$CCR
..g.’. 7 i
o0 SAND2017- 8951PE

Center for Computing Research

Kokkos Evolution:
Task-DAG and Back-ends

COE Performance

Portability
August 22-25, 2017
Denver, CO

H. Carter Edwards

SAND2017-C

\'\. EDU‘HHEED &
IMUILA/TION
Z A

ComPUTInNG®
U.S. DEPARTMENT OF ' VAT =
@ ENERGY INJISA

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

LAMMPS i) eora

EMPIRE
LA Tt © © @

Drekar Applications & Libraries m

Kokkos™

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU

*) 4
KO KKO§ Greek: “granule” or “grain” ; like grains of sand on a beach

Part 1: Kokkos’ Back-ends WE=S

= Map algorithms and arrays to underlying NGP node architecture

= Productive, performance-portable abstractions / programming model
= Map onto architecture’s best programming mechanism: CUDA, OpenMP, ...

= Abstractions and programming mechanisms are evolving

Part 2: Kokkos’ Task-DAG Pattern/Policy

= Previously only data parallel patterns / policies
= parallel_for, parallel_reduce, parallel_scan patterns over range policy [0..N)
= Optional hierarchical thread team policy to maximize available parallelism
= New directed acyclic graph of tasks parallel patterns / policies

= Tasks: Can be heterogeneous collection of parallel computations

= DAG: Tasks may have acyclic execute-after dependences
= Dynamic: Tasks can be spawned within executing tasks

FY17-18 evolution of Kokkos’ Back-ends | e

= OpenMP for CPU and KNL+

= Require OpenMP 4+ for proper granularity of thread-binding
= Compatibility / interoperability with nested parallel regions
= Continue optional use of hwloc to choose performant sizes for nesting
= Leverage matured OpenMP 4+ features
= Scheduling, loop collapse, customized reductions, ...
= Strategy for performant AMT / Kokkos / OpenMP interoperability
= Outcome of collaboration with U-Utah’s “Uintah” framework

= CUDA 9+ for NVIDIA GPU

= Proper collectives and controls provided by CUDA thread groups
= Address warp divergence bug

= Sub-block thread teams to improve flexibility of hierarchical parallelism
= Best realized on Volta architecture

= Full host-device lambda capability with C++17 capture: [=,*this]

FY17-18 evolution of Kokkos’ Back-ends | e

= C++11 std::thread for CPU and KNL+
= Portability to OS/runtime that does not OpenMP (e.g., Windows)
= Performance comparison with OpenMP

= Research thread synchronization and collectives, runtimes

= Backend for ARM (CPU)

= OS/runtime/compiler stack? tbd
= Best thread parallel mechanism: OpenMP, std::thread, ...? thd

= ROCm for AMD GPU; developed by AMD
= OpenMP 4.5 offload for GPU
= Clang-CUDA for GPU

Directed Acyclic Graph (DAG) of Tasks =

= Pattern

= Parallel execution of computations (tasks)

= That have “execute after” dependences
= Policy
= Scheduling ready tasks
= Updating dependences as tasks complete
= Dynamic and Heterogeneous Task-DAG
= Manage tasks’ lifecycle — tasks spawned within executing tasks
= Manage tasks’ memory — task and workspace allocated/deallocated
= Each task may be a different function (C++ closure)
= Static and Homogeneous Work-DAG

= Single function, similar to data parallel patterns

= Predefined DAG of "execute after” work indices: { k executes-after {i, j, ... } }

Task-DAG Motivating Use Cases W=

Multifrontal Cholesky factorization of sparse matrix

= Frontal matrices require different 1
sizes of workspace (green) for sub-assembly /4
= Hybrid task parallelism: tree-parallel & \ :
matrix-parallel within supernodes (brown) o 1 x| :
n f
"= Dynamic task-dag with memory constraints /‘ \ \
= Matrix computation is internally data parallel _
» Lead: Kyungjoo Kim / SNL X

Triangle enumeration in social networks, highly irregular graphs
= Discover triangles within the graph
= Compute statistics on those triangles 3 K1

= Triangles are an intermediate result
that do not need to be saved / stored 4

O

5 1
k2

~ Challenge: memory “high water mark”
= Lead: Michael Wolf / SNL

Work-DAG Motivating Use Case i) heona

= Neutral Particle Transport via Sweeps
= Tycho2 mini-application (https://github.com/lanl/tycho2)

= “A neutral particle transport mini-app to study performance of sweeps on
unstructured, 3D tetrahedral meshes.”

= Lead: Kris Garrett / LANL

= Tycho2 version using Kokkos Work-DAG
= All angle sweeps through unstructured mesh in a single DAG
= Work index: K = angle_index * number_elements + element_index
= Angle sweeps define work “execute after” dependences
= Running on CPU and KNL - as of July 27, 2017
= Next steps:
= Port data structures to Kokkos for performance portability to GPU

= Performance evaluation and improvements

Hierarchical, Thread Team Parallelism W=

= Shared functionality with hierarchical data-data parallelism
= The same kernel (task) executed on ...

= OpenMP: League of Teams of Threads
= Cuda: Grid of Blocks of Threads

= |nter-Team Parallelism (data or task)
= Threads within a team execute concurrently
= Data: each team executes the same computation
» Task: each team executes a different task

parallel_for

= Intra-Team Parallelism (data)
= Nested parallel patterns: for, reduce, scan

parallel_reduce

= Mapping teams onto hardware
= CPU : team == hyperthreads sharing L1 cache’
= GPU : team == warp, for a modest degree of intra-team data parallelism

Dynamic Task DAG Challenges) e,

= A Dynamic DAG of Heterogeneous Functions (closures)
= Map functions onto a single thread or a thread team
= Scalable dynamic allocation / deallocation of tasks
= Scalable and low latency scheduling
= Scalable dynamic creation / completion of execute-after dependences

= GPU idiosyncrasies / constraints
» Non-blocking tasks, forced a beneficial “respawn” reconceptualization!
= Eliminate context switching overhead: stack, registers, ...

