

Kokkos Evolution: Task-DAG and Back-ends

**COE Performance
Portability
August 22-25, 2017
Denver, CO**

H. Carter Edwards

SAND2017- C

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

LAMMPS

Albany

Drekar

EMPIRE

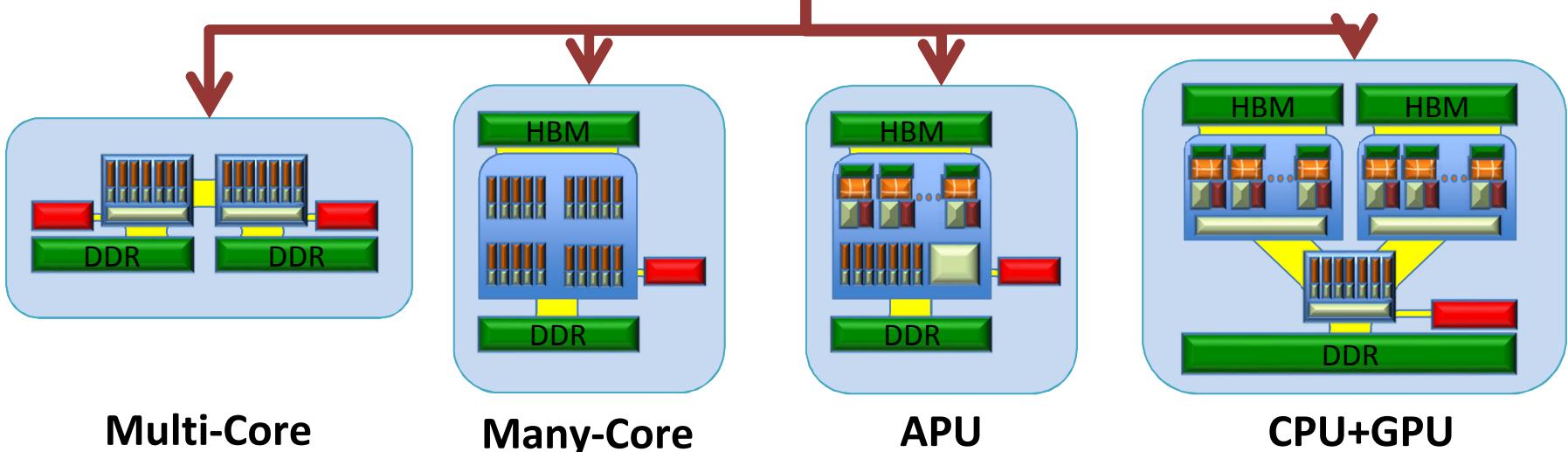
SPARC

Applications & Libraries

Trilinos

Kokkos*

performance portability for C++ applications



***ΚÓKKΟΣ**

Greek: “granule” or “grain” ; like grains of sand on a beach

Part 1: Kokkos' Back-ends

- Map algorithms and arrays to underlying NGP node architecture
 - Productive, performance-portable abstractions / programming model
 - Map onto architecture's best programming mechanism: CUDA, OpenMP, ...
 - Abstractions and programming mechanisms are evolving

Part 2: Kokkos' Task-DAG Pattern/Policy

- Previously only data parallel patterns / policies
 - `parallel_for`, `parallel_reduce`, `parallel_scan` patterns over range policy [0..N]
 - Optional hierarchical thread team policy to maximize available parallelism
- New directed acyclic graph of tasks parallel patterns / policies
 - Tasks: Can be heterogeneous collection of parallel computations
 - DAG: Tasks may have acyclic execute-after dependences
 - Dynamic: Tasks can be spawned within executing tasks

FY17-18 evolution of Kokkos' Back-ends

- **OpenMP for CPU and KNL+**
 - **Require OpenMP 4+ for proper granularity of thread-binding**
 - **Compatibility / interoperability with nested parallel regions**
 - Continue optional use of hwloc to choose performant sizes for nesting
 - **Leverage matured OpenMP 4+ features**
 - Scheduling, loop collapse, customized reductions, ...
 - **Strategy for performant AMT / Kokkos / OpenMP interoperability**
 - **Outcome of collaboration with U-Utah's "Uintah" framework**
- **CUDA 9+ for NVIDIA GPU**
 - **Proper collectives and controls provided by CUDA thread groups**
 - **Address warp divergence bug**
 - **Sub-block thread teams to improve flexibility of hierarchical parallelism**
 - **Best realized on Volta architecture**
 - **Full host-device lambda capability with C++17 capture: [=,*this]**

