
DAGSENS: Directed Acyclic Graph Based

Direct and Adjoint Transient Sensitivity Analysis

for Event-Driven Objective Functions

Karthik V. Aadithya‡, Eric Keiter, and Ting Mei

Sandia National Laboratories, Albuquerque, NM, USA
‡Corresponding author. Email: kvaadit@sandia.gov

Abstract—We present DAGSENS, a new approach to parametric tran-

sient sensitivity analysis of Differential Algebraic Equation systems (DAEs),
such as SPICE-level circuits. The key ideas behind DAGSENS are, (1) to

represent the entire sequence of computations from DAE parameters to

the objective function (whose sensitivity is needed) as a Directed Acyclic

Graph (DAG) called the “sensitivity DAG”, and (2) to compute the
required sensitivites efficiently by using dynamic programming techniques

to traverse the DAG. DAGSENS is simple, elegant, and easy-to-understand

compared to previous approaches; for example, in DAGSENS, one can
switch between direct and adjoint sensitivities simply by reversing the

direction of DAG traversal. Also, DAGSENS is more powerful than

previous approaches because it works for a more general class of objective

functions, including those based on “events” that occur during a transient
simulation (e.g., a node voltage crossing a threshold, a phase-locked loop

(PLL) achieving lock, a circuit signal reaching its maximum/minimum

value, etc.). In this paper, we demonstrate DAGSENS on several electronic
and biological applications, including high-speed communication, statistical

cell library characterization, and gene expression.

I. INTRODUCTION

This paper is about a new, elegant, and powerful approach to

computing transient sensitivities of dynamical systems. In integrated

circuit design, such sensitivities are used for a variety of applications in-

cluding optimization and tuning [1], yield estimation [2], performance

modelling [3], statistical cell library characterization [4], etc. Indeed, as

CMOS technology moves to progressively smaller feature sizes (7 nm

and below), and with the advent of near-threshold and sub-threshold

computing, such sensitivities are likely to become even more important

in variability-aware circuit design, due to the increasingly significant

role played by parameter variability in determining circuit performance

(speed, power consumption, bandwidth, etc.), as well as yield [2–4].

Parametric sensitivities are also important for analyzing and de-

signing biological systems; applications include identifying influential

kinetic parameters and model order reduction of chemical reaction

networks [5], improving model accuracy and separating biological

mechanisms from mathematical artifacts [6, 7], calculating the relative

importance of different parallel processes in biological phenomena such

as gene expression [8], understanding the factors at work behind the

robustness of biological systems to parameter variability [9, 10], etc.

Broadly speaking, there are two approaches to sensitivity analysis:

“direct” and “adjoint”. Direct methods [11] involve computing the

sensitivities of all intermediate quantities with respect to system

parameters (by repeatedly applying the chain rule of differentiation),

until the sensitivity of the desired “objective function” is eventually

found. Direct methods are easy to understand and implement, but scale

poorly with the number of parameters. Adjoint methods [4, 12–16],

on the other hand, work backwards; they compute the sensitivities

of the objective function with respect to all intermediate quantities,

until the sensitivity of the objective function with respect to the

parameters is eventually found. Adjoint methods tend to be harder

to understand and implement, but they scale well to problems with

large numbers of parameters. In particular, if one is only interested in

calculating the sensitivities of a small number of performance metrics

with respect to a large number of parameters, adjoint methods allow

one to take advantage of the small dimensionality of the performance

space to significantly speed up sensitivity analysis. Modern circuit

simulation problems often fit this description; in these cases, computing

sensitivities is usually practical only using adjoint methods.

Despite their long history and continued importance, we believe

that adjoint methods are not well understood. This is partly because

existing descriptions in the literature use hard-to-understand concepts

and esoteric constructs such as adjoint circuits [1, 17], integrating DAEs

backwards in time [12, 13, 16], complicated mathematics involving

feeding δ-function inputs to DAEs [12], etc.

Also, previous works on sensitivity analysis have lacked generality

with respect to the objective functions supported; they have restricted

themselves to the sensitivities of DAE solution variables at specific

points in time (i.e., “final point” objective functions, §II-E) [4, 14], or

integrals of the solution over time (i.e., “integral” objective functions,

§II-E) [13, 16], or simple combinations thereof, such as the ratio of

two integrals [12]. In practice, such simple objective functions are

often inadequate. Circuit designers frequently need more advanced,

“event-driven” metrics defined based on “events” that take place during

a transient run. Examples include a signal crossing a user-specified

threshold, or possibly reaching a maximum/minimum value. A more

complicated objective function could be the amount of time taken by

a phase-locked loop (PLL) to lock to a new input frequency. The

“achievement of lock” by a PLL is a transient event, and so the “time

to lock” is an event-driven objective function, whose sensitivities with

respect to PLL parameters are of interest to designers. Indeed, many

popular circuit simulators already provide ways to calculate such event-

driven objectives (e.g., the .MEASURE feature found in HSPICE R© [18]

and Xyce R© [19]); we believe we are the first to address the problem

of calculating the sensitivities of such objectives.

In this paper, we develop DAGSENS, a new theory for transient

sensitivity analysis based on Directed Acyclic Graphs (DAGs). In

this approach, we construct a DAG where each intermediate quantity

computed during a transient run is represented as a node, starting

from DAE parameters all the way up to the objective function (§II-D,

§II-E). Once this DAG is constructed, all required sensitivities can be

obtained by traversing it, using efficient techniques based on dynamic

programming (§II-G) [20, 21]. A key advantage is the simplicity and

elegance of the DAG approach, which we believe previous approaches

lack; for example, in DAGSENS, to switch from direct to adjoint

sensitivity analysis, one simply changes the direction of DAG traversal

from topological order to reverse topological order (§II-G), much like

forward and reverse mode automatic differentiation [22, 23]. Thus,

DAGSENS eliminates the need for the hard-to-understand, esoteric

mathematical constructs mentioned above, and can thus make the

benefits of sensitivity analysis accessible to a wider audience, including

device engineers, circuit designers, and students. Also, DAGSENS is

more powerful than existing sensitivity analysis approaches because it

can handle more general objective functions, including the event-driven

objectives described above.

The rest of this paper is organized as follows. In §II, we provide

some technical background (on DAEs, transient analysis, etc.), and

then discuss the core techniques underlying DAGSENS. In §III, we

apply DAGSENS to compute event-driven sensitivities in several elec-

tronic and biological applications, including high-speed communication

SAND2017-8875C

(§III-A), statistical cell library characterization (§III-B), and gene

expression in Drosophila embryos (§III-C). We conclude in §IV.

II. CORE TECHNIQUES AND ALGORITHMS FOR DAG-BASED

EVENT-DRIVEN SENSITIVITY ANALYSIS

A. DAE models of dynamical systems

Throughout this paper, we assume that the system we wish to analyze

is a DAE of the form:

d

dt
~q(~x(t), ~p) + ~f(~x(t), ~u(t), ~p) = 0, (1)

where ~x is the system’s state vector (e.g., a list of voltages and currents),

~p is a vector of parameters with respect to which we need sensitivities

(transistor dimensions, parasitic resistances/capacitances, etc.), ~u is a

vector of inputs to the system, and t denotes time. We note that Eq. (1)

is capable of modelling virtually any electronic circuit at the SPICE

level, and many biological systems as well [24–26].

