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Abstract—While large-scale simulations have been the hall-
mark of the High Performance Computing (HPC) community
for decades, Large Scale Data Analytics (LSDA) workloads are
gaining attention within the scientific community not only as
a processing component to large HPC simulations, but also as
standalone scientific tools for knowledge discovery. With the path
towards Exascale, new HPC runtime systems are also emerging
in a way that differs from classical distributed computing models.
However, system software for such capabilities on the latest
extreme-scale DOE supercomputing needs to be enhanced to
more appropriately support these types of emerging software
ecosystems.

In this paper, we propose the use of Virtual Clusters on
advanced supercomputing resources to enable systems to support
not only HPC workloads, but also emerging big data stacks.
Specifically, we have deployed the KVM hypervisor within
Cray’s Compute Node Linux on a XC-series supercomputer
testbed. We also use libvirt and QEMU to manage and provision
VMs directly on compute nodes, leveraging Ethernet-over-Aries
network emulation. To our knowledge, this is the first known
use of KVM on a true MPP supercomputer. We investigate the
overhead our solution using HPC benchmarks, both evaluating
single-node performance as well as weak scaling of a 32-node
virtual cluster. Overall, we find single node performance of our
solution using KVM on a Cray is very efficient with near-native
performance. However overhead increases by up to 20% as
virtual cluster size increases, due to limitations of the Ethernet-
over-Aries bridged network. Furthermore, we deploy Apache
Spark with large data analysis workloads in a Virtual Cluster,
effectively demonstrating how diverse software ecosystems can
be supported by High Performance Virtual Clusters.

I. INTRODUCTION

Currently, we are at the forefront of a convergence within
scientific computing between High Performance Computing
(HPC) and Large Scale Data Analytics (LSDA) [1], [2]. This
amalgamation of differing viewpoints in distributed systems
looks to force the combination of performance characteristics
of HPC’s pursuit towards Exascale with data and programmer
oriented concurrency models found in Big Data analytics
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platforms. Capitalizing upon the community’s existing intel-
lectual investments in advanced supercomputing systems and
leveraging the economies of scale in hardware infrastructure
could benefit more computational methods beyond what is
possible as disjoint environments. Current software efforts
in each area have become specialized with the gap growing
rapidly, making concurrent ecosystem support within a single
architectural system increasingly intractable.

Much of the convergence effort has been focused on ap-
plications and platform services. Specifically, significant work
towards convergent applications has been outlined with the
Big Data Ogres [3] and the corresponding HPC-ABDS model
[4]. This convergence can also be seen with efforts in bringing
interconnect advances from HPC to data analytics platforms,
such as with InfiniBand and MapReduce [5]. However, much
of the underlying hardware and OS environments between the
latest MPP supercomputing resources and the cloud-enabled
runtimes of big data applications are still something to be
reconciled. We believe virtualization can help fill this gap.

In this, we postulate embracing this software diversity on
advanced supercomputing platforms through the use of High
Performance Virtual Clusters. The notion of a virtual cluster
describes a self-contained entity for a cluster system that is
specific to a user’s software stack. They can be structured
in any way that physical clusters currently can to support
distributed systems, complete with a head node, compute
nodes, storage servers, user gateways, or even P2P services, to
name a few components. Virtual clusters are separated from
the underlying computing infrastructure by running atop a
virtualization layer, in our case one that is tuned for improved
performance. This enables disjoint software ecosystems to
provision and operate independent software stacks deployed
concurrently on the same hardware.

With a proper design, current HPC system software stacks
should continue to operate in the same environment as before
on the same hardware, yet we also enable the ability for emerg-
ing analytics and visualization workloads such as pieces of the
Apache Big Data Stack [6], among others, to deploy custom
software specific to application needs rather than adapting to
site-specific software. Furthermore, such virtualized clusters
enable new methods for non-standard workflow composition,
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such as the in-situ coupling of parallel MPI simulations with
emerging data analytics and visualization tools for real-time
experimental control, either across or within clusters. Virtual
clusters can conceivably enable the ability to uniquely couple
both simulations and analytics for enhanced computational
abilities, both intra and inter cluster, such as with emerging
Asynchronous Many-Task runtimes.

To build High Performance Virtual Clusters, we have chosen
to utilize the KVM hypervisor for running Virtual Machines
(VMs) on Cray XC-series supercomputing resources. While
in this paper we use a relatively small testbed for initial
prototyping and development, our selection of running VMs
on a Cray resource is a specific one. Cray Inc. supercomputers
currently account for 3 of the top 10 systems as of the Nov
2016 TOP500 supercomputing list [7] and, when compared
to standard commodity clusters or cloud infrastructure, their
architectural design is highly optimized for extreme-scale
parallel workloads. If successful, we hope a virtual cluster
prototype could scale up to large-scale deployments operating
today, or even towards future supercomputing architectures.

Effectively, we demonstrate that KVM virtual machines can
be run on a Cray supercomputer, which to our knowledge
is a novel use case for KVM in a unique supercomputing
environment such as a Cray. Second, we confirm what previous
research [8], [9] has already noted, in that when vitualization
is properly designed and configured, very low overhead and
good performance can be provided to HPC applications. This
is an important notion for systems that are looking to improve
flexibility of supercomputing software without sacrificing sig-
nificant performance or disturbing current workloads. Third,
we demonstrate how to run Apache Spark in a completely
unmodified format in a virtual cluster deployment on a Cray
testbed. While this is possible with different storage back-ends
or additional reconfiguration [10], we hope this can collec-
tively help drive the inclusion of more large data analytics
stacks in supercomputing.

