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Outline
Hydrogen-metal interaction impacts a variety of material problems 

including hydrogen storage, hydrogen embrittlement, tritium 

science, etc. Molecular dynamics is effective in studying these 

problems. Here discuss three topics:

• Molecular dynamics studies of grain boundary and irradiation 

effects on hydrogen diffusion in nickel

• Development of Fe-Ni-Cr interatomic potential

• Quantification and reduction of statistical uncertainties in 

molecular dynamics models



Grain Boundary and Irradiation effects on 
Hydrogen Diffusion in Nickel

• The TMIST-2 irradiation experiment at the Advanced Test Reactor at 

Idaho National Laboratory measured a tritium permeation enhancement in 

316 stainless steel by a factor of ~2 to 5 relative to ex-reactor results

• Grain boundaries and irradiation-induced defects may be both responsible

• Statistics of diffusion cannot be captured by DFT calculations. Molecular 

dynamics (MD) simulations are required to understand this

• The literature stainless steel potential we found at the time was developed 

by Bonny et al, but their later version (MSMSE, 21, 85004, 2013) 

incorrectly predicts phase separation

• We therefore use Ni as an exemplar to perform extensive MD simulations 

on hydrogen diffusion in Ni to elucidate the tritium permeation 

enhancement in 316 stainless steels 



• Grain boundaries parallel to xz plane are 

simulated with bi-crystals under periodic 

boundary conditions

• Single crystal and S3{111}, S5{100), 

S11{311} grain boundaries are studied

• Systems with and without point defects are

Molecular Dynamics Method

both considered. Three different point defects (interstitials, vacancies, 

and Frenkel pairs) are independently simulated. Defect concentration is 

fixed at contain Cdef = 0.5% 

• Systems contain a hydrogen concentration of CH = 2%

• Ni-H potential from Angelo et al, MSMSE, 3, 289, 1995

• MD simulations are performed at 13 temperatures 300 K, 325 K, …, 

575 K, 600 K for a period of tMD = 440 ns (after 1 ns pre-equilibration)



• The coordinates ai(t) of N hydrogen atoms (i = 1, 2, …, N), are recorded on a time 

interval of Dt, i.e., at times of t = jDt, j = 1, 2, …, m (m = tMD/Dt), where Dt can be any 

multiple of the time step size dt used in the MD simulations.

• m+1-k measurements can be made for the displacement of a hydrogen atom i over a 

kDt period: Dai,j(kDt) = ai(jDt-Dt+kDt) - ai(jDt-Dt) where j = 1, 2, …, m+1-k. 

• This allows us to calculate mean square displacement (MSD):

• MSD can be fitted to diffusivities D:

Diffusion Analysis

  
  

 kmN

tk

tk

N

i

km

j

ji



DD

DD

 






1

1

1

1

2

,

2

a

a

MSD convergence figure

  

     

         tDtkztkytkx

tDtkztkx

tDtk

xyz

xz

6

4

2

222

22

2

DDDDDD

DDDD

DD aa



Defect Effects on H Diffusion in Ni Single Crystals

• Diffusivities are close with and 
without vacancies

• At the simulated interstitial 
concentration of 0.5%, 
interstitial increases 
diffusivities by 16.3 times at 
300 K and 1.4 times at 600 K 
as compared with perfect 
crystals

• Activation energy of diffusion 
for perfect crystals is predicted 
to be 0.51 eV, as compared to 
the experimental value of 0.40 
eV*

*L. Katz, M. Guinan, and R. J. Borg, Phys. Rev. B, 4, 330 (1971)

defects effects on xyz diffusion in S1 systems

t = 440 ns



Defect Effects on H Diffusion in Ni with the S3{111} GB

• The coherent twin boundary almost has no effects on diffusivities with 
different defects except in the interstitial case

• Interstitial increases on-plane diffusivities by 15.3 times at 300 K and 2.3 times 
at 600 K as compared with perfect crystals

• Out-plane diffusivities are close to single crystals, indicating insignificant grain 
boundary trapping

t = 440 ns



Visualization of S3{111} Grain Boundary 

• Hydrogen does not segregate, but Ni interstitials and vacancies 
segregate at grain boundary