B. Transient analysis of DAEs

Given an initial condition ~x(t0) = ~x0, and time-varying inputs

~u(t) to the DAE of Eq. (1), transient analysis refers to the problem

of solving for the time-varying DAE state ~x(t) over a time-interval

[t0, tf]. This is accomplished by discretizing time into a sequence

{t0, t1, . . . , tN−1} (where tN−1 = tf), and then approximating the

respective DAE states {~x0, ~x1, . . . , ~xN−1} by solving a sequence of

“Linear Multi-Step” (LMS) equations of the form [24, 25, 27, 28]:

mi∑

j=0

(

αi(−j) ~q (~xi−j , ~p) + βi(−j) ~f (~xi−j , ~u(ti−j), ~p)
)

= ~0. (2)

Thus, at each step i (where 1 ≤ i ≤ N−1), one solves Eq. (2) (using

techniques like Newton-Raphson iteration, homotopy, etc.) to determine

~xi, based on mi previously calculated ~x values (from earlier steps).

See [29] for the α and β coefficients used in Eq. (2) by several common

LMS methods, including Forward Euler (FE), Backward Euler (BE),

Trapezoidal (TRAP), and second-order Gear (GEAR2) [24, 27, 30, 31].

C. Transient sensitivity analysis of DAEs

Suppose we have a DAE in the form of Eq. (1), with nominal param-

eters ~p ⋆, and transient solution ~x⋆(t) over the interval [t0, tf] (using

the convention that starred quantities denote nominal values, i.e., those

evaluated at ~p ⋆). The question behind transient sensitivity analysis is:

if we perturb the parameters slightly, how will the transient solution

change? More precisely, suppose we change the parameters from ~p ⋆

to ~p ⋆ +∆~p, and as a result, the transient solution changes from ~x⋆(t)
to ~x⋆(t) + ∆~x(t). The question is: what is the relationship between

∆~x(t) and ∆~p, in the limit as ∆~p → ~0? The answer is obtained by

doing a perturbation analysis of Eq. (1) [12–14]:

∆~x(t) = Sx(t)∆~p, where (3)
[
d

dt

(
J
⋆
qx(t)Sx(t) + J

⋆
qp(t)

)
]

+
[
J
⋆
fx(t)Sx(t) + J

⋆
fp(t)

]
= 0|~x⋆|×|~p⋆|.

(4)

The J terms in Eq. (4) denote nominal time-varying Jacobians, i.e.,

J
⋆
qx(t) ,

∂~q

∂~x

∣
∣
∣
∣
~x⋆(t), ~p⋆

, J
⋆
qp(t) ,

∂~q

∂~p

∣
∣
∣
∣
~x⋆(t), ~p⋆

,

J
⋆
fx(t) ,

∂ ~f

∂~x

∣
∣
∣
∣
∣
~x⋆(t), ~u(t), ~p⋆

, and J
⋆
fp(t) ,

∂ ~f

∂~p

∣
∣
∣
∣
∣
~x⋆(t), ~u(t), ~p⋆

. (5)

Since ∆~x(t) is obtained by multiplying Sx(t) with ∆~p (Eq. 3),

Sx(t) is called the sensitivity of ~x(t) with respect to ~p, evaluated at

~p ⋆. And Eq. (4), a matrix-valued DAE that tracks the evolution of the

|~x⋆| × |~p ⋆| matrix Sx(t) over time, is called the “sensitivity DAE”.

Note that the sensitivity DAE does not directly give us Sx(t). Rather,

it needs to be solved for Sx(t) (see [29] for more details).

D. The sensitivity DAG

Each step of the transient analysis of §II-B builds on previously

computed DAE states, to solve for a new DAE state. This sequence

of computations fits naturally into a DAG structure (Fig. 1), much

like DAGs used in automatic differentiation [23], or Boolean function

representation [32].

Fig. 1. The DAG structure underlying a transient simulation.

The nodes of the “sensitivity DAG” in Fig. 1 represent the quantities

that are computed during the transient simulation, and are labelled as

such. The edges represent dependencies amongst these quantities. For

example, Fig. 1 assumes that the initial condition ~x⋆(0) is computed

from ~p ⋆ (e.g., via DC analysis [24, 25]); so, there is an edge from

the ~p ⋆ node to the ~x⋆(0) node. Similarly, ~x⋆(1) is assumed to be

computed from ~x⋆(0) and ~p ⋆ by solving Eq. (2), using an LMS method

with memory m1 = 1, such as FE, BE, or TRAP. So, there are edges

leading from both ~p ⋆ and ~x⋆(0) to ~x⋆(1). Finally, ~x⋆(2) is assumed

to be computed via an LMS method like GEAR2 that has memory

m2 = 2. Therefore, when Eq. (2) is solved to determine ~x⋆(2), both

~x⋆(0) and ~x⋆(1), as well as ~p ⋆, are used in the computation. So, there

are edges from all these three nodes to ~x⋆(2).
While Fig. 1 stops at ~x⋆(2) for lack of space, the ideas behind the

DAG construction can be extended to the entire length of the transient

simulation. In general, if the simulation has N points, with indices

0 ≤ i ≤ N − 1, the corresponding sensitivity DAG will have N + 1
nodes (one for ~p ⋆, and one for each ~x⋆(i)). The ~x⋆(0) node will have

exactly one incoming edge (from ~p ⋆). For all other ~x⋆(i), the number

of incoming edges will be 1 + mi, where mi is the memory of the

LMS method used to compute ~x⋆(i) via Eq. (2). One of these edges

will originate at ~p ⋆, while the others will originate at the mi nodes

prior to ~x⋆(i), i.e., the nodes ~x⋆(i− j) for 1 ≤ j ≤ mi.

Also, each edge of the sensitivity DAG has a weight (Fig. 1). The

weight of an edge from node u to node v, denoted w(u, v), is equal

to the partial derivative (or sensitivity) of v with respect to u; it

measures how much a small perturbation in u will affect the value

of v. The weight w(~p ⋆, ~x⋆(0)) is obtained by doing a DC perturbation

analysis of Eq. (1) [24], while all other weights are obtained by doing

a perturbation analysis of Eq. (2):

w(~p ⋆
, ~x

⋆(0)) =
∂~x⋆(0)

∂~p ⋆ = −J
⋆
fx(0)

−1
J
⋆
fp(0), (6)

w(~p ⋆
, ~x

⋆(i)) =
∂~x⋆(i)

∂~p ⋆ = −

[

αi(0)J
⋆
qx(i) + βi(0)J

⋆
fx(i)

]−1

[
mi∑

j=0

(

αi(−j)J⋆
qp(i− j) + βi(−j)J⋆

fp(i− j)

)]

,

∀ 1 ≤ i ≤ N − 1, and (7)

w(~x⋆(i− j), ~x⋆(i)) =
∂~x⋆(i)

∂~x⋆(i− j)
= −

[

αi(0)J
⋆
qx(i) + βi(0)J

⋆
fx(i)

]−1

[

αi(−j)J⋆
qx(i− j) + βi(−j)J⋆

fx(i− j)

]

,

∀ 1 ≤ i ≤ N − 1, 1 ≤ j ≤ mi. (8)

E. Objective functions and the sensitivity DAG

In many applications, we are not directly interested in the sensitivi-

ties of ~x⋆(t), but would like to compute the sensitivities of important

transient performance metrics (i.e., “objective functions”) derived from

~x⋆(t) (and denoted ~φ⋆). Below, we discuss two kinds of objective

functions commonly found in the sensitivity analysis literature (“final

point” and “integral” objectives), and show how to add these to the

sensitivity DAG.

