SAND2017-8875C

DAGSENS: Directed Acyclic Graph Based
Direct and Adjoint Transient Sensitivity Analysis
for Event-Driven Objective Functions

Karthik V. Aadithyai, Eric Keiter, and Ting Mei
Sandia National Laboratories, Albuquerque, NM, USA
iCorresponding author. Email: kvaadit@sandia.gov

Abstract—We present DAGSENS, a new approach to parametric tran-
sient sensitivity analysis of Differential Algebraic Equation systems (DAEs),
such as SPICE-level circuits. The key ideas behind DAGSENS are, (1) to
represent the entire sequence of computations from DAE parameters to
the objective function (whose sensitivity is needed) as a Directed Acyclic
Graph (DAG) called the ‘sensitivity DAG”, and (2) to compute the
required sensitivites efficiently by using dynamic programming techniques
to traverse the DAG. DAGSENS is simple, elegant, and easy-to-understand
compared to previous approaches; for example, in DAGSENS, one can
switch between direct and adjoint sensitivities simply by reversing the
direction of DAG traversal. Also, DAGSENS is more powerful than
previous approaches because it works for a more general class of objective
functions, including those based on “events” that occur during a transient
simulation (e.g., a node voltage crossing a threshold, a phase-locked loop
(PLL) achieving lock, a circuit signal reaching its maximum/minimum
value, etc.). In this paper, we demonstrate DAGSENS on several electronic
and biological applications, including high-speed communication, statistical
cell library characterization, and gene expression.

I. INTRODUCTION

This paper is about a new, elegant, and powerful approach to
computing transient sensitivities of dynamical systems. In integrated
circuit design, such sensitivities are used for a variety of applications in-
cluding optimization and tuning [1], yield estimation [2], performance
modelling [3], statistical cell library characterization [4], efc. Indeed, as
CMOS technology moves to progressively smaller feature sizes (7 nm
and below), and with the advent of near-threshold and sub-threshold
computing, such sensitivities are likely to become even more important
in variability-aware circuit design, due to the increasingly significant
role played by parameter variability in determining circuit performance
(speed, power consumption, bandwidth, efc.), as well as yield [2—4].

Parametric sensitivities are also important for analyzing and de-
signing biological systems; applications include identifying influential
kinetic parameters and model order reduction of chemical reaction
networks [5], improving model accuracy and separating biological
mechanisms from mathematical artifacts [6, 7], calculating the relative
importance of different parallel processes in biological phenomena such
as gene expression [8], understanding the factors at work behind the
robustness of biological systems to parameter variability [9, 10], etc.

Broadly speaking, there are two approaches to sensitivity analysis:
“direct” and “adjoint”. Direct methods [11] involve computing the
sensitivities of all intermediate quantities with respect to system
parameters (by repeatedly applying the chain rule of differentiation),
until the sensitivity of the desired “objective function” is eventually
found. Direct methods are easy to understand and implement, but scale
poorly with the number of parameters. Adjoint methods [4,12-16],
on the other hand, work backwards; they compute the sensitivities
of the objective function with respect to all intermediate quantities,
until the sensitivity of the objective function with respect to the
parameters is eventually found. Adjoint methods tend to be harder
to understand and implement, but they scale well to problems with
large numbers of parameters. In particular, if one is only interested in
calculating the sensitivities of a small number of performance metrics
with respect to a large number of parameters, adjoint methods allow
one to take advantage of the small dimensionality of the performance
space to significantly speed up sensitivity analysis. Modern circuit

simulation problems often fit this description; in these cases, computing
sensitivities is usually practical only using adjoint methods.

Despite their long history and continued importance, we believe
that adjoint methods are not well understood. This is partly because
existing descriptions in the literature use hard-to-understand concepts
and esoteric constructs such as adjoint circuits [1, 17], integrating DAEs
backwards in time [12,13,16], complicated mathematics involving
feeding d-function inputs to DAEs [12], efc.

Also, previous works on sensitivity analysis have lacked generality
with respect to the objective functions supported; they have restricted
themselves to the sensitivities of DAE solution variables at specific
points in time (i.e., “final point” objective functions, §II-E) [4, 14], or
integrals of the solution over time (i.e., “integral” objective functions,
§II-E) [13, 16], or simple combinations thereof, such as the ratio of
two integrals [12]. In practice, such simple objective functions are
often inadequate. Circuit designers frequently need more advanced,
“event-driven” metrics defined based on “events” that take place during
a transient run. Examples include a signal crossing a user-specified
threshold, or possibly reaching a maximum/minimum value. A more
complicated objective function could be the amount of time taken by
a phase-locked loop (PLL) to lock to a new input frequency. The
“achievement of lock” by a PLL is a transient event, and so the “time
to lock™ is an event-driven objective function, whose sensitivities with
respect to PLL parameters are of interest to designers. Indeed, many
popular circuit simulators already provide ways to calculate such event-
driven objectives (e.g., the . MEASURE feature found in HSPICE®) [18]
and Xyce®) [19]); we believe we are the first to address the problem
of calculating the sensitivities of such objectives.