• Ni diffusion only occurs at the presence of interstitials and vacancies

• Interstitials cause reconstructions of atomic rows

CH = 2%

Cdef = 0.5%



Observation of Two S3{111} Grain Boundary 
Reconstructions due to Interstitials 

CH = 2%, 

Cdef = 0.5%
• The 300 K reconstruction is similar to the 

one shown above, but the atomic rows in 
the 500 K reconstruction are different



Statistical Effects of Initial S3{111} GB Reconstructions

• Depending on reconstruction, the combination of interstitials and the S3{111} 
grain boundary may significantly increase the on-plane diffusivities

• Interstitial increases on-plane diffusivities by 146.7 times at 300 K and 2.4 
times at 600 K as compared with the boundary alone case

• Out-plane diffusivity is not significantly affected

t = 440 ns



Defect Effects on H Diffusion in Ni with S5{100} GB

• The S5{100} GB itself significantly increases the on-plane diffusion (relative to single crystal)
• All defects increase the on-plane diffusivities, especially vacancies (in single crystals, 

interstitials have the biggest effects and vacancies have negligible effects)
• Vacancy increases on-plane diffusivities by 9.2 times at 300 K and 2.2 times at 600 K as 

compared with the boundary alone case
• The out-plane diffusivities are significantly reduced as compared to bulk diffusion, indicating 

boundary trapping that is confirmed by the two segments

t = 440 ns



Visualization of S5{100} Grain Boundary 

• Hydrogen atoms strongly segregates at the GB
• Ni interstitials and vacancies strongly segregate at the GB
• No change in the orientation of atomic rows
• Ni diffusion only occurs when ether interstitials or vacancies are 

present
• No statistical effects of initial configurations on diffusivities were 

found

CH = 2%

Cdef = 0.5%



Defect Effects on H Diffusion in Ni with S11{311} GB

• Diffusivities in the two on-plane directions slightly differ
• Defects increase on-plane diffusivities especially at low temperatures
• Interstitials most significantly increase on-plane diffusivities
• In the x- direction, interstitials increase diffusivities by 5.9 times at 300 K and 1.9 

times at 600 K as compared with the boundary alone case
• In the z- direction, interstitials increase diffusivities by 4.1 times at 300 K and 1.9 

times at 600 K as compared with the boundary alone case
• The out-plane diffusivities are significantly reduced as compared to bulk 

diffusion, indicating boundary trapping that is confirmed by the two segments

t = 440 ns



Visualization of S11{311} Grain Boundary 

CH = 2%, Cdef = 0.5%

• Hydrogen atoms strongly 
segregates at the GB

• Ni interstitials and vacancies 
strongly segregate at the GB

• No change in the orientation of 
atomic rows

• Ni diffusion only occurs when 
ether interstitials or vacancies 
are present

• No statistical effects of initial 
configurations on diffusivities 
were found



Activation Energy and Pre-exponential Factors

Point defects + grain 
boundaries can reduce 
on-plane diffusion 
energy barrier, in 
agreement with 
experiments*

*A. Qudriss, J. Creus, J. 
Bouhattate, E. 
Conforto, C. Berziou, C. 
Savall, and X. , Acta 
Mater., 60, 6814 
(2012). 

CH = 2%

Cdef = 0.5%

Table II. Hydrogen-defect interaction energy (eV).
By placing hydrogen at different locations, MD 
simulations at 100 K are used to calculate time-
averaged interaction energies between hydrogen 
and various defects



Activation Energy of Individual Jumps

• By sequentially marching the hydrogen atoms in the three coordinate directions 
and relaxing the structure with the marching atom constrained on the marching 
plane, molecular statics can be used to calculate the energy barrier of atomic 
jumps

• This method can be easily automated to calculate a variety of atomic jumps



Visualization of Atomic Jumps in Single Crystal

Presence of nickel interstitials or vacancies can reduce the 
energy barrier of some hydrogen jump paths, but not too 
much



Visualization of Atomic Jumps near the S3 GB

• Presence of nickel interstitials or vacancies can reduce the energy 
barrier of some hydrogen jump paths further from GB effects alone

• The 500 K initial configuration more effectively reduces the energy 
barrier because the 5 nickel interstitials are uniformly distributed



Visualization of Atomic Jumps near the S5 GB

• Presence of nickel interstitials or vacancies can reduce the energy 
barrier of some hydrogen jump paths further from GB effects alone