Final point objectives. These take the form [4, 14]:

~φ
⋆ = ~h(~x⋆(N − 1), ~p ⋆), (9)

where ~x⋆(N − 1) is the final point in the transient simulation. Note

that, if ~h(., .) needs to be evaluated at multiple time-points, then each

needs to be considered a separate objective, which will increase the

dimension of the objective function. The sensitivity Sφ of a final point

objective function, evaluated at ~p ⋆, is given by:

Sφ = J
⋆
hx(N − 1)Sx(N − 1) + J

⋆
hp(N − 1), (10)

where the Jacobian symbols have their usual meanings.

Fig. 2. Adding a final point objective function to the sensitivity DAG.

To add such an objective function to the sensitivity DAG, we add

a new node ~φ⋆ with two incoming edges: one from ~p ⋆ with weight

J⋆
hp(N − 1), and one from ~x⋆(N − 1) with weight J⋆

hx(N − 1) (as

shown in Fig. 2 for N = 3).

Integral objectives. These take the form [13, 16]:

~φ
⋆ =

∫ tf

t=t0

~h(t, ~x⋆(t), ~p ⋆) dt. (11)

Therefore, we have:

Sφ =

∫ tf

t=t0

(
J
⋆
hx(t)Sx(t) + J

⋆
hp(t)

)
dt. (12)

In practice, the integral in Eq. (12) is approximated by a summation:

Sφ ≈

N−2∑

i=0

[(
J
⋆
hx(i)Sx(i) + J

⋆
hp(i)

)
(ti+1 − ti)

]
. (13)

Fig. 3. Adding an integral objective function to the sensitivity DAG.

To add such an objective function to the sensitivity DAG, we add a

new node ~φ⋆, with N incoming edges: one from ~p ⋆, and the rest from

~x⋆(i), where 0 ≤ i ≤ N − 2 (i.e., from every point in the transient

simulation except the last, as illustrated in Fig. 3 for N = 3). The

weights of these edges are:

w(~p ⋆
, ~φ

⋆) =

N−2∑

i=0

(
J
⋆
hp(i)(ti+1 − ti)

)
, and (14)

w(~x⋆(i), ~φ⋆) = J
⋆
hx(i)(ti+1 − ti), ∀ 0 ≤ i ≤ N − 2. (15)

With the introduction of a node representing the objective function,

the sensitivity DAG is “complete”: it now accurately represents all

the intermediate computations involved in calculating the objective

function starting from the DAE parameters. Moreover, the partial

sensitivities of these computations are also available from the DAG’s

edge-weights. Thus, we now have all the information needed to do an

end-to-end sensitivity analysis.

F. Sensitivity analysis = DAG path enumeration

Fig. 4. The DAG of Fig. 2, with edge-weights denoted by partial derivatives.

Our goal is to compute the sensitivity of the objective function ~φ

with respect to the DAE parameters ~p, evaluated at ~p ⋆. Let us take

a closer look at this computation, through an example. Fig. 4 shows

the sensitivity DAG for a 3-step transient simulation and a final point

objective function. This is the same DAG from Fig. 2, except that we

changed the edge-weight notation to make it clear that the edge-weights

are, in fact, partial derivatives. Now, we repeatedly apply the chain rule

of differentiation to find the sensitivity of the objective function:

Sensitivity
we need

=
d~φ

d~p

∣
∣
∣
∣
∣
~p⋆

=
d~φ⋆

d~p ⋆

︸︷︷︸

Chain Rule

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

d~x⋆(2)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

(
∂~x⋆(2)

∂~p ⋆ +
∂~x⋆(2)

∂~x⋆(1)

d~x⋆(1)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

+
∂~x⋆(2)

∂~x⋆(0)

d~x⋆(0)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

)

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

(
∂~x⋆(2)

∂~p ⋆ +
∂~x⋆(2)

∂~x⋆(1)

(
∂~x⋆(1)

∂~p ⋆ +
∂~x⋆(1)

∂~x⋆(0)

d~x⋆(0)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

)

+
∂~x⋆(2)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

)

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

(
∂~x⋆(2)

∂~p ⋆ +
∂~x⋆(2)

∂~x⋆(1)

(
∂~x⋆(1)

∂~p ⋆ +
∂~x⋆(1)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

)

+
∂~x⋆(2)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

)

=

[
∂~φ⋆

∂~p ⋆

︸︷︷︸

Path: ~p⋆→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→ ~x⋆(2)→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~x⋆(1)

∂~x⋆(1)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→~x⋆(1)→ ~x⋆(2)→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~x⋆(1)

∂~x⋆(1)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→ ~x⋆(0)→ ~x⋆(1)→ ~x⋆(2)→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→~x⋆(0)→ ~x⋆(2)→ ~φ⋆

]

=
∑

π | π is a path from

~p
⋆

to ~φ
⋆

in the sensitivity DAG

(

Product of edge-weights of π in reverse

)

.

The derivation above shows that the sensitivity is a sum of terms,

where each term corresponds to a unique path from ~p ⋆ to ~φ⋆ in the

sensitivity DAG; more precisely, each term is a “product of edge-

weights in reverse” of some path from ~p ⋆ to ~φ⋆. Thus, we have a

key insight: solving the sensitivity analysis problem is the same as

enumerating paths in the sensitivity DAG.

Taking a cue from this, we define the “weight of a path” in the

sensitivity DAG to be the product of weights of all the edges along

the path, in reverse. Also, given any two nodes u and v in the DAG,

we define σ(u, v) to be the sum of the weights of all the paths in the

DAG that start at u and end at v. Thus, solving the sensitivity analysis

problem is the same as computing σ(~p ⋆, ~φ⋆) in the sensitivity DAG.

G. Direct and Adjoint approaches to DAG path enumeration

We just reduced sensitivity analysis to the problem of adding up

the weights of all paths from ~p ⋆ to ~φ⋆ in the sensitivity DAG. The

brute-force approach to this, however, is computationally infeasible

because the number of such paths grows exponentially as the size of

the DAG [20, 21]. Therefore, we use dynamic programming techniques

to efficiently enumerate DAG paths, and hence solve the sensitivity

analysis problem in linear time in the size of the DAG [20, 21].