This manuscript is constructed as follows. First, we evaluate
current virtualization efforts in the related research section,
specifically focusing on HPC and big data requirements. Next,
we describe the design and implementation of virtual clusters
on a Cray XC30 supercomputer, using the KVM hypervisor,
and detail the technical challenges of running VMs on a
Cray efficiently. Then, we use the HPCC benchmark suite
and HPCG to evaluate performance, both from a single-
node perspective, as well as with multi-node experiments up
to 768 cores and 32 nodes. We also detail the running of
Apache Spark within a new virtual cluster, and its relative
ease of deployment. Finally, we discuss how our prototype
can best move forward towards supporting HPC and Big Data
convergence, and what technological advances are necessary
for a more successful future convergent platform.

II. RELATED RESEARCH

Cluster computing has become one of the core tools in dis-
tributed systems for use in parallel computation [11]. Clusters
have manifested themselves in many different ways, ranging
from Beowulf clusters [12], which run Linux on commodity

PC hardware, to some of the TOP500 supercomputing systems
today. Virtual clusters represent the growing need of users to
organize computational resources in an environment specific
to their tasks at hand effectively, instead of sharing a common
architecture across many users. With the advent of modern
virtualization, virtual clusters are deployed across a set of
Virtual Machines (VMs) in order to gain relative isolation
and flexibility between disjoint clusters while still sharing the
same underlying compute infrastructure. Virtual clusters, or
a set of multiple cluster computing deployments on a single,
larger physical cluster infrastructure, often have the following
properties and attributes [13]:

• Resources allocation based on VM units
• Clusters built of many VMs together, or by re-

provisioning physical nodes
• OS, system software, and applications dictated by users,

not administrators or vendors
• Leverage local infrastructure management tools to pro-

vide a middleware solution for virtual clusters
– Implementations could be a cloud IaaS such as

OpenStack
– Others can include a batch queue system such as

PBS as found in clusters
• User experience based on virtual cluster management, not

single VM management
• Consolidate server functionality on a smaller resource set

using multiple VMs
• Fault tolerance through VM migration mechanisms
• Utilize dynamic scaling through the addition or deletion

of VMs from the virtual cluster during runtime
• Connection to back-end storage solutions to provide

virtual persistent storage

Given these abstract properties, virtual clusters can take
many forms. Initial conceptions included the very notion
of virtual clusters as an on-demand computing system [14],
followed by using virtual clusters within the Grid comput-
ing field [15], [16] to satisfy differing Virtual Organization
requirements [17]. While this methodology worked relatively
well throughout High Throughput Computing (HTC) and such
pleasingly parallel workloads were also migrated towards
Cloud infrastructure as it became available. Today, some of the
largest HTC workloads are run on large-scale cloud systems
in a manner that resembles virtual clusters, including the LHC
CMS and ATLAS experiments [18].

Efforts have also been underway to support more complex
HPC workloads using virtual clusters. The Hobbes project [19]
seeks to create an OS & Runtime framework for extreme-scale
systems. In this, the Palacios VMM [20] demonstrated running
HPC workloads up to thousands of nodes with minimal
overhead [8], using the Catamount OS [21] specifically tuned
for HPC applications. Within the FutureGrid project, initial in-
vestigation into the viability of virtualization was investigated
[22], and small-scale virtual clusters were constructed focused
on the OpenStack IaaS, which leveraged both NVIDIA GPUs
and an InfiniBand interconnect using KVM [9] for HPC
molecular dynamics simulations. The Chameleon Cloud [23],
a NSF testbed project and follow-on to FutureGrid, also looks



to provide the ability for users to create virtual clusters through
a catalog of appliances which can be deployed and configured
for particular software stacks, focusing on leveraging more
HPC-centric hardware.

A. Hypervisors and Containers

There are numerous efforts to provide virtualization on
commodity x86 systems. This includes virtualization in the
form of binary translation, hardware-assisted virtualization,
and most recently in OS-level virtualization, also more com-
monly known as containers. Even within the spectrum of full
virtualization, there exists multiple types of hypervisors, each
with advantages and caveats. As good design requires a proper
selection of the right level of abstraction for providing virtual
clusters atop supercomputing resources, Figure 1 briefly details
3 major types of virtualization most often found today.

Fig. 1: Hypervisors and Containers

With a Type 1 virtualization system, the hypervisor or Vir-
tual Machine Monitor (VMM) sits directly on the bare-metal
hardware, below the OS. These native hypervisors shepherd di-
rect control of the underlying hardware, and can be controlled
and operated through the use of a single privileged VM. One
example of a Type 1 hypervisor is Xen[24], which uses the
Xen VMM to virtualize a privileged Linux OS, called Dom0,
that then creates and manages other user DomU instances.
This is in contrast to Type 2 hypervisors, which utilize a
different, and sometimes more convoluted design. With a Type
2 hypervisor, there is a host OS that sits directly atop hardware
as a normal OS would. However, the OS itself can abstract
its own hardware, usually through extended kernel support or
modules, and manages VMs as OS processes. This effectively
allows for guest VMs to run atop existing OS infrastructure
with just kernel modules rather than as a complete redesign
of the OS system. The prime example of a Type 2 hypervisor
with special relevancy to this manuscript it the Kernel Virtual
Machine, or KVM hypervisor as part of Linux. Type 1 and
Type 2 hypervisors are distinct from OS level virtualization,
also known as containerization. With containers, there is a
single OS kernel; however, instead of direct hardware abstrac-
tion, the OS kernel is used to simultaneously run multiple
user-space instances in a jailed-root environment, often with
separate namespaces and additional root-level restrictions on
underlying resources. These environments may look and feel
like a separate machine, but in fact are simply sharing a single
OS kernel. The most current example is Docker containers

[25]. While this provides near-native performance and ease of
use, it often lacks flexibility and essentially binds resources to
a specific kernel, often that kernel being Linux.