• Both interstitials and vacancies cause local distortion



Visualization of Atomic Jumps near the S11 GB

• Presence of nickel interstitials or vacancies can reduce the energy 
barrier of some hydrogen jump paths further from GB effects alone

• Local interstitials and vacancies are more clearly defined than the S5 
grain boundary case



1. Robust MD diffusion simulation methods have been developed to account for statistical 

interactions between diffusion species, grain boundaries, and irradiated defects. Highly 

converged results with almost no statistical errors are demonstrated

2. The predicted activation energy of H diffusion in defect-free single crystal Ni, 0.51 eV, 

compares well with the experimental value, 0.40 eV

3. For single crystals, 0.5% interstitial increases H diffusivities by 16.3 times at 300 K and 

1.4 times at 600 K as compared with perfect crystals. Vacancy does not sensitively change 

diffusivities 

4. Interstitials cause different reconstructions of S3{111} grain boundaries. Some 

reconstructions may have significantly increased on-plane H diffusivities: by 146.7 times 

at 300 K and 2.4 times at 600 K as compared with the boundary alone case

5. Defects significantly increase on-plane H diffusivities on S5{100} grain boundary

6. S5{100} and S11{311} grain boundaries have significant H trapping effects, leading to 

significantly reduced out-plane H diffusivities

7. Molecular statics calculations of energy barriers of individual jumps help understand the 

mechanisms of diffusivity changes 

Major Conclusions



The Development of Fe-Ni-Cr Potential

• The real material applied is stainless steels, not nickel

• Bonny et al also have an earlier version of the Fe-Ni-Cr potential 

(MSMSE, 19, 085008, 2011). Tong et al also developed a MEAM Fe-Ni-

Cr-N potential recently (Molecular Simulation, 42, 1256, 2016). We are 

currently evaluating both potentials

• We are also developing an Fe-Ni-Cr EAM potential suitable for our 

applications where stacking fault energy and lattice constant are important

• In addition to the conventional fitting of selected properties, we require 

our potential to capture a single austenitic phase at high temperatures, and 

coexistence of ferritic and austenitic phases at low temperatures

• Validate the stability of our potential using vapor deposition simulations

• All the results are obtained from time-averaged MD simulations



Issues of EAM Formulation

• For elemental systems, any linear term added to the embedding energy can 

be exactly subtracted by a linear term in the pair energy

• Any factor multiplied to the electron density can be exactly divided away 

in the embedding energy. This impacts alloys

• These result in poor parameterization
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Improved Embedding Energy Function

• Requiring zero derivatives independently for embedding and pair energies 

for the equilibrium phase removes one flexibility. Using relative electron 

density /e removes the other flexibility that helps the alloy 

parameterization

• Our splined embedding energy function has three advantages: removes 

both flexibilities, has the correct shape, and can be fitted to up to the third 

derivative
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Improved Cutoff

• A cutoff function is proposed to take the form of

where erfc(m) = 10-5, erfc(n) = 0.9 

• Multiply this cutoff function to any pair function will not change the value 

of the pair function, but will allow the pair function to be cutoff with 

continuous high order derivatives

• More importantly, this cutoff function will allow the cutoff distance to be 

treated as a fitting parameter
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Properties of Selected Elemental Phases

[1] J. D. H. Donnay, and H. M. Ondik, Crystal Data, Determinative Tables, 3rd ed., Vol. 2 (inorganic compounds) (U. S. 

Department of Commerce, National Bureau of Standards, and Joint Committee on Power Diffraction Standards, U. 

S. A., 1973)

[2] I. Barin, Thermochemical Data of Pure Substances (VCH, Weinheim, 1993)

[3] G. Simmons, and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook 

(MIT Press, Cambridge, 1971)

[4] Palmer, S. B.; Lee, E. W. The elastic constants of chromium. Philos. Mag. 1971, 24, 311



Relative Change of Energy and Volume of 
Alloys with respect to Elements

General trends match well between MD and DFT calculations



Elastic Constants

The elastic constants prescribed by the 
potential for alloys with XFe = 0.66 seems to 
be slightly higher than the experimental 
values for 316L with XFe = 0.70, taken from 
Bonny et al, MSMSE, 19, 085008, 2011.



Stacking Fault Energy
Experimental data from Schramm and 
Reed, Metall. Trans. A, 6, 1345 (1975).