Fig. 5 illustrates the key idea that we exploit, which is that the

problem of computing σ(~p ⋆, ~φ⋆) can be repeatedly broken down into

smaller, simpler, sub-problems. There are 2 ways to do this: (1) the

“direct” approach (Fig. 5a), where we keep the source ~p ⋆ constant,

and express σ(~p ⋆, ~φ⋆) in terms of σ(~p ⋆, u), where u is one step

closer to ~p ⋆ than ~φ⋆, or (2) the “adjoint” approach (Fig. 5b), where we

keep the destination ~φ⋆ constant, and express σ(~p ⋆, ~φ⋆) in terms of

σ(v, ~φ⋆), where v is one step closer to ~φ⋆ than ~p ⋆. Both approaches

give us optimal sub-structures for dynamic programming, as formalised

in Algorithms 1 and 2 respectively.

Direct sensitivity analysis: Optimal sub-structure for dynamic programming

(a)

Adjoint sensitivity analysis: Optimal sub-structure for dynamic programming

(b)

Fig. 5. The key ideas behind efficient direct and adjoint DAG path enumeration
in DAGSENS.

Algorithm 1: Direct transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG G, with nodes ~p ⋆ and ~φ⋆ representing the

DAE parameters and the objective function respectively

Output: The sensitivity σ(~p ⋆, ~φ⋆), calculated via dynamic programming

using the “direct” optimal sub-structure (Fig. 5a)

1 σ(~p ⋆, ~p ⋆) = I|~p⋆|×|~p⋆| // identity matrix

2 order = topological_sort(G)
3 for u in order do

4 σ(~p ⋆, u) = 0|u|×|~p⋆|

5 for v such that (v, u) is an edge in G do

6 σ(~p ⋆, u) += w(v, u) σ(~p ⋆, v)

7 return σ(~p ⋆, ~φ⋆)

Algorithm 2: Adjoint transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG G, with nodes ~p ⋆ and ~φ⋆ representing the

DAE parameters and the objective function respectively

Output: The sensitivity σ(~p ⋆, ~φ⋆), calculated via dynamic programming

using the “adjoint” optimal sub-structure (Fig. 5b)

1 σ(~φ⋆, ~φ⋆) = I|~φ⋆|×|~φ⋆| // identity matrix

2 order = reversed(topological_sort(G))
3 for v in order do

4 σ(v, ~φ⋆) = 0|~φ⋆|×|v|

5 for u such that (v, u) is an edge in G do

6 σ(v, ~φ⋆) += σ(u, ~φ⋆) w(v, u)

7 return σ(~p ⋆, ~φ⋆)

Algorithms 1 and 2 both compute a topological ordering, i.e., a

permutation of the DAG nodes such that if (u, v) is a DAG edge, then

u occurs before v in the permutation [20, 21]. But while Algorithm 1

traverses the nodes in topological order, Algorithm 2 traverses them in

reverse topological order. At every such node u (v), Algorithm 1 (2)

computes σ(~p ⋆, u) (σ(v, ~φ⋆)), making use of the optimal sub-structure

logic in Fig. 5a (5b). This continues until, finally, the ~φ⋆ (~p ⋆) node

is reached, at which time the computed σ(~p ⋆, ~φ⋆) is returned as the

required sensitivity. Thus, while Algorithm 1 involves computing the

sensitivity of each intermediate DAG node with respect to the DAE

parameters, Algorithm 2 involves computing the sensitivity of the

objective function with respect to each intermediate DAG node. So,

the former (latter) implements direct (adjoint) sensitivity analysis in

DAGSENS [4, 12–16].

Finally, Line 6 of Algorithm 2 involves pre-multiplying the edge-

weight w(v, u) by the matrix σ(u, ~φ⋆). Since most edge-weights

are of the form B−1C (Eqs. 6, 7, and 8), this is a computation of

the form AB−1C, which can be done either as A(B−1C), or as

(AB−1)C = ((BT)−1AT)TC (where matrix/matrix solves are sparse

in many applications of interest). If the number of rows of A is much

smaller than the number of columns of C (i.e., the dimension of the

objective function is much smaller than that of the DAE parameter

space), the latter is likely to be much more efficient than the former,

which we exploit heavily in DAGSENS.

H. Event-driven objective functions

As mentioned in §I, we would like to define “events” that happen

during a transient simulation (e.g., a node voltage crossing a particular

threshold, a PLL in a circuit achieving lock, etc.), and then compute

sensitivities of objectives that are based on these events. For our

purposes, an “event” ev is specified by the condition:

gev(τ
⋆
ev, ~x

⋆(τ⋆
ev), ~p

⋆) = 0, (16)

where τ⋆
ev is the time at which the event occurs during a transient

simulation. In practice, we may need additional constraints to uniquely

identify the event (such as limits on τ⋆
ev, or a specification such as

“the third time Eq. (16) is satisfied”, etc.). But for sensitivity analysis,

we can ignore these additional specifications because we only do

perturbation analysis of Eq. (16) in a small neighbourbood around

τ⋆
ev. Also, we note that events corresponding to a signal reaching its

maximum/minimum value are specified by adding a new DAE state

variable representing the derivative of the signal in question, and by

equating this variable to zero via Eq. (16) (see §III for examples).

Given a sequence of M events 1 ≤ ev ≤ M , our event-driven

objective function takes the form:

~φ
⋆ = ~h(τ⋆

1 , τ
⋆
2 , . . . , τ

⋆
M , ~x

⋆(τ⋆
1), ~x

⋆(τ⋆
2), . . . , ~x

⋆(τ⋆
M), ~p ⋆). (17)

Thus, event-driven objective functions depend on the times of

occurrence of a set of events, as well as the DAE states at these times,

both of which change when the DAE parameters are perturbed.

I. Sensitivity analysis of event-driven objective functions

Let us denote by Sτev and Sxev , where 1 ≤ ev ≤ M , the sensitivities

of our event times, and DAE states at these times, respectively. Note

that Sxev 6= Sx(τ
⋆
ev); while Sx(τ

⋆
ev) only takes into account the

sensitivity of the DAE state ~x, Sxev takes into account the sensitivities

of both the DAE state ~x and the event time τev. With this distinction

in mind, perturbation analysis of Eq. (16) yields:

Sτev = −
J⋆
gevxSx(τ

⋆
ev) + J⋆

gevp

J⋆
gevx

~̇x
⋆
(τ⋆

ev) + J⋆
gevτ

, and (18)

Sxev = Sx(τ
⋆
ev) + ~̇x

⋆
(τ⋆

ev)Sτev , where (19)

~̇x
⋆
(τ⋆

ev) =
d

dt
~x

⋆(t)

∣
∣
∣
∣
τ⋆

ev

, ∀ 1 ≤ ev ≤ M, (20)

and where Jacobian terms have their usual meanings, and are all

evaluated at (τ⋆
ev, ~x

⋆(τ⋆
ev), ~p

⋆). Therefore, we first need to solve for

the event, i.e., find τ⋆
ev and ~x⋆(τ⋆

ev), before we can compute Sτev and

Sxev . We do this by finding a time-point ti of the transient simulation

where the gev(., ., .) function undergoes a sign change between ti and

ti+1. We then solve the following “modified” LMS equations:

(

αev(0, τ
⋆
ev) ~q (~x

⋆(τ⋆
ev), ~p

⋆) + βev(0, τ
⋆
ev) ~f (~x⋆(τ⋆

ev), ~u(τ
⋆
ev), ~p

⋆)
)

+

mev∑

j=1

(

αev(−j, τ
⋆
ev) ~q (~x

⋆(i− j + 1), ~p ⋆)

+ βev(−j, τ
⋆
ev) ~f (~x⋆(i− j + 1), ~u(ti−j+1), ~p

⋆)

)

= ~0, and

(21)

gev(τ
⋆
ev, ~x

⋆(τ⋆
ev), ~p

⋆) = 0. (22)

These equations are similar to Eq. (2). But here, we treat both the

next time-point τ⋆
ev and the next DAE state ~x⋆(τ⋆

ev) as unknowns. So,

the α and β coefficients become functions of the unknowns as well.