Given the levels of abstraction and various hypervisors
available today, KVM, which is a Type 2 hypervisor, looked to
be an appealing choice for constructing flexible virtual clusters
atop extreme-scale supercomputing resources. KVM is well
supported throughout industry with pervasiveness throughout
current Cloud infrastructure, is well tested, and has support for
multiple ISA architectures, including x86, ARM, and POWER
architectures. This allows for our design, if successful, to be
extended to other emerging system architectures in the future.
The selection of KVM as a Type 2 hypervisor is also not a
coincidence, as we find this a relatively unobtrusive addition to
existing vendor HPC software stacks, as it is can exist as just a
Linux kernel module and user-level support libraries, without
otherwise disturbing the native software stack. This decision is
also reinforced by the selection of the Palacios VMM for HPC
workloads [8], which also demonstrated success in providing
advanced virtualization capabilities to HPC. Furthermore, the
selection of a Type 2 hypervisor in no way precludes using
containerization; in fact we surmise that such a hypervisor
could be used with and extend containerization options, such
as Shifter [26], to include additional levels of security and
resource isolation beyond what current container solutions
provide.

B. Data Analytics on Cloud Infrastructure

It is expected that new LSDA and big data efforts will
continue to move in a direction towards convergence with
HPC in the context of software platform design [27]. We
expect this to be true if virtualization can make HPC hardware
that is traditionally prohibitive in such areas, such as novel
ISA architectures, accelerators, and high-speed interconnects,
readily available to big data platforms. This can effectively
ease portability issues at the OS and runtime level. As the
deployment of big data applications and platform services on
virtualized infrastructure is well defined and studied [28] in
the cloud computing spectrum, however we hope such efforts
can be extended to provide more efficient resource utilization
and direct in-situ analytics of HPC simulations. As such, re-
search regarding virtualization can also play a part in bringing
advanced hardware and performance-focused considerations
to Big Data applications, effectively cross-cutting the con-
vergence with HPC. Recent efforts have taken place utilizing
collectives found in HPC applications within big data frame-
works [29], leveraging high-speed, low-latency interconnects
directly in Map Reduce frameworks like Hadoop [30], and
investigating areas where performance-centric lessons learned
can be leveraged within big data stacks [31]. These endeavors
are collectively pushing forward the notion of cross-cutting
convergence within analytics platform services themselves.

III. DESIGN OF HIGH PERFORMANCE VIRTUAL CLUSTERS

Given the expansion in emerging distributed computational
paradigms to support current and future scientific computing
challenges at scale, HPC resources need to expand system



software capabilities to adapt. This may be especially true
for high-end supercomputing systems and MPP architectures,
which have historically done well supporting MPI based
workloads at high efficiency. Due to the large influx of virtu-
alization along with Cloud infrastructure throughout industry,
current CPU architectures including x86 and ARM are now
capable of supporting diverse software stacks through virtual
machines. However, bringing virtualization to such specialized
supercomputing architectures presents a number of technical
challenges.

A. Volta: a Cray XC30 testbed

Throughout this manuscript we illustrate the construction
of a prototype mechanism for supporting High Performance
Virtual Clusters using the Volta supercomputing testbed sys-
tem. Volta is a Cray XC30 system deployed as part of the
Advanced Systems Technology Testbeds project at Sandia
National Laboratories through the NNSA’s Advanced Sim-
ulation and Computing (ASC) program. Volta includes 56
compute nodes packaged in a single enclosure, with each node
consisting of two Intel “Ivy Bridge” E5-2695v2 processors
(24 cores total), 64 GB of memory, and a Cray Aries network
interface. Compute nodes do not contain local storage. Shared
file system support is provided by NFS I/O servers projected to
compute nodes via Cray’s proprietary DVS storage infrastruc-
ture. Each compute node runs an instance of Cray’s Compute
Node Linux OS [32] (ver. 5.2.UP04), which is based on SUSE
Linux 11 with a Cray-customized 3.0.101 Linux kernel.

Volta is not heavily used and it is possible for researchers
to obtain root, making it a valuable resource for system
software research. This enabled more rapid prototyping of
virtual clusters on Cray systems than would have been possible
using a more production-oriented system. The infrastructure
and techniques we have developed on Volta are also appli-
cable to other Cray systems such as the Trinity Cray XC40
supercomputer [33], as Cray XC system software does not
have hardware virtualization enabled by default.

B. KVM

As stated in the previous section, the KVM hypervisor
was chosen in these experiments for a number of reasons.
First, KVM is a fully supported Linux kernel module, and as
Linux is the most common OS on supercomputing systems
today, makes for a good fit. Furthermore, a Type 2 hypervisor
is naturally a better choice for providing virtualization on
such a supercomputing system, as it is minimally intrusive
to the current vendor stack, and does not create considerable
performance impact on host running applications. Finally, vir-
tualization, unlike containers, has the ability to run completely
separate OS and runtime systems on the guest, such as Kitten
[20] or other novel OSes if desired in the future. Given the
advances in reducing OS noise through the use of hybrid
and lightweight co-kernels [34], [35], this could also act as
a valuable research tool for future OS and Runtime research.

The default Cray Compute Node Linux kernel does not pro-
vide support for KVM, so we needed to build a custom kernel
image. This was not straightforward because enabling KVM

modified several Linux kernel data structure layouts, causing
Cray’s binary-only kernel modules to break. Through trial and
error, we identified the critical data structures and modified
them to place KVM-related fields at the end of structures rather
than in the middle, thus preserving the field offsets assumed
by Cray’s binary-only modules. We are hopeful this type of
workaround will not be needed in the future, but at present it
is even for recent Cray software releases.

While KVM itself is a foundational piece for providing
guest VMs on a Cray host compute node, it alone is not
enough. The QEMU machine emulator is necessary in con-
junction with KVM to provide user-space device emulation.
This includes console access to the guest and various periph-
eral emulation including disk and I/O access. In our prototype
we utilized QEMU 2.7.90, the latest available during time
of development. While QEMU/KVM alone can (and will)
boot VMs, the interface to do so is often lacking flexibility
and customization often required by more advanced VM
management services. In order to support easy deployment
on a Cray, as well as provide a direct interface for larger
orchestration and VM management tools such as OpenStack
[36] in the future, version 3.1.0 of the Libvirt virtualization
API was loaded atop QEMU/KVM. This allows for users to
specify easy and sharable VM configurations expressed in
XML format, as well as enable special tuning mechanisms
for improved guest performance, which is detailed in the next
section.

