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Goal: investigate chemistries to degrade 
organophosphates in water free environments

Fundamental 
understanding 

of materials 
chemistry

Engineering 
delivery options

Enabling 
technologies

Sandia has worked in the area of chemical and 
biological decontamination since the mid 1990s 

Sandia DF-200: Broad Spectrum Decontaminant

https://intelagard.com/portfolio/easydecon-df200/
2
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ACS Catal. 2013, 3, 1454−1459.

Billion-fold Acceleration of the Methanolysis of 
Paraoxon Promoted by La3+ complexes 

Limited literature on the solvolysis 
organophosphates

Methanolysis of organophosphates is accelerated by 
La-based catalysts 

J. Am. Chem. Soc. 2003, 125, 7602-7607.

La 3+ catechol-functionalized POPs show 
accelerated activity towards methanolysis
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Unique features of RE metals in the context of MOFs:

• High coordination numbers to generate metal clusters with catalytically active unsaturated 
metal centers 

• Similar coordination chemistry to aid systematic studies on isostructural MOF series

MOF structures by metal type
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Rare earth-based MOFs are not prevalent
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Proof-of-concept prototype structure

Octahedral cages of ~ 14 Å diameter, 
accessible via triangular windows of ~ 5.5 Å

M6(μ3-OH)8(C8H4O6)5(C2H6O6)1(H2O)6·24 H2O

M= Eu, Nd, Yb, Y, Tb

Single-crystal X-ray diffraction

Tetragonal, 3D framework
P4NC
a= b= 15.5567 Å
c= 21.334 Å
α=β=γ= 90° = V= 5163.06 Å3

M(NO3)3·6H2O

Sava Gallis et al., ACS Appl.Mater.Inter. 2017, 9, 22268–22277. US Patent Application #62522006

RE-DOBDC platform based on a building block akin to 
prototypical Zr-hexanuclear cluster 
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Eu
Nd
Yb
Y
Tb
 calculated Compound a (Å) c (Å) Volume (Å3)

EuDOBDC, 1 15.36(1) 21.76(2) 5133(19)

EuDOBDC, 1

(single crystal)

15.56 21.33 5163

NdDOBDC, 2 15.50(1) 21.89(1) 5258(7)

YbDOBDC, 3 15.07(1) 21.29(1) 4834(7)

YDOBDC, 4 15.143(7) 21.385(7) 4904(6)

TbDOBDC, 5 15.23(2) 21.51(1) 4993(19)

Gradual expansion of the unit cell volume with the
increase in the RE ionic radius : Nd>Eu>Tb>Y>Yb

All analogs are isostructural and possess permanent
porosity
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Compound BET SA Langmuir SA

EuDOBDC, 1 700 m2/g 730 m2/g

NdDOBDC, 2 587 m2/g 620 m2/g

YbDOBDC, 3 613 m2/g 630 m2/g

YDOBDC,   4 710 m2/g 730 m2/g

TbDOBDC, 5 630 m2/g 650 m2/g

Sava Gallis et al., ACS Appl.Mater.Inter. 2017, 9, 22268–22277. 
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Increase in Toxicity
Increase in Correlation to Live Agent?

Sarin (GB)

Live Agent

Simulants vs. CWAs: striking the balance between 
toxicity and reactivity

Simulants

Diethyl Chlorophosphate
(DECP)

Diisopropyl Fluorophosphate
(DFP)

Dimethyl Nitrophenylphosphate
(DMNP)

• The molecular structure/reactivity of simulants vs. Chemical Warfare Agents (CWAs) is different

• Tests performed on CWAs are not trivial and conducted only at authorized facilities

• Simulants allow screening of materials

This study aims to identify the most appropriate simulants that correlate 
best with the solvolysis of GB
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DECP degradation at RT in various relevant 
solvents measured by 31P NMR 
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Representative 31P NMR plot for DECP 
degradation in MeOH
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Materials downselection to probe the effect of 
metal site and linker functional groups

UiO-66

100 nm

UiO-66-DOBDC

50 nm

EuDOBDC

Sample Surface area, m2/g

EuDOBDC UiO-66 508

UiO-66-DOBDC 550 

YDOBDC 710

UiO-66 1667

YDOBDC

10
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Periodic DFT:
• Optimize crystal structure with VASP
• PAW approach with PBESol functional
• VDW interactions via DFT-D3 method