Also, we use LMS approximations to calculate the ~̇x
⋆
(τ⋆

ev) term in

Eqs. (18) and (19).

Finally, the sensitivity of our event-driven objective function is given

by:

Sφ = J
⋆
hp +

M∑

ev=1

(
J
⋆
hτev

Sτev + J
⋆
hx(τev)Sxev

)
. (23)

J. Augmenting the sensitivity DAG for event-driven objective functions

Fig. 6 shows how to add an event-driven objective function to the

sensitivity DAG. For each event 1 ≤ ev ≤ M , we add three new

nodes (Fig. 6a): a partial ~x⋆(τ⋆
ev) node whose sensitivity equals Sx(τ

⋆
ev)

(which is created just like any other node in the transient simulation,

following §II-D), and nodes corresponding to τ⋆
ev and ~x⋆(τ⋆

ev), which

are created according to Eqs. (18) and (19) respectively. The edges

associated with these nodes, and their weights, are shown in Fig. 6a.

Finally, we add a new node ~φ⋆ to capture the event-driven objective

function. As shown in Fig. 6b, this node has incoming edges from ~p ⋆,

as well as from all the τ⋆
ev and ~x⋆(τ⋆

ev) nodes above. The weights of

these edges, as shown in the figure, follow Eq. (23).

K. DAGSENS: The overall flow for event-driven objective functions

Based on the preceding sections, Algorithm 3 outlines the overall

flow that DAGSENS uses for computing direct and adjoint sensitivities

of event-driven objective functions.

Algorithm 3: Event-driven sensitivity analysis in DAGSENS

Input: A DAE D in the form of Eq. (1), nominal DAE parameters ~p ⋆,

DAE inputs ~u(t) over an interval [t0, tf], events 1 ≤ ev ≤ M in

the form of Eq. (16), and an event-driven objective function φ in

the form of Eq. (17)

Output: The sensitivity of the objective function with respect to the

DAE parameters, evaluated at ~p ⋆

1 Do a transient analysis of D, using parameters ~p ⋆, with inputs ~u(t),
over the time-interval [t0, tf].

2 Record Jacobians J⋆
qx(t), J

⋆
qp(t), J

⋆
fx(t), and J⋆

fp(t) from the transient

simulation.

3 Build a sensitivity DAG G, using information from the transient run and

the Jacobians above, via Eqs. (6), (7), and (8).

4 for 1 ≤ ev ≤ M do

5 Solve for event ev, i.e., find τ⋆
ev and ~x⋆(τ⋆

ev), by constructing and

solving Eqs. (21) and (22).

6 Augment the sensitivity DAG with nodes corresponding to ev, as

outlined in §II-J.

7 Augment the sensitivity DAG with a ~φ⋆ node, as outlined in §II-J.

8 Traverse the sensitivity DAG using either Algorithm 1 (for direct

sensitivities), or Algorithm 2 (for adjoint sensitivities).

9 Return the sensitivities computed above.

III. RESULTS

We have developed a Python implementation of DAGSENS, which

we now use to compute event-driven sensitivities in some electronic

and biological applications, including high-speed communication, sta-

tistical cell library characterization, and gene expression in Drosophila

embryos.

(b)

Nodes
already
present

New nodes added

Weight calculated
using Eq. (8)

Weights calculated
using Eq. (9)

(a)

Fig. 6. Adding (a) events, and (b) an event-driven objective, to the sensitivity
DAG.

A. High-speed communication sub-systems

1) A “maximum crosstalk” example: In modern high-speed I/O

links, “crosstalk” between parallel channels (e.g., in a CPU/DRAM

interface) often adversely impacts bandwidth [33–35]. When two signal-

carrying lines lie physically close together on-chip, the bits transported

in one of the lines (the aggressor) often interfere with those in the

other line (the victim), via cross-coupled capacitances [33–35]. Fig. 7a

shows the circuit that we designed to tease out the impact of such

crosstalk. The aggressor and victim are both modelled as RC chains

driving capacitive loads. The circuit has two sub-circuits: the right one

where crosstalk is modelled via cross-coupled capacitances, and the

left one without crosstalk. The difference between the victim’s outputs

in these two sub-circuits is a measure of crosstalk (Fig. 7a).

Our “event” of interest is when the crosstalk reaches its maximum

value during a transient run. And our event-driven objective function φ

is the value of this maximum crosstalk. Parts (b) and (c) of Fig. 7 depict

these events during a transient simulation, where the aggressor and

victim transmit their bits without and with pre/de-emphasis respectively.

While pre/de-emphasis is a good strategy for boosting bandwidth by

improving signal integrity at the receiver, it can have the drawback of

increasing crosstalk [33–35].

Parameter
Without

Pre/De-Emphasis
With

Pre/De-Emphasis
% impact of

Pre/De-Emphasis

φ (V) 0.1183 0.1372 15.98%

Sens(φ)

Total Rseg (kΩ) 0.6611 0.5219 −21.06%
Total Cseg (pF) 0.7770 0.7851 1.04%
Total Ccross (pF) 3.9643 4.7049 18.68%
Cload (pF) 4.0547 4.7960 18.28%

Table 1. The impact of using pre/de-emphasis on the sensitivities of maximum
crosstalk (φ), with respect to total segment resistance, total segment capacitance,
total cross capacitance, and load capacitance.

Parts (d) to (i) of Fig. 7 show the results of applying DAGSENS to

the system above, where the sensitivities of the maximum crosstalk with

respect to each segment resistance, segment capacitance, and coupling

capacitance are plotted as bar charts. It is interesting to see (parts

d, e) that the maximum crosstalk is more sensitive to the first few

segment resistances when pre/de-emphasis is employed. Also, it is

interesting that the sensitivities with respect to segment capacitances

rise in a convex manner (parts f, g), while those with respect to coupling

capacitances rise in a concave manner (parts h, i). Table 1 shows

the precise impact of using pre/de-emphasis on maximum crosstalk

sensitivities with respect to various system and load parameters. Thus,

event-driven DAGSENS can allow high-speed link engineers to obtain

insights that would not be possible with existing sensitivity analysis

tools.