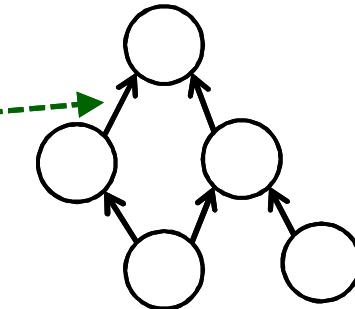
FY17-18 evolution of Kokkos' Back-ends

- **C++11 std::thread for CPU and KNL+**
 - Portability to OS/runtime that does not OpenMP (e.g., Windows)
 - Performance comparison with OpenMP
 - Research thread synchronization and collectives, runtimes
- **Backend for ARM (CPU)**
 - OS/runtime/compiler stack? tbd
 - Best thread parallel mechanism: OpenMP, std::thread, ...? tbd
- **ROCM for AMD GPU; developed by AMD**
- **OpenMP 4.5 offload for GPU**
- **Clang-CUDA for GPU**

Directed Acyclic Graph (DAG) of Tasks

- **Pattern**

- Parallel execution of computations (tasks)
- That have “execute after” dependences



- **Policy**

- Scheduling ready tasks
- Updating dependences as tasks complete

- **Dynamic and Heterogeneous Task-DAG**

- Manage tasks’ lifecycle – tasks spawned within executing tasks
- Manage tasks’ memory – task and workspace allocated/deallocated
- Each task may be a different function (C++ closure)

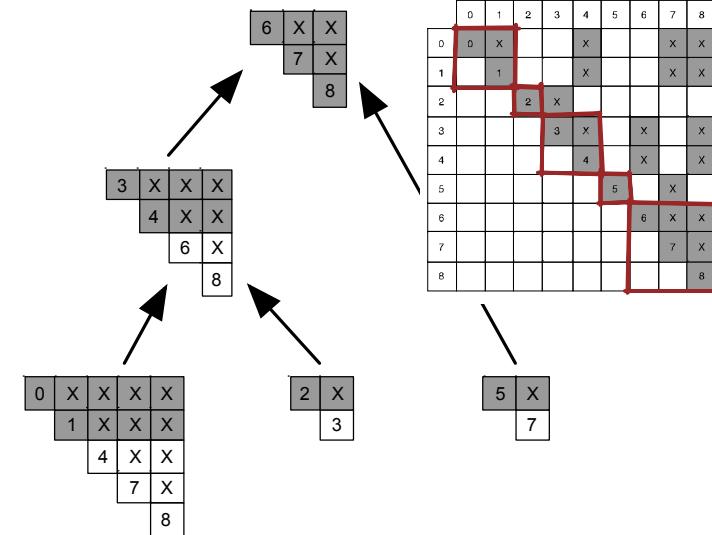
- **Static and Homogeneous Work-DAG**

- Single function, similar to data parallel patterns
- Predefined DAG of “execute after” work indices: { k executes-after { i, j, ... } }

Task-DAG Motivating Use Cases

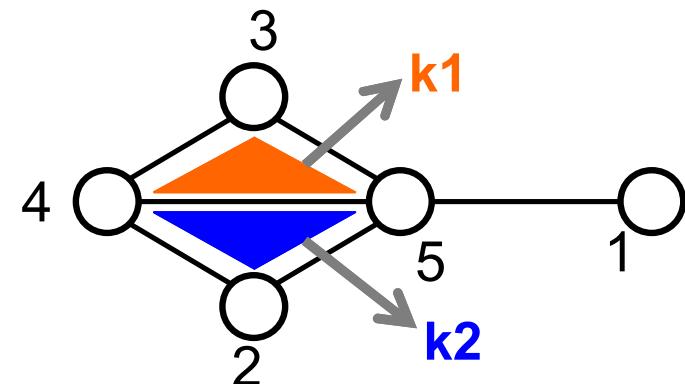
1. Multifrontal Cholesky factorization of sparse matrix

- Frontal matrices require different sizes of workspace (green) for sub-assembly
- Hybrid task parallelism: tree-parallel & matrix-parallel within supernodes (brown)
- Dynamic task-dag with memory constraints
- Matrix computation is internally data parallel
- Lead: Kyungjoo Kim / SNL