In this paper, we develop DAGSENS, a new theory for transient
sensitivity analysis based on Directed Acyclic Graphs (DAGs). In
this approach, we construct a DAG where each intermediate quantity
computed during a transient run is represented as a node, starting
from DAE parameters all the way up to the objective function (§II-D,
§II-E). Once this DAG is constructed, all required sensitivities can be
obtained by traversing it, using efficient techniques based on dynamic
programming (§II-G) [20,21]. A key advantage is the simplicity and
elegance of the DAG approach, which we believe previous approaches
lack; for example, in DAGSENS, to switch from direct to adjoint
sensitivity analysis, one simply changes the direction of DAG traversal
from topological order to reverse topological order (§II-G), much like
forward and reverse mode automatic differentiation [22,23]. Thus,
DAGSENS eliminates the need for the hard-to-understand, esoteric
mathematical constructs mentioned above, and can thus make the
benefits of sensitivity analysis accessible to a wider audience, including
device engineers, circuit designers, and students. Also, DAGSENS is
more powerful than existing sensitivity analysis approaches because it
can handle more general objective functions, including the event-driven
objectives described above.

The rest of this paper is organized as follows. In §II, we provide
some technical background (on DAESs, transient analysis, efc.), and
then discuss the core techniques underlying DAGSENS. In §III, we
apply DAGSENS to compute event-driven sensitivities in several elec-
tronic and biological applications, including high-speed communication

(8II-A), statistical cell library characterization (§III-B), and gene
expression in Drosophila embryos (§III-C). We conclude in §IV.

II. CORE TECHNIQUES AND ALGORITHMS FOR DAG-BASED
EVENT-DRIVEN SENSITIVITY ANALYSIS

A. DAE models of dynamical systems

Throughout this paper, we assume that the system we wish to analyze
is a DAE of the form:

L), 9) + f70),@(0),5) =, M)

where Z is the system’s state vector (e.g., a list of voltages and currents),
P is a vector of parameters with respect to which we need sensitivities
(transistor dimensions, parasitic resistances/capacitances, efc.), i is a
vector of inputs to the system, and ¢ denotes time. We note that Eq. (1)
is capable of modelling virtually any electronic circuit at the SPICE
level, and many biological systems as well [24-26].

B. Transient analysis of DAEs

Given an initial condition Z(to) = &, and time-varying inputs
i(t) to the DAE of Eq. (1), transient analysis refers to the problem
of solving for the time-varying DAE state Z(t) over a time-interval
[to, ty]. This is accomplished by discretizing time into a sequence
{to, t1, ..., tn—1} (where txy_1 = ty), and then approximating the
respective DAE states {Zo, 1, ..., £n—1} by solving a sequence of
“Linear Multi-Step” (LMS) equations of the form [24, 25,27, 28]:
my .
> (@i(=) @iy,) + Bi(=9) [@iy, @ltiny), 7)) = 0. @)
j=0

Thus, at each step 7 (where 1 < ¢ < N —1), one solves Eq. (2) (using
techniques like Newton-Raphson iteration, homotopy, efc.) to determine
Z;, based on m; previously calculated & values (from earlier steps).
See [29] for the v and 3 coefficients used in Eq. (2) by several common
LMS methods, including Forward Euler (FE), Backward Euler (BE),
Trapezoidal (TRAP), and second-order Gear (GEAR2) [24,27,30,31].

C. Transient sensitivity analysis of DAEs

Suppose we have a DAE in the form of Eq. (1), with nominal param-
eters p*, and transient solution Z*(¢) over the interval [to,ty] (using
the convention that starred quantities denote nominal values, i.e., those
evaluated at p*). The question behind transient sensitivity analysis is:
if we perturb the parameters slightly, how will the transient solution
change? More precisely, suppose we change the parameters from p™*
to p* + Ap, and as a result, the transient solution changes from & *(t)
to Z*(t) + AZ(t). The question is: what is the relationship between
AZ(t) and AP, in the limit as Aj — 0? The answer is obtained by
doing a perturbation analysis of Eq. (1) [12-14]:

AZ(t) = Sz (t) Ap, where 3)
d * * * *
{E (Jaz (£)S(t) + Jqp(t))] + [JFo(8)Sa(t) 4+ JFp(t)] = Opzs |5)-
(C))
The J terms in Eq. (4) denote nominal time-varying Jacobians, i.e.,
. oq « o 97
qu(t) 2 o=) Jqp(t) - o>)
OF |3+t), 5+ OP | z4(t), 5+
of of
* 2 Y * 2 7L
Jiz(t) = EE , and J7,(t) 95 ®)
@x(t), @(t), p* Tx(t), d@(t), p*

Since AZ(t) is obtained by multiplying S.(t) with Ap’ (Eq. 3),
Sz(t) is called the sensitivity of Z(t) with respect to p, evaluated at
p*. And Eq. (4), a matrix-valued DAE that tracks the evolution of the
|Z*| x |p™*| matrix Sg(t) over time, is called the “sensitivity DAE”.