C. Guest Performance Tuning

As performance is a first class function for HPC applica-
tions, running VMs on advanced architectures also needs to
be performance-focused as well. While virtualization, like any
software abstraction, will introduce some overhead beyond
running natively, there presents significant opportunities in
tuning with KVM to minimize overhead and provide the best
performance possible. An efficient virtual machine configura-
tion is specified and described below.

The first aspect to focus on was, predictably, the virtual-
ization of the CPU itself. While QEMU/KVM can handle
virtualization of the CPU automatically towards a default set
that ensures comparability on most VT-x enabled x86 CPUs,
doing so has notable performance implications, including
incorrect cache sizes and unimplemented CPU instructions
sets. As such, matching the virtual CPU configuration to the
physical CPU set becomes crucial. While one can use the
host mode in libvirt, such functionality was not available
due to the age of the KVM code attached to the 3.0 Linux
kernel within Cray CNL. As such, specifying the IvyBridge
architecture of Volta’s CPUs, as well as a matching socket and
thread count was necessary as part of the libvirt configuration
to provide the necessary instruction sets for good performance,
including the AVX vector unit within Intel IvyBridge CPUs.

However, it is necessary to go further than just matching
CPU architecture and specifying equal core counts. This is
because by default KVM will let Linux process scheduler
manage which vCPUs execute on which physical cores. This
can lead to inefficiencies as multiple vCPUs could execute on



a single CPU, effectively degrading performance. This could
also happen with hyperthreading, whereby two logical cores
are running different VCPUs yet still end up contending for a
single physical core on the host. Using libvirt’s <cputune>
feature allows for a direct pinning of a VCPU core to a
physical core to alleviate this issue by directly specifying each
VCPU pinned to a cpuset of one. Furthermore, to ensure time
is kept accurately within guests, the kvm-clock clock source
is used. This paravirtualized driver allows for the guest to gain
access to host time measurements through a memory page
which is updated via a MSR, and adjust for small latencies
between the read time and actual time with the guest’s own
constant Time Stamp Counter (TSC), yielding accurate time
keeping within the guest.

<memoryBacking>
<hugepages>
<page size="2" unit="M" nodeset="0"/>
<page size="2" unit="M" nodeset="1"/>

</hugepages>
<nosharepages/>

</memoryBacking>
<cpu match=’exact’>

<model>IvyBridge</model>
<topology sockets=’2’ cores=’12’
threads=’1’/>
<vendor>Intel</vendor>
<numa>
<cell id=’0’ cpus=’0-11’ memory=’30’
unit=’GiB’/>

<cell id=’1’ cpus=’12-23’ memory=’30’
unit=’GiB’/>

</numa>
</cpu>
<numatune>

<memory mode=’strict’ nodeset=’0-1’/>
<memnode cellid="0" mode="strict"
nodeset="0"/>
<memnode cellid="1" mode="strict"
nodeset="1"/>

</numatune>
<vcpu>24</vcpu>
<cputune>

<vcpupin vcpu=’0’ cpuset=’0’/>
<vcpupin vcpu=’1’ cpuset=’1’/>
...
<vcpupin vcpu=’23’ cpuset=’23’/>

</cputune>

Another key observation is that when the guest is rendered
properly to match the host, there are considerable performance
improvements in memory organization to be realized. This
effort is split into two aspects, guest Non Uniform Memory
Access (NUMA) configuration and the use of Hugepages.
Specifying a NUMA topology within the guest enables the
corresponding VCPUs efficient access to local physical mem-
ory, which can help avoid unnecessary slowdowns by memory
accesses across the Intel QPI between multiple CPU sock-
ets. This specification requires two steps within Libvirt. The
<numatune> section is used to create a NUMA topology
of 2 memory cells (matching the dual socket IvyBridge
architecture), along with the <cell> bindings in Libvirt to
match memory cells with CPU sets, as well as specify each
cell’s size.

Backing an entire guest memory address space in hugepages
can have a significant performance improvement for memory-
bound applications. This is because with modern x86 virtual-
ization, memory faults are handled predominately in hardware
through a Translation Lookaside Buffer (TLB), and in a VM
requires up to 6 times more memory accesses due to the
design of nested page tables [37]. While this has shown to be
more efficient than using shadow page tables, it is still costly
for applications that require a large TLB reach. With 2MB
hugepages (instead of the default 4KB paging), two things
happen. First, the page miss cost decreases from 24 to 15
memory accesses when used in conjunction with Transparent
Hugepages (THP) in the guest, and the total number of page
faults decreases due to the additional amount of memory
handled within the TLB. Hence, hugepages enable memory
intensive applications to avoid spending time walking the page
table entries, not only in the decreased number of TLB misses,
but through the decreased cost for each miss.

Within Libvirt, providing 2MB paging is relatively
straightforward as with vCPU pinning and NUMA con-
figuration. Specifying two <hugepages> entries within
<memorybacking> in Libvirt and matching the nodeset to
that of the previously detailed NUMA cell will back the entire
guest machine with 2MB hugepages. With modern commodity
Linux host OSes, this can be done the OS itself using THP
or libhugetlbfs. However, due to Cray’s particularity with
CNL and the older 3.0 Linux Kernel, using THP in the
host CNL is not an option. Instead, we leverage Cray’s
hugepage application support directly with KVM. This en-
tails setting Cray’s HUGETLB_DEFAULT_PAGE_SIZE=2M
and restricting usage only to the qemu-system-x86_64
application. Furthermore, it was found that pre-allocation of
these hugepages by setting the minimum pool size to the
total VM memory amount is critical to performance, as it
appropriately balances contiguous memory allocation across
both NUMA domains, again reducing QPI traversal within
the VM. In a standard Linux guest, THP can be used to
provide hugepages support without application modification,
or standard libhugetlbfs is also available.