Heterogeneous function pointers (CPU, GPU)

Creating GPU tasks on the host and within tasks executing on the GPU

Bounded memory pool and scalable allocation/deallocation

Non-coherent L1 caches

Scalable Memory Pool and Task Scheduler) e,

= Memory Pool
= Lock-free and low latency via atomic operations
= Large chunk of memory allocated in Kokkos memory space
* From which smaller blocks are allocated and deallocated

= Task Scheduler

= Memory pool for tasks’ dynamic memory
= Multiple prioritized ready queues
= Per-task execute-after waiting queues
» Each queue is a simple linked list of tasks
= Lock free push/pop via atomic operations
= Explicitly manage GPU non-coherent L1 cache

= Problem: dynamic allocation/deallocation across GPU processors not automically
observed by GPU L1 cache hardware

= Solution: explicitly manage via GPU programmable L1 cache, a.k.a. __shared

Memory Pool Performance |

= Test Setup
= 10Mb pool comprised of 153 x 64k superblocks, min block size 32 bytes

Allocations ranging between 32 and 128 bytes; average 80 bytes
[1] Allocate to N% ; [2] cyclically deallocate & allocate between N and 2/3 N
parallel_for: every index allocates ; cyclically deallocates & allocates

Measure allocate + deallocate operations / second (best of 10 trials)
= Deallocate much simpler and fewer operations than allocate

= Test Hardware: Pascal, Broadwell, Knights Landing
= Fully subscribe cores
= Every thread within every warp allocates & deallocates

= For reference, an “apples to oranges” comparison

= CUDA malloc / free on Pascal
= jemalloc on Knights Landing

Sandia
Memory Pool Performance) e,
Fill 75% Fill 95% Cycle 75% | Cycle 95%
blocks: 938,500 1,187,500
Pascal 79 M/s 74 M/s 287 M/s 244 M/s
Broadwell 13 M/s 13 M/s 46 M/s 49 M/s
Knights Landing 5.8 M/s 5.8 M/s 40 M/s 43 M/s
apples to oranges comparison:
Pascal 3.5 M/s 2.9 M/s 15 M/s 12 M/s
using CUDA malloc
Knights Landing 379 M/s 4115 M/s
using jemalloc thread local caches, optimal blocking, NOT fixed pool size

= Memory pools have finite size with well-bounded scope

= Algorithms’ and data structures’ memory pools do not pollute (fragment)
each other’s memory

Scheduler Unit Test Performance) e,

= (silly) Fibonacci task-dag algorithm measures overhead
F(k) = F(k-1) + F(k-2)
F(k) cumulatively allocates/deallocates N tasks >> “high water mark”

1Mb pool comprised of 31 x 32k superblocks, min block size 32 bytes

Fully subscribe cores; single thread Fibonacci task consumes entire GPU warp
= Real algorithms’ tasks have modest internal parallelism

Measure tasks / second; compare to raw allocate + deallocate performance

F(21) F(23) Alloc/Dealloc
cumulative tasks: 53131 139102 (for comparison)
Pascal 1.2 M/s 1.3 M/s 144 M/s
Broadwell 0.98 M/s 1.1 M/s 24 M/s
Knights Landing 0.30 M/s 0.31 M/s 21 M/s

Tacho’s Sparse Cholesky Factorization) i,

= Multifrontal algorithm with bounded memory constraint

Kokkos task DAG + Kokkos memory pool for shared scratch memory

Task fails allocation => respawn to try again after other tasks deallocate

Test setup: scratch memory size = M * sparse matrix supernode size

= Compare to Intel’s pardiso, sparse matrix N=57k, NNZ=383k, 6662 supernodes

Haswell (2x16x2) Knights Landing (1x68x4)
2 2
=1 =1
£ £
£ - £
--@--pardiso
\g P \g --@®--pardiso
% —e— tacho 4 ‘g o— tacho 4
N —e—tacho 8 N —e—tacho 8
S S
,8 —&— tacho ..9 —@— tacho 16
(s} 16 (s}
© ©
(H 0 # threads (H
0 20 40 60 80 80
400 400
m 350 m 350 -
= 300 --®--pardiso = 30, mm==T
2 250 == ° > —=00== =0 --®--pardiso
) ol —e—tacho 4 o 290 S o--""
2 150 —&—facho 8 2 150 ¢ o e —e— tacho
~ 100 —&—tacho x 100 —&— tacho
3 50 0 S 50
o 0 # threads e # threads
0 20 40 60 80 0 20 40 60 80

Summary) s

= |nitial Task-DAG capability
= Portable: CPU and GPU architectures
= Dynamic DAG of heterogeneous tasks
= Hierarchical — thread-team data parallelism within tasks

= Evaluation/improvement underway via sparse matrix factorization mini-app

= |nitial Work-DAG capability
= Portable: CPU and GPU architectures
= Static DAG of work indices for single work function

= Evaluation/improvement underway via sweep particle transport mini-app

= Challenges conquered, esp. for GPU portability and performance
* Non-blocking (non-waiting) tasks =» new respawn pattern
= Lock free, scalable memory pool and scheduler
= GPU __shared __ memory to address non-coherent L1 cache

