(23) Alloc/Dealloc

cumulative tasks: 53131 139102 (for comparison)

Pascal 1.2 M/s 1.3 M/s 144 M/s

Broadwell 0.98 M/s 1.1 M/s 24 M/s

Knights Landing 0.30 M/s 0.31 M/s 21 M/s
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Tacho’s Sparse Cholesky Factorization
 Multifrontal algorithm with bounded memory constraint
 Kokkos task DAG + Kokkos memory pool for shared scratch memory

 Task fails allocation => respawn to try again after other tasks deallocate

 Test setup: scratch memory size = M * sparse matrix supernode size

 Compare to Intel’s pardiso, sparse matrix N=57k, NNZ=383k, 6662 supernodes
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Summary

 Initial Task-DAG capability

 Portable: CPU and GPU architectures

 Dynamic DAG of heterogeneous tasks

 Hierarchical – thread-team data parallelism within tasks

 Evaluation/improvement underway via sparse matrix factorization mini-app

 Initial Work-DAG capability

 Portable: CPU and GPU architectures

 Static DAG of work indices for single work function

 Evaluation/improvement underway via sweep particle transport mini-app

 Challenges conquered, esp. for GPU portability and performance

 Non-blocking (non-waiting) tasks  new respawn pattern

 Lock free, scalable memory pool and scheduler

 GPU __shared__ memory to address non-coherent L1 cache