Molecular Dynamics Results

The calculated 
stacking fault 
energy seems to be 
in the right order of 
magnitude



Gibbs Free Energy of Mixing DG

Our potential predicts single 
austenitic phase at high 
temperatures, sufficient for 
model 316L and 304L 
stainless steels

ASM Phase Diagram © 2016

Time-Averaged MD Calculations of DG and DH



Growth Simulation Validation

Crystalline growth is achieved for all observed phases, validating their stability in MD 
simulations 



•Our new Fe-Ni-Cr EAM potential may be 

appropriate for studying mechanical 

properties of stainless steels

•The most significant advantages of the 

potential is that it enables stable 

simulations of the austenitic phase as well 

as co-existence of ferritic and austenitic 

phases

Major Conclusions



Uncertainty Quantification:
Ultimate Goal of Models

• Accuracy of interatomic potentials (likely not impact mechanisms and 

trends)

• Accuracy of molecular dynamics (MD) itself

 Models that are absolutely accurate (e.g., dislocation core energy, 

diffusion energy barriers)

 Models that we strongly believable (e.g., thin film structures)

 Models that are plausible (e.g., dislocation mediated charge transport in 

TlBr)



•MD can inform engineering scale models because when MD results are used 

as inputs, these models should make exactly the same predictions as MD 

regardless the potential 

•All MD simulations involve statistical errors, but these errors can be 

quantified and reduced

MD Uncertainty Quantification Methods



Absolutely Accurate Example I: 
Dislocation Core Energy Calculation

•One can always create a perfect crystal and 

a crystal containing dislocations under the 

periodic boundary condition

•Energy of the perfect crystal can always be 

scaled towards the same number of atoms 

of the dislocated crystal

•Dislocation energy can always be calculated 

as the (scaled) energy difference between 

the dislocated and perfect crystals, without 

any assumptions

•Dislocation core energy can always be 

fitted to the continuum solution of the total 

dislocation energy



Continuum Energy Expression 
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Ec, r0: core energy, radius, Ga: Euler gamma function, coth, cosh: hyperbolic 

functions, G, n: shear modulus, Poisson’s ratio, b: Burgers magnitude, a: 

dislocation dipole direction (a = 0o means vertical dislocation dipole), : 

dislocation character angle

Ec independent 

of geometry!



Time Averaged MD Simulations 
Convergence

Edge Dislocation Mixed Dislocations

•Negligible error bars

•No time scale issue 

because error bars are 

already negligible

•No length scale issues 

because already 

captures the continuum 

solutions

Screw Dislocation



•Continuum misfit dislocation theory has been widely used since 1980’s
•MD simulations revealed that traditional continuum misfit dislocation theory is 
incorrect in the definition of dislocation Burgers vector and dislocation spacing

•This example indicates that absolutely accurate MD can “validate” and improve 
continuum models  

Wrong definition Correct definition

Absolutely Accurate MD Can Validate and 
Correct Classical Theories



Absolutely Accurate Example II: 
Diffusion Energy Barrier Calculation

• Without assuming atomic jump paths, the coordinates ai(t) of diffusing atoms (i = 1, 2, 

…, N), are recorded every Dt, i.e., at times of t = jDt, j = 1, 2, …, m (m = tMD/Dt), 

where Dt can be any multiple of the time step size dt used in the MD simulations

• m+1-k measurements can be made for the displacement of each diffusing atom i over a 

kDt period: Dai,j(kDt) = ai(jDt-Dt+kDt) - ai(jDt-Dt) where j = 1, 2, …, m+1-k. 

• This allows us to calculate mean square displacement (MSD):

• MSD can be fitted to diffusivities D:
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MSD Convergence Example

Zhou et al, J. Phys. Chem. C, 120, 7500 (2016).



Time Averaged MD Simulations 

Convergence

•Negligible error 

bars

•No time scale issue 

because error bars 

are already 

negligible

•No length scale 

issues because the 

computational cell 

can include all 

geometries of our 

problems (e.g., grain 

boundaries)

Diffusion of Hydrogen in PdHx



Major Conclusions

Time-averaged molecular dynamics simulations can be used to 

calculate accurate dislocation core energy and diffusion energy 

barriers. While the interatomic potential used in the simulations has 

errors, the simulations do not introduce additional non-negligible 

errors regardless time and length scales