2. Triangle enumeration in social networks, highly irregular graphs

- Discover triangles within the graph
- Compute statistics on those triangles
- Triangles are an intermediate result that do not need to be saved / stored
 - Challenge: memory “high water mark”
- Lead: Michael Wolf / SNL

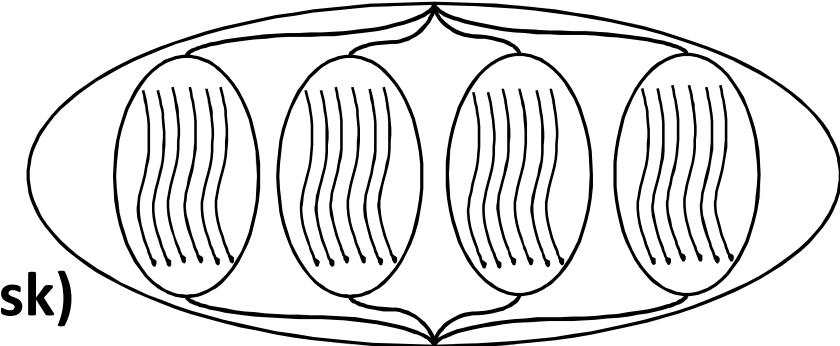
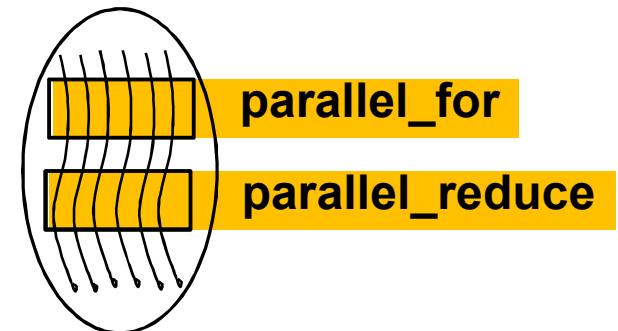


Work-DAG Motivating Use Case

- Neutral Particle Transport via Sweeps
 - Tycho2 mini-application (<https://github.com/lanl/tycho2>)
 - “A neutral particle transport mini-app to study performance of sweeps on unstructured, 3D tetrahedral meshes.”
 - Lead: Kris Garrett / LANL
- Tycho2 version using Kokkos Work-DAG
 - All angle sweeps through unstructured mesh in a single DAG
 - Work index: $K = \text{angle_index} * \text{number_elements} + \text{element_index}$
 - Angle sweeps define work “execute after” dependences
 - Running on CPU and KNL - as of July 27, 2017
 - Next steps:
 - Port data structures to Kokkos for performance portability to GPU
 - Performance evaluation and improvements

Hierarchical, Thread Team Parallelism

- Shared functionality with hierarchical data-data parallelism
 - The same kernel (task) executed on ...
 - OpenMP: League of Teams of Threads
 - Cuda: Grid of Blocks of Threads
- Inter-Team Parallelism (data or task)
 - Threads within a team execute concurrently
 - Data: each team executes the same computation
 - Task: each team executes a different task
- Intra-Team Parallelism (data)
 - Nested parallel patterns: for, reduce, scan
- Mapping teams onto hardware
 - CPU : team == hyperthreads sharing L1 cache'
 - GPU : team == warp, for a modest degree of intra-team data parallelism



Dynamic Task DAG Challenges

- A Dynamic DAG of Heterogeneous Functions (closures)
 - Map functions onto a single thread *or* a thread team
 - Scalable dynamic allocation / deallocation of tasks
 - Scalable and low latency scheduling
 - Scalable dynamic creation / completion of execute-after dependences
- GPU idiosyncrasies / constraints
 - Non-blocking tasks, forced a beneficial “respawn” reconceptualization!
 - Eliminate context switching overhead: stack, registers, ...
 - Heterogeneous function pointers (CPU, GPU)
 - Creating GPU tasks on the host *and* within tasks executing on the GPU
 - Bounded memory pool and scalable allocation/deallocation
 - Non-coherent L1 caches

Scalable Memory Pool and Task Scheduler

■ Memory Pool

- Lock-free and low latency via atomic operations
- Large chunk of memory allocated in Kokkos memory space
- From which smaller blocks are allocated and deallocated