Computational Methods

11

UiO-66 EuDOBDC



dfsava@sandia.gov

Simulated IR spectra are in very good 
agreement with experimental  results
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Effect of metal

Effect of ligand

1315 cm-1

C-O-H 
at metal bend

M-O-H bends

1430 cm-1

C-O-H bend + C=C 
stretch

1237 cm-1

H-C=C-O-H bend
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Room temperature DECP methanolysis: the 
highest activity is primarily dependent on the 
metal identity 
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Sava Gallis et al., 2017, in preparation

Sample t1/2, min

UiO-66 7.58

UiO-66-DOBDC 8.2

EuDOBDC 11.65

YDOBDC 12.3

MeOH 12.3
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DECP reaction kinetics in MeOH are improved 
with temperature and amount of catalyst
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Sava Gallis et al., 2017, in preparation

Sample t1/2, min

UiO-66, 6 mol%, 50°C 1.41
UiO-66, 60 mol%, 25°C 3.35
UiO-66, 6 mol%, 25°C 7.58



dfsava@sandia.gov

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

%
T

 1000   1500   2000   2500   3000   3500  

Wavenumbers (cm-1)

 58

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

%
T

 1000   1500   2000   2500   3000   3500  

Wavenumbers (cm-1)

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

%
T

 1000   1500   2000   2500   3000   3500  

Wavenumbers (cm-1)

IR confirms no DECP adsorption and no 
structural changes post catalytic activity

EuDOBDC pre- and 
post- DECP degradation YDOBDC pre- and 

post- DECP degradation

UiO-66-DOBDC pre- and 
post- DECP degradation

UiO-66 pre- and 
post- DECP degradation

16

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

%
T

 1000   1500   2000   2500   3000   3500  

Wavenumbers (cm-1)
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DECP methanolysis occurs via a catalytic 
process
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The activity is strictly catalytic  (NO physical adsorption), 
as shown by the sum of product and reactant peak integrals
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Room temperature DMNP methanolysis: significantly 
slower  reaction  kinetics as compared to DECP
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Sample t1/2, min

MeOH N/A

UiO-66 3143.27
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Room temperature DFP methanolysis: 
comparable with DMNP reaction kinetics
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Significant differences noted in the reactivity as function of 
chloro- vs. fluorophosphates chemistry 
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Sample t1/2, min

MeOH N/A

UiO-66 1380.56
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GB methanolysis as facilitated by UiO-66
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The reactivity profiles at RT and 500C are comparable, with an initial spike the first 
30 min followed by much slower kinetics afterwards- perhaps catalyst poisoning?

In collaboration with 
Jared Decoste, ECBC
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Sample t1/2, min

UiO-66, 25°C 1386

UiO-66, 50°C 990
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Room temperature methanolysis trends:
DECP>GB>DFP>DMNP
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• The methanolysis of GB is faster than that of both DFP and DMNP at room 
temperature 

• The reactivity of GB, DMNP and DFP runs in parallel, indicating related 
conversion mechanisms 

21
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Degradation kinetics are significantly 
improved with temperature: DECP>DMNP>GB
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Computational Methods

Gas Phase Cluster DFT:

• Clusters generated from VASP optimized structure
• Clusters optimized with MO6-L functional, def2-SVP basis set for all non-metal atoms and SDD ECP and 

psuedopotential for metal atoms
• Model ”idealized” ligands as formate ligands

23
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Defect-free Zr cluster

- CHO2

+ H2O

• Remove a ligand and add water  8 coordinated Zr and 7 coordinated Zr
Angew. Chem. Int. Ed. 2015, 54, 11162-11167
Chem. Sci. 2016, 7, 4706-4712

24

Considering defects in the Zr cluster

Missing linker  Zr cluster

Sava Gallis et al., 2017, in preparation
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sp3

sp2

Binding energy significantly increased in 
clusters with defects

DECP-sp2 DECP-sp3 GB-sp2 GB-sp3 MeOH
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Summary

• Significant differences in the chemistry of chloro- vs. fluorophosphates

• DECP appropriate choice to downselect best performing candidates

• DECP is not an ideal surrogate molecule to characterize the GB methanolysis

• DMNP and DFP have much more relatable reaction kinetics with GB in methanol

• DFT binding energies in progress to better inform future experiments
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