With both the CPU and memory configurations tuned for
good performance, the focus next shifts on peripherals, which
too can have a considerable impact on application perfor-
mance. For disk usage, the Virtio paravirtualized driver is used
with RAW disk images. While this requires paravirtualized
drivers in the guest, Linux kernels greater than 2.6.25 provide
this support and performance improves drastically. Previous
studies have shown Virtio disk usage to be superior compared
to alternatives with IDE or SATA emulation [38].

A critical piece of hardware is the network interconnect,
which is often a major differentiating factor between commod-
ity clusters and MPPs. On the Cray XC30, the interconnect
is implemented by the Cray Aries network interface and
router, which was not designed or intended to support virtual
machines. While the Aries network provides considerable
bandwidth and latency advantages over InfiniBand or Ethernet,
it does not support Single Root I/O Virtualization (SR-IOV) as
often found with newer Mellanox-based interconnects. Using
direct PCI passthrough of the Aries NIC, like initial InfiniBand



efforts [39], is also not possible as it would deprive the Host
CNL OS from any network. Furthermore, the Cray device
drivers necessary are not available within a commodity guest
OS.

With the current generation of the Aries interconnect, our
only feasible option was to utilize the Ethernet-over-Aries
interconnect emulation. The Aries interconnect is capable
of L2 Ethernet emulation for TCP/IP connectivity between
compute nodes, and as such the Ethernet device can be
bridged to provide Ethernet connectivity within the guest VM.
However, there are a few extra steps that were necessary to
make the network both functional and performant. First, the
assigned MAC address needs to match the last three octets of
the host Ethernet device in order for the Aries network to route
packets. Second, static ARP entries and static IP addresses
must be manually assigned with each guest for all potential
interconnected nodes within a virtual cluster. Third, the MTU
should be set to 65520 bytes, the maximum possible MTU
size, which matches the host Ethernet-over-Aries configuration
and provides significant performance improvements over a
standard MTU of 1500.

With the bridged Ethernet-over-Aries interconnect, there is
variance in performance, depending on usage. When using
the Ethernet network across hosts, point-to-point bandwidth
measures around 30 Gbs using the iperf tool [40]. Between
two VMs on the same chassis or between a VM and any
compute host, performance dips to 18 Gbs. While this is a
large 40% overhead in network bandwidth, it still provides
an Ethernet network that is 60% faster than the current state-
of-practice 10 Gbs Ethernet that found in commodity clusters
and HPC-tuned clouds. This impact in performance is due to
the buffering of Ethernet frames within the host OS. While
Ethernet will generally cause performance degradation for
large HPC applications at scale compared to native Cray
Aries interconnect, as seen in Section IV, it conversely offers
increased bandwidth beyond public large cloud offering for
any Ethernet-based distributed frameworks with 10Gb Ether-
net. It is our hope this solution will be improved upon soon
with the use of SR-IOV, custom paravirtualized drivers, or
other hardware-based virtualization techniques in future HPC
interconnects.

IV. EXPERIMENTAL RESULTS

With the methodology to create performant VMs on Volta
in hand, High Performance Virtual Clusters can be created
on Volta. This section describes the process of creating two
virtual clusters, as well as the performance compared to native
Cray performance. This includes not only from a single-node
perspective, but also using weak scaling experiments up to
32 nodes and 768 cores. All experimental results were run 3
times with each data points mean calculated and reported in the
following datasets. Unless specified otherwise, the coefficient
of variance for all results was at or below 3%.

A. Virtual Cluster Configurations

In order to evaluate the performance of our virtual clusters,
it was most appropriate to first build an HPC oriented virtual

cluster. While HPC applications themselves are likely to be
fastest running natively on the Cray, we can use HPC-based
benchmarks as tools to effectively measure performance of
our virtual cluster prototype solution. The assumption is that
if HPC benchmarks perform well across our virtual machines,
this will also translate to other workloads better suited for de-
ployment on virtual clusters themselves. This is demonstrated
with the use of a second virtual cluster configuration using the
Apache Spark platform running the TeraSort application.

All VMs are configured with a CentOS 7 Linux image
running the stock 3.11 kernel with the latest security patches.
From here, the HPC images were loaded with the latest Intel
2017 parallel studio cluster suite, which includes the ICC and
IFORT compilers as well as the latest MKL libraries. The
MPICH 3.2 MPI library was installed for MPI communication.
While OpenMPI and the Intel MPI libraries were also available
for use, MPICH was used due to its close comparability with
Cray’s MPI libraries, effectively looking for as close to apples-
to-apples comparison as possible for MPI libraries. However,
the ability to allow users to deploy the latest software within
each virtual cluster can have profound impacts, as seen in the
performance comparison within this section.

The HPCC and HPCG benchmark workloads were built and
run in the virtual cluster environment. The HPCC benchmark
suite [41] provides a well-rounded perspective of the perfor-
mance of HPC hardware. It includes key benchmarks such
as High Performance Linpack (HPL), DGEMM, STREAM,
PTRANS, RandomAccess, FFT, and PingPong, many of which
are detailed herein. However, these benchmarks, with HPL in
particular, are relatively synthetic and may not directly relate
to real-world HPC applications. As such, we also chose to
deploy the High Performance Conjugate Gradient (HPCG)
benchmark [42]. Between HPL and HPCG, two “bookends” of
HPC are realized to evaluate parallel application performance
and scalability across our virtual cluster.

For the native environment, HPCC (with HPL) and HPCG
were built using Cray’s standard programming environment.
Specifically, the Cray-Intel programming environment was
used with Intel compiler 16.0.1. Cray’s 2MB hugepage support
was enabled, matching the configuration used in the guest.
By default, the libSci math library is utilized for matrix
calculations throughout various HPCC benchmarks. However
we also put forth the effort of compiling a version of HPCC
with the Intel MKL library for reasons detailed in the single-
node experiments section herein.