■ Task Scheduler

- Memory pool for tasks' dynamic memory
- Multiple prioritized ready queues
- Per-task execute-after waiting queues

➤ Each queue is a simple linked list of tasks

- Lock free push/pop via atomic operations
- Explicitly manage GPU non-coherent L1 cache
 - Problem: dynamic allocation/deallocation across GPU processors not automatically observed by GPU L1 cache hardware
 - Solution: explicitly manage via GPU programmable L1 cache, a.k.a. __shared__

Memory Pool Performance

- **Test Setup**
 - 10Mb pool comprised of 153 x 64k superblocks, min block size 32 bytes
 - Allocations ranging between 32 and 128 bytes; average 80 bytes
 - [1] Allocate to N% ; [2] cyclically deallocate & allocate between N and 2/3 N
 - parallel_for: every index allocates ; cyclically deallocates & allocates
 - Measure allocate + deallocate operations / second (best of 10 trials)
 - Deallocate much simpler and fewer operations than allocate
- **Test Hardware: Pascal, Broadwell, Knights Landing**
 - Fully subscribe cores
 - Every thread within every warp allocates & deallocates
- **For reference, an “apples to oranges” comparison**
 - CUDA malloc / free on Pascal
 - jemalloc on Knights Landing

Memory Pool Performance

	Fill 75%	Fill 95%	Cycle 75%	Cycle 95%
blocks:	938,500	1,187,500		
Pascal	79 M/s	74 M/s	287 M/s	244 M/s
Broadwell	13 M/s	13 M/s	46 M/s	49 M/s
Knights Landing	5.8 M/s	5.8 M/s	40 M/s	43 M/s

apples to oranges comparison:

Pascal using CUDA malloc	3.5 M/s	2.9 M/s	15 M/s	12 M/s
Knights Landing using jemalloc	379 M/s		4115 M/s	thread local caches, optimal blocking, NOT fixed pool size

- **Memory pools have finite size with well-bounded scope**
 - **Algorithms' and data structures' memory pools do not pollute (fragment) each other's memory**

