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Incorporating Grain Boundaries Incorporating Statistics
(a) defect effects on xz diffusion in Z3 {111} systems
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Motivation

* The TMIST-2 1rradiation experiment at the Advanced Test Reactor at
Idaho National Laboratory measured a tritium permeation enhancement in
316 stainless steel by a factor of ~2 to 5 relative to ex-reactor results

* Grain boundaries and irradiation-induced defects may be both responsible

* Statistics of diffusion cannot be captured by DFT calculations. Molecular
dynamics (MD) simulations are required to understand this

* The only literature stainless steel potential (Bonny et al, MSMSE, 21,
85004, 2013) incorrectly predicts phase separation

* We therefore use N1 as an exemplar to perform extensive MD simulations
on hydrogen diffusion in N1 to elucidate the tritium permeation

enhancement in 316 stainless steels
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* Grain boundaries parallel to xz plane are
2 simulated with bi-crystals under periodic
boundary conditions

* Single crystal and 23 {111}, X5{100),
211{311} grain boundaries are studied

* Systems with and without point defects are
both considered. Three different point defects (interstitials, vacancies,
and Frenkel pairs) are independently simulated. Defect concentration 1s
fixed at contain Cy = 0.5%

* Systems contain a hydrogen concentration of C; = 2%
* Ni-H potential from Angelo et al, MSMSE, 3, 289, 1995

* MD simulations are performed at 13 temperatures 300 K, 325 K, ...,
575 K, 600 K for a period of t,,, =440 ns (after 1 ns pre-equilibration)
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Diffusion Analysis

The coordinates o(t) of N hydrogen atoms 1=1, 2, ...,
m (m = ty,p/At), where At can be any

interval of At, 1.e., at times of t =jAt, =1, 2, ...,
multiple of the time step size dt used in the MD simulations.

N), are recorded on a time

m+1-k measurements can be made for the displacement of a hydrogen atom 1 over a

kAt period: Aay ;(kAt) = oy(JAt-At+kAt) - o;(JAt-At) where j =1, 2, .

., m+1-k.

This allows us to calculate mean square displacement (MSD):

imi][Aa kAt]
[aatkar) = Nm+1-k)

MSD can be fitted to diffusivities D:
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Defect Effects on H Diffusion in Ni Single Crystals

defects effects on xyz diffusion in 21 systems
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Diffusivities are close with and
without vacancies

At the simulated interstitial
concentration of 0.5%,
interstitial increases
diffusivities by 16.3 times at
300 K and 1.4 times at 600 K
as compared with perfect
crystals

Activation energy of diffusion
for perfect crystals is predicted
to be 0.51 eV, as compared to
the experimental value of 0.40
eV’

*L. Katz, M. Guinan, and R. J. Borg, Phys. Rev. B, 4, 330 (1971)

t =440 ns
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Defect Effects on H Diffusion in Ni with the 23{111} GB

(a) defect effects on xz diffusion in 23{111} systems  (B) defect effects on y diffusion in £3{111} systems
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The coherent twin boundary almost has no effects on diffusivities with
different defects except in the interstitial case

Interstitial increases on-plane diffusivities by 15.3 times at 300 K and 2.3 times
at 600 K as compared with perfect crystals

Out-plane diffusivities are close to single crystals, indicating insignificant grain

boundary trapping
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Visualization of 23{111} Grain Boundary c,=2%

(a) X3{111} systems
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(b) interstitial in £3{111} systems
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(¢) vacancy in £3{111} systems
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Hydrogen does not segregate, but Ni interstitials and vacancies

Ni diffusion only occurs at the presence of interstitials and vacancies

Interstitials cause reconstructions of atomic rows
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Observation of Two >3{111} Grain Boundary
Reconstructions due to Interstitials

(a) interstitial in 23 {111} at 300 K (b) interstitial in X3 {111} at 500 K
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* The 300 K reconstruction is similar to the
one shown above, but the atomic rows in

the 500 K reconstruction are different
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Statistical Effects of Initial >3{111} GB Reconstructions