For our Apache Spark virtual cluster, the same CentOS 7
base image from the HPC virtual cluster was used. Oracle’s
Java JDK 8 was subsequently installed, along with Apache
Maven and other support tools. Apache Spark [43] version
2.1.0 was installed in standalone mode. Spark is one of the
leading Big Data Stack platforms within the Apache Foun-
dation, allowing for Map-Reduce based applications to run
both in memory and on disk storage back-ends for increased
efficiency. Spark standalone mode was selected for the virtual
cluster with a head node designated to function both as an
NFS server and the Spark master node and application client.
Standalone mode was specifically chosen to aid comparison
between a Cray deployment. However, it would be possible to



build a virtual cluster using the more common HDFS storage
system instead. While such deployments in public clouds often
leverage node-local storage, there are a few options for full
scale deployments on a Cray, such as using Burst Buffers as
investigated previously [10]. This usage model would provide
increased compatibility with existing Big Data Stack services
(such as Hadoop) often found on public cloud infrastructure.
This potential deployment on a Cray using virtualization
further illustrates the power and flexibility provided such a
virtual cluster architecture.

B. Single-node Performance
Utilizing our HPC-based virtual cluster, we first look to

evaluate single-node performance. Using micro-benchmarks
and tuned synthetic workloads on a single node helps identify
areas of overhead within a node, especially those caused
by CPU configuration, memory systems, and VM entry/exit
overheads. As such, we evaluate benchmarks from the HPCC
benchmark suite, which is commonly utilized within HPC
systems to evaluate and accept new machine deployments. All
results were also run on the Volta Cray testbed in a native Cray
configuration. However, a strict apples-to-apples comparison
is not entirely possible, due to the differing software stacks.
While efforts were made to keep various libraries as similar as
possible, by default an older Intel compiler suite and Cray’s
LibSci were used to compile the HPCC suite, compared to the
latest Intel compiler and MKL libraries within VMs.

Turning first to Figure 2, direct CPU floating point perfor-
mance is measured using the DGEMM and FFT benchmarks.
Here, we immediately notice that KVM’s performance is very
good. In fact, in some cases, KVM outperforms the native
solution running the default Cray software stack, specifically
with DGEMM and MPIFFT. Initially this confused us, as it
is very unlikely that a VM will run faster than Native mode.
Upon further investigation, it became apparent that the default
Cray configuration using LibSci math libraries results in a
significant decrease in performance compared to Intel’s MKL
math library. Recompiling with MKL support on Volta using
an older Intel MKL library (11.3.1, the latest available on
Volta), we see that native performance improves to at or better
than the KVM levels in most cases. However, because within
the VM we use the latest 2017 Update 1 MKL, we are able
to gain even further performance benefits. This section of
the code is unlikely to generate major VM entries or exits
which would hamper guest VM performance. The end result is
that we achieve near-native performance for KVM, with some
cases slight performance improvements due to leveraging the
latest system software and libraries within a VM. Single-node
HPL tests reveal a similar trend with KVM, with a 9% and
2% performance increase with KVM over the default Cray
and Cray+MKL, respectively. We further speculate that Intel
has refined MKL recently to provide additional performance
improvements. This effect illustrates the potential power of
virtual clusters for those looking to evaluate dev-ops and
testing, or take advantage of advances in system software
sooner than than official support from the system vendor.

Next, we look at the RandomAccess benchmark within
HPCC seen in Figure 3, which measures GUPS, or Giga

Fig. 2: Intra-node FLOPS performance

Updates per Second. Here, we observe a small but noticeable
overhead with KVM across the board for RandomAccess.
These results are reported using the SANDIA_NOPT which
can give an additional boost in performance to MPIRando-
mAccess, both natively and within KVM. Interestingly, we
do see that SingleRandomAccess incurs a more significant
performance impact, potentially due to larger TLB miss costs
with nested pages tables [37].

Fig. 3: Intra-node GUPS performance

Moving towards the HPCC memory benchmark STREAM
in Figure 4 we again witness very good performance from
the KVM implementation when compared to running natively
on the Cray. Here, the benchmark reflects the added benefit
of an updated and efficient guest OS. The native version is
using Cray’s Hugepage support with 2MB page size (to be
comparable with the VM), which is based on libhugetlbfs. This
is the same mechanism that is used to allocate large contiguous
VM memory for the guest VM. However the VM is running
an updated 3.11 Linux kernel which provides an a more
advanced THP implementation, which we estimate is slightly
more efficient in this case at optimizing contiguous memory
patterns than libhugetlbfs. However, the potential benefit of



THP in the VM decreases as the complexity of the STREAM
benchmark increases, as with Triad, which more accurately
represents real-world application performance. Also, some
times THP can lead to other issues, such as creating additional
noise events within compute nodes as the kernel promotes
or demotes THP pages, which can also lead to memory
fragmentation. As such, THP usage within a virtual cluster
should be carefully examined to determine its utility, however
in the case of STREAM, we found little overhead.

Fig. 4: Intra-node STREAM performance

Looking to the PingPong bandwidth and latency bench-
marks details in Figures 5a and 5b, which in a single-node
configuration measures performance of using MPI sendrecv
across a shared memory system using 8 byte messages for
latency and 2MB messages. Note that the error bars in the
charts represent Max and Min values for each test. Here, we
see that the effective bandwidth is notably higher with the na-
tive Cray environment, with latency largely equivalent between
native and KVM configurations. This is due to Cray’s MPI
optimization to use XPMEM for intra-node shared memory
communication, whereby a single memory copy is needed.
MPICH, however, performs two copies by default through a
sysv shared memory buffer, leading to intra-node bandwidth
degradation as observed here. This particular case illustrates
why using a Cray natively may be a better option in some
cases, as for MPI-based applications which are highly sensitive
to intra-node communication bandwidth, running natively will
yield the best performance for specific applications.