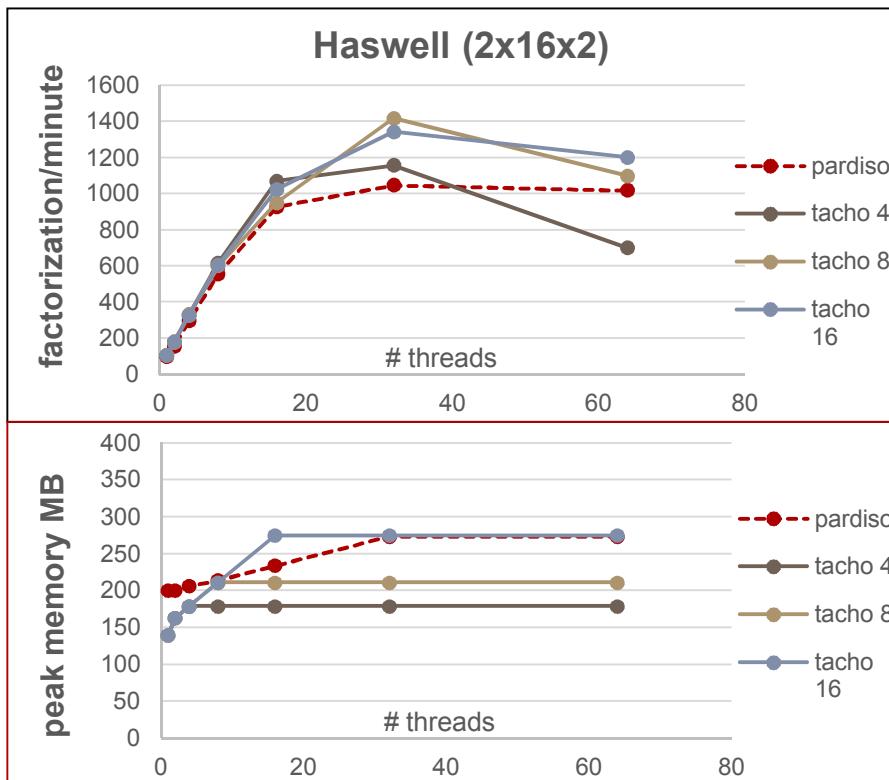
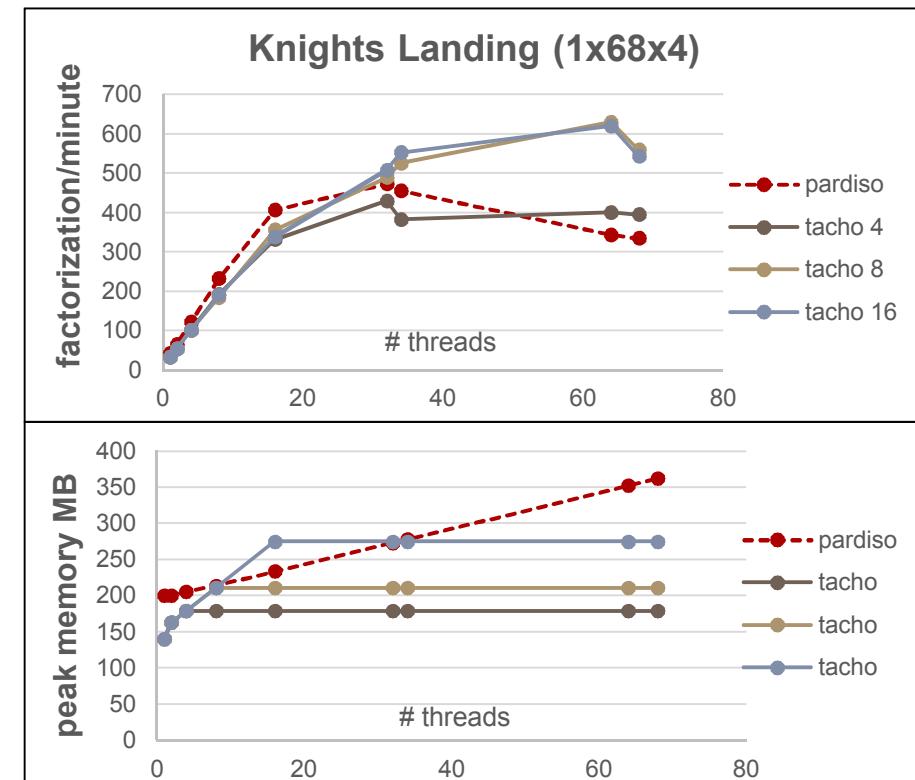
Scheduler Unit Test Performance

- (silly) Fibonacci task-dag algorithm measures overhead
 - $F(k) = F(k-1) + F(k-2)$
 - $F(k)$ cumulatively allocates/deallocates N tasks \gg “high water mark”
 - 1Mb pool comprised of $31 \times 32k$ superblocks, min block size 32 bytes
 - Fully subscribe cores; single thread Fibonacci task consumes entire GPU warp
 - Real algorithms’ tasks have modest internal parallelism
 - Measure tasks / second; compare to raw allocate + deallocate performance

	$F(21)$	$F(23)$	Alloc/Dealloc (for comparison)
cumulative tasks:	53131	139102	
Pascal	1.2 M/s	1.3 M/s	144 M/s
Broadwell	0.98 M/s	1.1 M/s	24 M/s
Knights Landing	0.30 M/s	0.31 M/s	21 M/s

Tacho's Sparse Cholesky Factorization

- Multifrontal algorithm with **bounded memory constraint**
 - Kokkos task DAG + Kokkos memory pool for shared scratch memory
 - Task fails allocation => respawn to try again after other tasks deallocate
 - Test setup: scratch memory size = $M * \text{sparse matrix supernode size}$
 - Compare to Intel's pardiso, sparse matrix $N=57k$, $NNZ=383k$, 6662 supernodes



Summary

- **Initial Task-DAG capability**
 - Portable: CPU and GPU architectures
 - Dynamic DAG of heterogeneous tasks
 - Hierarchical – thread-team data parallelism within tasks
 - Evaluation/improvement underway via sparse matrix factorization mini-app
- **Initial Work-DAG capability**
 - Portable: CPU and GPU architectures
 - Static DAG of work indices for single work function
 - Evaluation/improvement underway via sweep particle transport mini-app
- **Challenges conquered, esp. for GPU portability and performance**
 - Non-blocking (non-waiting) tasks → new respawn pattern
 - Lock free, scalable memory pool and scheduler
 - GPU shared memory to address non-coherent L1 cache