(a) interstitial effects on xz diffusion in £3 {111} systems (b) interstitial effects on y diffusion in 3 {111} systems
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Depending on reconstruction, the combination of interstitials and the 23{111}
grain boundary may significantly increase the on-plane diffusivities

Interstitial increases on-plane diffusivities by 146.7 times at 300 K and 2.4
times at 600 K as compared with the boundary alone case

Out-plane diffusivity is not significantly affected
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Defect Effects on H Diffusion in Ni with >5{100} GB

@) defect effects on xz diffusion in £5{100} systems  (b) defect effects on y diffusion in £5{100} systems
y
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* The 25{100} GB itself significantly increases the on-plane diffusion (relative to single crystal)

» All defects increase the on-plane diffusivities, especially vacancies (in single crystals,
interstitials have the biggest effects and vacancies have negligible effects)

* Vacancy increases on-plane diffusivities by 9.2 times at 300 K and 2.2 times at 600 K as
compared with the boundary alone case

* The out-plane diffusivities are significantly reduced as compared to bulk diffusion, indicating

boundary trapping that is confirmed by the two segments
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Chi=2%
Visualization of 25{100} Grain Boundary  Cq=0.5%

(@) 5{100} systems T=550K (b) interstitial in £5{100} systems Ni  (c) vacancy in Z5{100} systems

—> x-[100] O lower grain @ upper grain @ hydrogen

* Hydrogen atoms strongly segregates at the GB

* Ni interstitials and vacancies strongly segregate at the GB

* No change in the orientation of atomic rows

* Ni diffusion only occurs when ether interstitials or vacancies are
present

* No statistical effects of initial configurations on diffusivities were

found
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Defect Effects on H Diffusion in Ni with 211{311} GB

(a) defect effects on x diffusion in Z11{311} systems (b) defect effects on z diffusion in Z11{311} systems (c) defect effects on y diffusion in 11{311} systems
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* Diffusivities in the two on-plane directions slightly differ

» Defects increase on-plane diffusivities especially at low temperatures

* Interstitials most significantly increase on-plane diffusivities

* In the x- direction, interstitials increase diffusivities by 5.9 times at 300 K and 1.9
times at 600 K as compared with the boundary alone case

* In the z- direction, interstitials increase diffusivities by 4.1 times at 300 Kand 1.9
times at 600 K as compared with the boundary alone case

* The out-plane diffusivities are significantly reduced as compared to bulk
diffusion, indicating boundary trapping that is confirmed by the two segments
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Visualization of 211{311} Grain Boundary

(a) £11{311} systems

strongly segregate at the GB
* No change in the orientation of

segregates at the GB
* Ni interstitials and vacancies

atomic rows
* Ni diffusion only occurs when
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Activation Energy and Pre-exponential Factors

Table I. Activation energies Q and pre-exponential factors Dy for different cases. Note that

subscript “xyz” indicates isotropic bulk diffusion, “y” indicates out-plane diffusion, “xz"

g n

indicate isotropic in-plane diffusion, “x” and “z” indicate that the anisotropic in-plane
diffusion is further split into two directions.