Rseg

Cseg

�seg

�seg

�seg

�seg �load

N units

�seg

�seg

�seg

�seg

	seg

seg �load

�cross
cross �cross

N units Aggressor

Victim

Coupling

�seg

�seg

�seg

�seg

�seg

�seg�load

N unitsAggressor

N units

�seg

�seg

�seg

�seg

�seg

�seg�load

Victim

A���essor

Bit Pattern

Pre/De

Emphasis

Victim

Bit Pattern

Pre/De

Emphasis

Subcircuit without crosstalk Subcircuit with crosstalk

abs(.)

Crosstalk

+-

VinVout

VinVout

Vin

Vin

Vout

Vout

(a)

Fig. 7. (a) The circuit used to determine the magnitude of crosstalk induced by an aggressor on a victim. (b, c) Transient simulation of the circuit in (a) without
and with pre/de-emphasis respectively, with the event corresponding to maximum crosstalk in each case. (d through i) Sensitivities of the maximum crosstalk
with respect to each segment resistance (d, e), segment capacitance (f, g), and coupling capacitance (h, i), without (d, f, h) and with (e, g, i) pre/de-emphasis.

Also, in this example, our objective function has dimension 1
whereas the DAE parameter space has dimension O(3N) (where N is

the number of RC segments). So, this is a good test case to illustrate the

benefits of adjoint over direct sensitivity analysis. We do not provide

these results here due to space constraints, but refer the reader to [29]

instead.

2) A PLL example: PLLs are widely used in high-speed commu-

nication sub-systems for frequency synthesis, clock and data recovery

(CDR), etc. [33, 36, 37]. The lock time of a PLL, i.e., how quickly a

PLL can lock to a new input frequency, is critical in these applications.

Since a PLL achieving lock is a transient event, we can use DAGSENS

to calculate the sensivities of a PLL’s lock time with respect to its

parameters.

Low Bandwidth
(fc = 0.11GHz)

Loop Filter

High Bandwidth
(fc = 0.45GHz)

Loop Filter

Parameter
Lock

time (ns)
Vctl swing

(mV)
Lock

time (ns)
Vctl swing

(mV)

φ 14.85 45.41 1.68 182.94

Sens(φ)

KPFD (V −1) −1.95 45.76 −0.17 188.67
R (kΩ) 1.47 −32.61 0.27 −259.66
C (pF) 2.06 −45.65 0.37 −363.53
KVCO (V −1GHz) −1.95 0.35 −0.17 5.72
fVCO (GHz) −5.12 −0.01 −0.21 0.93

Table 2. Sensitivities of PLL lock times and peak-to-peak Vctl swings at lock,
with respect to various macromodel parameters, for low and high bandwidth
loop filters.

Fig. 8a shows a high-level block-diagram for a PLL, and also the

equations and parameters associated with each component [36, 37].

Parts (b) and (c) of Fig. 8 show transient simulations of two PLLs,

one with a low-bandwidth loop filter (b) and the other with a high-

bandwidth loop filter (c). In each case, the input waveform abruptly

switches its frequency at t = 50ns, throwing the PLLs off lock. The

PLLs eventually regain lock, as can be seen from the red bars that

graph the time elapsed between the peaks of Vin (the PLL input) and

the nearest peaks of Vout (the PLL output) in each case. Our event-

driven objective functions are the respective PLL lock times, defined

as the time taken for the respective Vctl waveforms to settle into a

narrow range around their final expected values, as well as the peak-

to-peak swings in Vctl at lock. If one used an ideal loop filter, Vctl

would settle to a DC value, so the swing in Vctl is a measure of non-

ideality in the PLL’s response. While we would like PLLs to lock

quickly and have small Vctl swings, there is often a tradeoff between

these: high (low) bandwidth PLLs lock quickly (slowly), but exhibit

larger (smaller) Vctl swings, as shown in parts (b) and (c) of Fig. 8.

Table 2 shows the sensitivities of the event-driven objectives above

(PLL lock times as well as Vctl swings at lock), with respect to the PLL

macromodel parameters shown in Fig. 8a. From the table, it is clear

that when a high (low) bandwidth loop filter is used in the PLL, both

the lock time and its sensitivities tend to be lower (higher), whereas

both the Vctl swing at lock and its sensitivities tend to be higher (lower).

B. Statistical cell library characterization

As we approach 7 nm CMOS, statistical characterization of cell

libraries for digital design, taking into account the sensitivities of

important performance metrics like speed and power consumption,

with respect to device parameters, is crucial [4, 38, 39]. We now use

DAGSENS to calculate the sensitivities of one such event-driven metric,

namely, the 20% to 80% transition delay of a 22 nm CMOS NAND

gate driving an RC load (Fig. 9), with respect to various NMOS, PMOS,

and load parameters.

Fig. 10 shows 2 transitions of the NAND gate above (while there

are 6 possible transitions that switch the output, we show only 2 to

save space, although we analyze the sensitivities of all 6 in Table 3).

Fig. 10 also shows the “20% complete” and “80% complete” events

in each case, as well as our event-driven gate delay objective function,

i.e., the time elapsed between these two events. Table 3 shows the

event-driven sensitivities of the NAND gate delay to various NMOS

and PMOS parameters (including widths, lengths, threshold voltages,

parasitic resistances and capacitances, etc.), as well as load parameters.

It is interesting to see that, in most (although not all) cases, the gate

delay is more sensitive to PMOS (NMOS) parameters during “pull up”

Fig. 8. (a) Block diagram of a PLL, with the underlying equations, (b, c) Transient simulation of low-bandwidth (b) and high-bandwidth (c) PLLs on an input
waveform that abruptly changes frequency at t = 50ns. The high-bandwidth PLL regains lock more quickly, but features a larger peak-to-peak swing in Vctl

around its ideal DC value.

VDD

B

C

P1 P2

N!

N"

#l$%&

C'()*

Fig. 9. A CMOS NAND gate driving an RC load.

Fig. 10. Transient simulation of the CMOS NAND gate of Fig. 9 for two
different input transitions, showing the 20% and 80% “transition complete”
events, and the corresponding “gate delay” objective function in each case.

(“pull down”) transitions, as one would intuitively expect.

C. Biological applications

Gene m+,-

Protein

Transcription

.r/
03
456
78
9

Gene

:

N;<=>?@

DBEFG

HIJKL

MOPQ

S

(a)

nUVWXYZ [\] ^_`abcd e fghijko pqs

tuvw xyzusion pr{|}~������ �� ����� ���erence

pr����� ���usion pr��������� ¡¢ £¤¥¦§ ¨©ªerence

(b)

Fig. 11. A model for gene expression in a Drosophila embryo, featuring
transcription, translation, and decay (part a), as well as diffusion across nuclei
(part b).

We now apply DAGSENS to a biological example, i.e., gene expres-

sion via transcription, translation, decay, and diffusion in Drosophila

embryos (Fig. 11) [8, 40]. In this system, a Drosophila gene generates

mRNA molecules via transcription, which in turn generate protein

molecules via translation. In parallel, the mRNA and protein molecules

also decay. This is all shown in Fig. 11a [8, 40]. Also, these reactions

take place across multiple sites (called nuclei), and whenever there is

an mRNA or protein imbalance between adjacent nuclei, molecules

flow across the border to reduce the imbalance (Fig. 11b) [8, 40].