C. Mutli-node HPC Scaling

Moving on to multi-node virtual cluster configurations, we
look to evaluate overall system performance using two HPC
“bookends” with HPL and HPCG. As we wish to evaluate the
weak scaling parameters of each application, the problem size
selection based on the number of nodes becomes important,
which is specified in Table I and applies to both native Cray
and our virtual cluster. For HPCG, we let the default problem
size adjustment take place which accompanies the application
itself, which assumes roughly 25% of total system memory
to avoid potential caching effects. With HPL, there exists

(a) MPI PingPong Bandwidth (b) MPI PingPong Latency

Fig. 5: HPCC MPI intra-node communication performance,
with 2MB messages for bandwidth and 8 byte messages for
latency

TABLE I: Problem Sizes listed in Gigabytes and N value for
HPL and HPCG, respectively

Nodes 1(24) 2(48) 4(96) 8(192) 16(386) 32(768)
HPCG (GB) 19.3 38.6 77.2 154.5 308.9 617.9
HPL (N) 57920 81920 115840 163840 231680 327680

a balance between fitting the problem size to the highest
possible value to perfectly fit available main memory and
total benchmark runtime. As such, we chose to calculate HPL
problem size (N) based on using 32GB of RAM, which is
enough for producing acceptable performance and effectively
using both NUMA domains, but still keeping overall runtime
of each run on the order of minutes.

Experimental results for HPL are given in Figure 6, where
data points represent weak scaling as node count increases.
For native experimentation, we focused on the standard Cray
compilation mechanisms for HPL which uses LibSci, as it
is the most likely way in which the vast majority of users
will utilize such a system. For a single node experiment, HPL
shows a slight performance boost running in a virtual cluster,
as expected based from other single-node FLOPS benchmarks
previously detailed in Figure 2. Again, this is a direct result
of the boost in performance by using the latest Intel and MKL
libraries over the older Intel compiler and LibSci natively.
However, this small performance boost quickly disappears
and KVM overhead increases to about 18% as the problem
size and node count increases. This overhead is due to the
Ethernet-over-Aries bridged network within the virtual cluster,
compared to using the Aries interconnect natively. Effectively,
the HPL benchmark illustrates that the biggest challenge to
providing virtual clusters on supercomputing resources is not
the performance overhead of a single node, but instead with the
ability to efficiently use high speed, low latency interconnects
that are available. Specifically, the Ethernet bridge solution
is adding significant bandwidth overhead to HPL as well
as additional latency, and as such lowers overall application
performance.

A similar, but less pronounced effect is found by looking
at the HPCG benchmark in Figure 7. Again, the applica-
tion is scaling up to 32 nodes and 768 cores. Single node
performance illustrates just a 3.6% overhead when running
HPCG, effectively providing near-native performance in a VM.
However, this overhead grows to around 9-12% as the node



Fig. 6: Weak Scaling of the High Performance Linpack bench-
mark to 32 nodes

count increases. As with scaling HPL, this overhead is due
to the decreased bandwidth and increased latency when using
the Ethernet solution within a VM compared to native Aries.
However, given the network limitations expressed, we are still
generally surprised to see a benchmark focused on real-world
application performance yield closely comparable performance
to native on the Cray. With this result, we expect that if
better network virtualization can be realized on future Cray
architectures, virtual clusters could be a viable solution for
medium-scale HPC applications, as well as emerging HPC
runtimes.

Fig. 7: Weak scaling of the HPCG benchmark up to 32 nodes

D. Apache Spark

Leveraging our Spark virtual cluster, we ran the TeraSort
benchmark [44]. TeraSort is a common and simplistic bench-
mark, originally designed for Hadoop that was intended to sort
large (1TB) data sizes, even though the benchmark developed
for Spark allows for smaller problem sizes which enable data
to stay in-memory. TeraSort proves to be of interest as creates

an all-to-all shuffle between the Map and Reduce phases which
stresses data movement significantly, with this stress growing
substantially as the problem size increases. For Spark worker
configurations running on the compute nodes, we specified the
use of 24 cores (matching physical cores) and 32GB of RAM.

TeraSort was run on two problem sizes, 10GB and 100GB
datasets generated randomly. While this is less than a full
terabyte of data, it allows for the machine to still be stressed,
and for a full shuffle operation to stress the memory and
interconnect limits of the Spark cluster. For the 10GB problem
size, we see that the shuffle easily stays within memory and our
computation completes in 3 minutes 9 seconds on average. For
moving to a problem size that’s an order of magnitude larger,
we see the total runtime increases by two orders of magnitude
to over 8 hours. Here, we believe we’re stressing the limits
of the NFS server. With this result, we hope future endeavors
will be able to leverage more node-local storage such as Burst
Buffers [45] or parallel file systems such as Lustre which
would expectedly improve performance drastically.

Unfortunately, a comparison could not be made between a
native Spark implementation because we found the native Cray
environment unsuitable for users to effectively run Spark on in
any meaningful capacity. First, much of Spark’s user-friendly
scripts utilize ssh, however user ssh login on a compute node
is not utilized natively. Of course, we can create custom job
scripts to start Spark Worker processes directly on the compute
nodes, however we still ran into roadblocks, specifically with
the DVS storage mechanisms. Specifically, DVS, which in
Volta is an overlay of NFS (not Lustre) generates numerous
errors running Spark with larger files. For testing a simple
10Gb TeraSort, we were unable to complete a run. We
did develop work-arounds that proved futile. This included
running rsync to move input data to tmpfs on each node,
which is very inefficient and impractical any any realistic scale.
We also directly mounted the underlying NFS mount on each
compute node, which too is impractical as doing so requires
full root privileges on the Cray to generate, distribute, and
insert NFS modules (and its dependencies) to each compute
node, something normal users can not do. However, for users
with full Lustre back-end systems, it is worth noting that
one can use Lustre to run Spark standalone mode on a Cray
XC, as seen in related research [10]. This work shows that
a Lustre metadata server introduces a bottleneck, and that
mounting loopback devices from Lustre can help alleviate
performance impacts. Given the fact that our virtual cluster
machine images can also could be hosted with loopback on
Lustre, we would expect similar performance benefits if our
solution was deployed on a Cray XC with Lustre.