Cy =2%
Cyr=0.5%

No defects | Vacancies | Interstitials | Frenkel pairs Point defects + grain
Single crystals .
Quyz (eV) 0.508 0.455 0.407 0.435 boundaries can reduce
Doxyz (A%/ps) | 3.835x10° | 8.925x10! 5.959x10! 9.075x10! on-plane diffusion
¥3{111} ) _
Qu (eV) 0.483 0.465 0.441 0.302 0.427 energy barrier, in
Dox. (A%/ps) | 2.283x10° | 1.190x10% | 2.336x10? 1.553x10! 8.116x10! .
Qy (eV) 0.475 0.448 0.459 0.453 0.455 agreement with
Doy (A%/ps) 1.666x10> | 8.089x10! 1.941x10? 1.503x10? 1.352x10? experiments*
¥5{100}
Q- (eV) 0.395 0.301 0.291 0.300
Do, (A%/ps) | 8.623x10' | 3.376x10! 1.413x10" 2.073x10! XA Qudriss, J. Creus, J.
Qy (eV) 0.716 0.672 0.864 0.747 ! !
Doy (AZps) | 2.289x10° | 1.116x10° 1.767x10° 5.497x10° Bouhattate, E.
T11{311} .
Qs (eV) 0.476 0.395 0.393 0.391 Conforto, C. Berziou, C.
Do.x (A%/ps) 1.271x10° | 2.907x10" 4.808%10! 2.888x10! Savall, and X. , Acta
Q. (eV) 0.493 0.447 0.432 0.465
Do, (AZps) | 3.474x107 | 1.262x107 1.983x10? 2.420%107 Mater., 60, 6814
Qy (eV) 0.655 0.703 0.627 0.620
Doy (A%/ps) 1.388x10% | 3.342x10° 1.528x10° 8.077x10? (2012)'

Table II. Hydrogen-defect interaction energy (eV).

Point defects Grain boundaries
Vacancies | Interstitials | Z3{111} | £5{100} | Z11{311}
-0.18 -0.12 -0.03 -0.20 -0.24

By placing hydrogen at different locations, MD
simulations at 100 K are used to calculate time-
averaged interaction energies between hydrogen
and various defects



Activation Energy of Individual Jumps

atom motion is constrained on LO
the march planes (dash lines) 0.9 ¥
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* By sequentially marching the hydrogen atoms in the three coordinate directions
and relaxing the structure with the marching atom constrained on the marching
plane, molecular statics can be used to calculate the energy barrier of atomic
jumps

* This method can be easily automated to calculate a variety of atomic jumps



Visualization of Atomic Jumps in Single Crystal

(b) with Ni interstitials (¢) with Ni vacancies

(a) no point defects
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Presence of nickel interstitials or vacancies can reduce the

energy barrier of some hydrogen jump paths, but not too

much



Visualization of Atomic Jumps near the 23 GB

(a) no point defects (b) with Ni interstitials, 300 K conf. (c¢) with Ni interstitials, 500 K conf.
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* Presence of nickel interstitials or vacancies can reduce the energy
barrier of some hydrogen jump paths further from GB effects alone

* The 500 K initial configuration more effectively reduces the energy
barrier because the 5 nickel interstitials are uniformly distributed



Visualization of Atomic Jumps near the 25 GB

(a) no point defects (b) with Ni interstitials (¢) with Ni vacancies
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* Presence of nickel interstitials or vacancies can reduce the energy
barrier of some hydrogen jump paths further from GB effects alone
* Both interstitials and vacancies cause local distortion



Visualization of Atomic Jumps near the 211 GB

(c) with Ni vacancies

(a) no point defects (b) with Ni interstitials
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* Presence of nickel interstitials or vacancies can reduce the energy
barrier of some hydrogen jump paths further from GB effects alone
* Local interstitials and vacancies are more clearly defined than the 25

grain boundary case



Major Conclusions

. Robust MD diffusion simulation methods have been developed to account for statistical

interactions between diffusion species, grain boundaries, and irradiated defects. Highly
converged results with almost no statistical errors are demonstrated

The predicted activation energy of H diffusion in defect-free single crystal Ni, 0.51 eV,
compares well with the experimental value, 0.40 eV

. For single crystals, 0.5% interstitial increases H diffusivities by 16.3 times at 300 K and
1.4 times at 600 K as compared with perfect crystals. Vacancy does not sensitively change
diffusivities

Interstitials cause different reconstructions of X3 {111} grain boundaries. Some
reconstructions may have significantly increased on-plane H diffusivities: by 146.7 times
at 300 K and 2.4 times at 600 K as compared with the boundary alone case

. Defects significantly increase on-plane H diffusivities on 25{100} grain boundary

>5{100} and X11{311} grain boundaries have significant H trapping effects, leading to
significantly reduced out-plane H diffusivities

. Molecular statics calculations of energy barriers of individual jumps help understand the

mechanisms of diffusivity changes
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