In our example, we have N = 52 nuclei, and each nucleus i

(where 1 ≤ i ≤ N) has an mRNA concentration [mRNA]i, and a

protein concentration [protein]i. The system has a single exponentially

decaying external input u(t) that governs the rate of transcription. The

equations for the system are:

d

dt
[mRNA]i = σmRNA u(t)

︸ ︷︷ ︸

Transcription

+ dmRNA([mRNA]i−1 − [mRNA]i)
︸ ︷︷ ︸

Diffusion from previous nucleus

+ dmRNA([mRNA]i+1 − [mRNA]i)
︸ ︷︷ ︸

Diffusion from next nucleus

−λmRNA [mRNA]i
︸ ︷︷ ︸

Decay

, and

(24)

d

dt
[protein]i = σprotein [mRNA]i

︸ ︷︷ ︸

Translation

+ dprotein([protein]i−1 − [protein]i)
︸ ︷︷ ︸

Diffusion from previous nucleus

+ dprotein([protein]i+1 − [protein]i)
︸ ︷︷ ︸

Diffusion from next nucleus

−λprotein [protein]i
︸ ︷︷ ︸

Decay

, (25)

with the understanding that the “diffusion from previous (next) nucleus”

term is 0 for the first (last) (i = 1 (N)) nucleus.

Each nucleus features a maximum [mRNA] event

(a)

Each nucleus features a maximum [protein] event

(b)

Fig. 12. Transient simulation of gene expression in a Drosophila embryo.

Fig. 12 shows a transient run of the system above; at each nucleus

i, there is an instant when [mRNA]i peaks (before mRNA decay takes

its toll), and a (slightly later) instant when [protein]i peaks (before

protein decay takes its toll). These “peak concentration” events are of

interest in many gene expression systems, so we set the times of these

Parameter Pull down transitions Pull up transitions

Input transition (A, B) (0, 0) → (1, 1) (0, 1) → (1, 1) (1, 0) → (1, 1) (1, 1) → (1, 0) (1, 1) → (0, 1) (1, 1) → (0, 0)

φ (ps) 292.70 292.89 292.85 302.92 293.93 147.38

Sens(φ)
wrt PMOS
parameters

W (nm) 7.87× 10−6 3.37× 10−5 2.11 × 10−5
−4.96 −4.77 −2.37

L (nm) −2.36× 10−5
−1.01× 10−4

−6.32× 10−5 14.87 14.31 7.12
Vth (V) 8.66× 10−4 3.71× 10−3 2.32 × 10−3

−904.66 −867.64 −431.64
Rd (kΩ) 9.93× 10−4 9.78× 10−4 9.81 × 10−4 0.68 0.66 0.31
Rs (kΩ) −3.75× 10−6

−1.79× 10−5
−1.11× 10−5 2.88 2.76 1.38

Rds (GΩ) −0.15 −0.15 −0.15 0.15 0.14 0.04
Cgd (fF) 572.50 560.58 562.92 625.30 620.19 326.68
Cgs (fF) 3.05× 10−7 1.65× 10−7 1.73 × 10−7 5.24× 10−3 5.10× 10−3 4.69× 10−3

Cdb (fF) 542.01 544.03 545.59 576.72 573.06 283.58
Csb (fF) 5.42× 10−14 5.72 × 10−14 5.14× 10−14 4.96× 10−7 4.94× 10−7 5.04× 10−7

Sens(φ)
wrt NMOS
parameters

W (nm) −6.79 −6.80 −6.82 1.32× 10−3 2.77× 10−4
−2.81× 10−3

L (nm) 13.59 13.61 13.65 −2.65× 10−3
−5.54× 10−4 5.62× 10−3

Vth (V) 813.20 814.42 816.31 −25.84 −0.02 −0.72
Rd (kΩ) 2.53 2.54 2.54 7.86× 10−3 3.31× 10−4 5.18× 10−4

Rs (kΩ) 4.51 4.50 4.52 5.73× 10−4
−2.04× 10−4

−4.64× 10−5

Rds (GΩ) 0.03 0.03 0.03 −0.06 −0.08 −0.02
Cgd (fF) 321.58 311.81 310.31 510.84 333.66 174.65
Cgs (fF) 35.36 32.44 28.97 173.82 2.34× 10−3 11.30
Cdb (fF) 298.82 295.27 301.73 462.18 286.53 141.53
Csb (fF) 27.84 23.28 28.97 173.82 6.84× 10−5

−0.27

Sens(φ) wrt
load parameters

Rload (kΩ) 0.57 0.57 0.57 0.54 0.59 0.59
Cload (fF) 272.14 273.15 273.93 289.45 287.71 142.98

Table 3. NAND gate delay sensitivities with respect to various NMOS, PMOS, and load parameters, for all input transitions that switch the output.

events, and the corresponding peak concentrations, to be our event-

driven objectives.

Fig. 13. Sensitivities of peak mRNA and protein concentrations, as well as the
times at which these peak concentrations occur, across nuclei, for the Drosophila
embryo gene expression system.

Fig. 13 shows a plot of these event-driven sensitivities, across nuclei,

with respect to various system parameters. It is interesting to see that,

while the peak mRNA and protein event times, as well as the peak

mRNA concentration value, are all most sensitive to the mRNA decay

constant λmRNA, the peak protein concentration value is most sensitive

to the protein translation constant σprotein, for all the nuclei.

IV. SUMMARY

To summarise, we have developed and demonstrated DAGSENS, a

simple, elegant, and powerful theory for transient sensitivity analysis

based on directed acyclic graphs. We have shown how DAGSENS can

be used to carry out direct and adjoint transient sensitivity analysis for

an entirely new class of objective functions, defined based on events

that happen during transient simulations. We have illustrated this on sev-

eral real-world applications including high-speed communication (with

I/O link and PLL examples), statistical cell library characterization, and

gene expression in biological systems.

Acknowledgments: This work was sponsored by the Laboratory Directed
Research and Development (LDRD) Program at Sandia National Laboratories.
Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

REFERENCES

[1] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C. Visweswariah, and C. W. Wu. JiffyTune: Circuit optimization

using time-domain sensitivities. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

17(12):1292–1309, 1998.

[2] C. Gu and J. Roychowdhury. An efficient, fully non-linear, variability-aware non-Monte-Carlo yield estimation procedure

with applications to SRAM cells and ring oscillators. In ASPDAC ’08: Proceedings of the 13
th Asia and South Pacific

Design Automation Conference, pages 754–761, 2008.

[3] I. Stevanovic and . C. C. McAndrew. Quadratic backward propagation of variance for non-linear statistical circuit

modelling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(9):1428–1432, 2009.

[4] B. Gu, K. Gullapalli, Y. Zhang, and S. Sundareswaran. Faster statistical cell characterization using adjoint sensitivity

analysis. In CICC ’08: Proceedings of the 30
th Annual Custom Integrated Circuits Conference, pages 229–232, 2008.

[5] T. Turányi. Sensitivity analysis in chemical kinetics. International Journal of Chemical Kinetics, 40(11):685–686, 2008.