To help further define an understanding of Spark perfor-
mance on virtual clusters running atop a Cray XC supercom-
puting testbed, we ran the Spark test suite within spark perf
[46], [47]. This benchmark suite covers a number of common
operations that are performed in a Map Reduce framework,
with the ability to increase a scale factor accordingly to
increase problem size, as demonstrated in data presented in
Table II. Each value represents the time spent on a given
benchmark problem, and is the median of 10 trials. As we can
see, increasing the scale by a factor of 10 roughly doubles the



TABLE II: Benchmark results for Spark Perf running on the Volta Spark Virtual Cluster (seconds)

Scale Throughput Aggr-by-key Aggr-by-key-int Aggr-by-key-naive Sort-by-key Sort-by-key-int Count Count-filter
0.001 2.6585 0.106 0.1085 0.199 0.114 0.1125 0.034 0.0575
0.01 2.6285 0.219 0.1905 0.437 0.3065 0.3765 0.0395 0.0935
0.1 2.683 0.474 0.4135 0.9605 0.839 0.7075 0.056 0.1495
1.0 2.6975 2.24 1.886 5.19 2.976 1.797 0.162 0.2665
10.0 2.642 15.429 47.629 32.9335 5.378 3.9455 1.1095 1.1935

runtime most benchmarks for small problem sizes, which illus-
trates increased parallelization of the problem with increasing
problem size. As the problem sizes continues to increase,
the runtimes start increase more drastically. Aggregate-by-key
benchmarks see roughly a 4-5x increase in runtime for a 10x
larger problem. While this is still efficient, it indicates the
problem size is saturating the cluster. Eventual over-saturation
occurs with Aggregate-by-key with a scaling factor of 10.0,
which is aggregating 4 billion records with 10 million unique
values for 400 thousand unique key integers. The exception
to scaling is the Scheduling Throughput benchmark, which
consistently schedules 10,000 tasks in under 2.7 seconds.

V. DISCUSSION

Given the results described in this paper, there are a
number of avenues for our prototype virtual cluster on Cray
supercomputing resources to be extended. First, we hope the
limitations pointed out in this paper, in particular the effect of
Ethernet emulation over the Aries proprietary interconnect can
be addressed with future hardware designs. While achieving
absolute native performance is not strictly necessary, near-
native performance with small, deterministic overhead as seen
with technologies such as SR-IOV [48] would represent a
important step forward in hardware technology.

Second, we hope the prototype can move towards further
refinement to help support other novel workloads on HPC
hardware. This work could move laterally within the system
software stack with additional performance capabilities, such
as additional hardware like accelerators or integration with
additional storage options such as Burst Buffers or parallel
filesystems. This prototype virtual cluster solution could be
refined for use on a much larger system, such as Trinity, or
other future Cray platforms. Work could also move vertically
with integration towards a larger virtual cluster orchestration
efforts to enhance user experience and help lower the barrier of
entry of HPC for emerging scientific computational problems.
Existing container solutions could be integrated within virtual
clusters, potentially creating the overlay of native Docker on
a Cray supercomputer, effectively enabling the hypervisor and
host OS kernel to handle security concerns and hardware
control rather than just a single OS kernel layer. While this
could be viewed as orthogonal to HPC-container efforts such
as Shifter [26], we in fact view this effort as complimentary
to virtualization where the union could collectively enhance
experiences for both users and facilities system administrators.

The use of virtual clusters enables users to focus on ap-
plication ecosystem composition matching desired scientific
endeavors, rather than forcing development environments to
adapt to HPC platforms that were never designed to support

such workloads. Static batch job schedulers with vendor-
specific OS and library services on most supercomputing
resources are tuned primarily for MPI-based execution models,
not data analytics. Effectively, we hope running Virtual Clus-
ters at high efficiency can lower the barrier of entry to extreme-
scale computing for many emerging computational tools em-
bodied by the 4th paradigm of science [49]. Additionally, we
may be able to construct a framework of scientific experiment
management where Virtual Clusters and their environments
can be built, shared, rerun, and archived upon demand across
the greater scientific community.

Last, we envision related research that looks to cross-cut
convergence between HPC and big data analytics from a
software layer to use virtual clusters. By providing a soft-
ware ecosystem that runs well on a supercomputing platform
and is also more amenable to existing commodity analytics
environments than native HPC software stacks, development
enhancements to tools such as the Apache Big Data Stack can
look to leverage HPC resources more quickly and effectively
than porting existing efforts to an HPC-optimized system
software stack or starting from scratch.

VI. CONCLUSION

This manuscript has described the design, implementation,
and experimentation of building High Performance Virtual
Clusters using a specialized Cray supercomputing testbed.
These virtual clusters can extend the a supercomputing plat-
form, in this case a XC30 testbed, to support a wide range
of system software ecosystems. As an example, Apache Spark
workloads were run as a custom virtual cluster, which was not
possible on an XC30 natively at the time of writing, given the
limitations of the HPC environment. This effort also leverages
traditional HPC benchmarking tools such as HPCC and HPCG
to evaluate the performance of virtual clusters against the
native vendor software solution, both on single node and when
scaling up to 768 cores. Overall, we find the efficiency of the
virtualization mechanisms with KVM to provide reasonable
performance, but the best-effort networking solution with
an Ethernet-over-Aries emulation system presents challenges
in scaling with application overheads ranging form 10-20%
across all resources. However, it is our hope that this research
will serve as motivation to drive further development in up-
coming architecture designs which could alleviate much of this
overhead drastically in the future. In this, we find this research
opens the door for other emerging system software beyond
what is capable today, perhaps with future OS designs or
scalable large data frameworks to directly leverage advanced
supercomputing resources.
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