[6] T. Ziehn and A. S. Tomlin. GUI–HDMR: A software tool for global sensitivity analysis of complex models. Environmental

Modelling & Software, 24(7):775–785, 2009.

[7] J. M. Dresch, X. Liu, D. N. Arnosti, and A. Ay. Thermodynamic modelling of transcription: Sensitivity analysis

differentiates biological mechanism from mathematical model-induced effects. BMC Systems Biology, 4(1):142, 2010.

[8] G. D. McCarthy, R. A. Drewell, and J. M. Dresch. Global sensitivity analysis of a dynamic model for gene expression

in Drosophila embryos. PeerJ, 3:e1022, 2015.

[9] M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano. Robustness as a measure of plausibility

in models of biochemical networks. Journal of Theoretical Biology, 216(1):19–30, 2002.

[10] T. Eissing, F. Allgöwer, and E. Bullinger. Robustness properties of apoptosis models with respect to parameter variations

and intrinsic noise. Systems Biology, 152(4):221–228, 2005.

[11] D. E. Hocevar, P. Yang, T. N. Trick, and B. D. Epler. Transient sensitivity computation for MOSFET circuits. IEEE

Transactions on Electron Devices, 32(10):2165–2176, 1985.

[12] A. Meir and J. Roychowdhury. BLAST: Efficient computation of non-linear delay sensitivities in electronic and biological

networks using barycentric Lagrange enabled transient adjoint analysis. In DAC ’12: Proceedings of the 49
th Annual

Design Automation Conference, pages 301–310, 2012.

[13] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint sensitivity analysis for differential-algebraic equations: The adjoint

DAE system and its numerical solution. SIAM Journal on Scientific Computing, 24(3):1076–1089, 2003.

[14] F. Y. Liu and P. Feldmann. A time-unrolling method to compute sensitivity of dynamic systems. In DAC ’14: Proceedings

of the 51
st Annual Design Automation Conference, 2014.

[15] R. M. Errico. What is an adjoint model? Bulletin of the American Meteorological Society, 78(11):2577–2591, 1997.

[16] R. Bartlett. A derivation of forward and adjoint sensitivities for ODEs and DAEs. Technical Report SAND2007-6699,

Sandia National Laboratories, Albuquerque, NM, USA, 2008.

[17] S. Director and R. Rohrer. The generalized adjoint network and network sensitivities. IEEE Transactions on Circuit

Theory, 16(3):318–323, 1969.

[18] Synopsys. HSPICE R© user guide: Simulation and analysis, 2010.

[19] E. R. Keiter, K. V. Aadithya, T. Mei, T. V. Russo, R. L. Schiek, P. E. Sholander, H. K. Thornquist, and J. C. Verley. Xyce R©

parallel electronic simulator (v6.6): User’s guide. Technical Report SAND2016-11716, Sandia National Laboratories,

Albuquerque, NM, USA, 2016.

[20] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education, 2006.

[21] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to algorithms. The MIT Press, 2001.

[22] A. Griewank and A. Walther. Evaluating derivatives: Principles and techniques of algorithmic differentiation. SIAM,

2008.

[23] C. H. Bischof, P. D. Hovland, and B. Norris. On the implementation of automatic differentiation tools. Higher-Order

and Symbolic Computation, 21(3):311–331, 2008.

[24] J. Roychowdhury. Numerical simulation and modelling of electronic and biochemical systems. Foundations and Trends

in Electronic Design Automation, 3(2–3):97–303, 2009.

[25] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits. PhD thesis, UC Berkeley, 1975.

[26] L. Edelstein-Keshet. Mathematical models in biology. SIAM, 2005.

[27] A. L. Sangiovanni-Vincentelli. Computer Design Aids for VLSI Circuits, chapter Circuit Simulation, pages 19–112.

Springer, Netherlands, 1984.

[28] L. O. Chua and P. M. Lin. Computer-aided analysis of electronic circuits: Algorithms and computational techniques.

1975.

[29] K. V. Aadithya, E. R. Keiter, and T. Mei. DAGSENS: Directed acyclic graph based direct and adjoint transient

sensitivity analysis for event-driven objective functions. Technical Report SAND2017-8569, Sandia National Laboratories,

Albuquerque, NM, USA, 2017. https://xyce.sandia.gov/publications/ assets/documents/sand2017 8569.pdf.

[30] H. Shichman. Integration system of a non-linear transient network analysis program. IEEE Transactions on Circuit

Theory, 17(3):378–386, 1970.

[31] C. W. Gear. The numerical integration of ordinary differential equations. Mathematics of Computation, 21(98):146–156,

1967.

[32] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys,

24(3):293–318, 1992.

[33] G. Balamurugan, B. Casper, J. E. Jaussi, M. Mansuri, F. O’Mahony, and J. Kennedy. Modelling and analysis of high-speed

I/O links. IEEE Transactions on Advanced Packaging, 32(2):237–247, 2009.

[34] P. K. Hanumolu, G. Y. Wei, and U. K. Moon. Equalizers for high-speed serial links. International Journal of High

Speed Electronics and Systems, 15(2):429–458, 2005.

[35] J. A. Davis and J. D. Meindl. Interconnect technology and design for gigascale integration. Springer, Netherlands, 2003.

[36] B. Razavi. Design of analog CMOS integrated circuits. Tata McGraw-Hill Publishing Company Ltd., New Delhi, India,

2001.

[37] J. L. Stensby. Phase-locked loops: Theory and applications. CRC Press, 1997.

[38] A. Goel and S. Vrudhula. Statistical waveform and current source based standard cell models for accurate timing analysis.

In DAC ’08: Proceedings of the 45
th Annual Design Automation Conference, pages 227–230, 2008.

[39] L. Yu, S. Saxena, C. Hess, I. M. Elfadel, D. Antoniadis, and D. Boning. Statistical library characterization using belief

propagation across multiple technology nodes. In DATE ’15: Proceedings of the 18
th Design, Automation & Test

Conference in Europe, pages 1383–1388, 2015.

[40] J. M. Dresch, M. A. Thompson, D. N. Arnosti, and C. Chiu. Two-layer mathematical modelling of gene expression:

Incorporating DNA-level information and system dynamics. SIAM Journal on Applied Mathematics, 73(2):804–826,

2013.

https://xyce.sandia.gov/publications/_assets/documents/sand2017_8569.pdf

	Introduction
	Core Techniques and Algorithms for DAG-based Event-driven Sensitivity Analysis
	DAE models of dynamical systems
	Transient analysis of DAEs
	Transient sensitivity analysis of DAEs
	The sensitivity DAG
	Objective functions and the sensitivity DAG
	Sensitivity analysis = DAG path enumeration
	Direct and Adjoint approaches to DAG path enumeration
	Event-driven objective functions
	Sensitivity analysis of event-driven objective functions
	Augmenting the sensitivity DAG for event-driven objective functions
	DAGSENS: The overall flow for event-driven objective functions

	Results
	High-speed communication sub-systems
	A ``maximum crosstalk'' example
	A PLL example

	Statistical cell library characterization
	Biological applications

	Summary
	References