Note that the sensitivity DAE does not directly give us Sz (¢). Rather,
it needs to be solved for S (t) (see [29] for more details).

D. The sensitivity DAG

Each step of the transient analysis of §II-B builds on previously
computed DAE states, to solve for a new DAE state. This sequence
of computations fits naturally into a DAG structure (Fig. 1), much
like DAGs used in automatic differentiation [23], or Boolean function
representation [32].

w(E&(0), 77(2))

w(p”, &(2))

Fig. . The DAG structure underlying a transient simulation.

The nodes of the “sensitivity DAG” in Fig. 1 represent the quantities
that are computed during the transient simulation, and are labelled as
such. The edges represent dependencies amongst these quantities. For
example, Fig. 1 assumes that the initial condition £*(0) is computed
from p* (e.g., via DC analysis [24,25]); so, there is an edge from
the p™ node to the Z*(0) node. Similarly, Z*(1) is assumed to be
computed from Z*(0) and p™ by solving Eq. (2), using an LMS method
with memory mi = 1, such as FE, BE, or TRAP. So, there are edges
leading from both p* and £*(0) to Z*(1). Finally, Z*(2) is assumed
to be computed via an LMS method like GEAR2 that has memory
mgo = 2. Therefore, when Eq. (2) is solved to determine #*(2), both
Z%(0) and £*(1), as well as p'*, are used in the computation. So, there
are edges from all these three nodes to Z(2).

While Fig. 1 stops at *(2) for lack of space, the ideas behind the
DAG construction can be extended to the entire length of the transient
simulation. In general, if the simulation has N points, with indices
0 <7 < N — 1, the corresponding sensitivity DAG will have N + 1
nodes (one for p*, and one for each Z*(¢)). The Z*(0) node will have
exactly one incoming edge (from p™). For all other Z*(7), the number
of incoming edges will be 1 4+ m;, where m; is the memory of the
LMS method used to compute #*(i) via Eq. (2). One of these edges
will originate at p*, while the others will originate at the m; nodes
prior to £*(4), i.e., the nodes Z*(i — j) for 1 < j < m,.

Also, each edge of the sensitivity DAG has a weight (Fig. 1). The
weight of an edge from node u to node v, denoted w(u,v), is equal
to the partial derivative (or semsitivity) of v with respect to w; it
measures how much a small perturbation in u will affect the value
of v. The weight w(p™*, Z*(0)) is obtained by doing a DC perturbation
analysis of Eq. (1) [24], while all other weights are obtained by doing
a perturbation analysis of Eq. (2):

_ 02°(0)

W, #0) = 5 = = Ji=(0) 5 0), ©)
wi, 70) = 2D = ~ai(0)23.) + 501700
[j <ai(—j)J;p(i —3) + Bil =) Ty i = j))] 7
=0
V1<i<N-—1, and)

w(@ G -), #(0)) = % - {ai(O)J;z(i) + ﬂi(O)J}*z(i)] i

[m-(—j)J; (i = J) + Bi(—) T (i — j)] 7
VI<i<N-1,1<j<m. ®)

E. Objective functions and the sensitivity DAG

In many applications, we are not directly interested in the sensitivi-
ties of Z*(¢), but would like to compute the sensitivities of important
transient performance metrics (i.e., “objective functions”) derived from

=%

Z*(t) (and denoted ¢*). Below, we discuss two kinds of objective

functions commonly found in the sensitivity analysis literature (“final
point” and “integral” objectives), and show how to add these to the
sensitivity DAG.

Final point objectives. These take the form [4, 14]:
*(N - 1)7 ﬁ *)7

¢ =@ ©
where Z*(IN — 1) is the final point in the transient simulation. Note
that, if 5(7 .) needs to be evaluated at multiple time-points, then each
needs to be considered a separate objective, which will increase the
dimension of the objective function. The sensitivity S, of a final point
objective function, evaluated at ™, is given by:

S = Jha(N = 1)Sa(N = 1) + Jip (N —

1), (10)

where the Jacobian symbols have their usual meanings.

w(@’(0), &

(2)

Jhp(N = 1)

Fig. 2.
To add such an objective function to the sensitivity DAG, we add
a new node ¢* with two incoming edges: one from p™* with weight

Adding a final point objective function to the sensitivity DAG.

Jhp(IN — 1), and one from Z*(N — 1) with weight .J; (N — 1) (as
shown in Fig. 2 for N = 3).
Integral objectives. These take the form [13, 16]:
- o
i = [w5 @ (an
t=t
Therefore, we have: ’
i
Sy = / (Jno()Sa(t) + Jhy(t)) dt. (12)
t=tg

In practice, the integral in Eq. (12) is approximated by a summation:
N-2

S [(Jra(0)82(3)

i=0

Sg &~ + Jiip (i) (ti1 —)] - (13)

7 T

w(p™,

w(p™, 6*)

Fig. 3. Adding an integral objective function to the sensitivity DAG.

To add such an objective function to the sensitivity DAG, we add a
new node ¢*, with N incoming edges: one from p™*, and the rest from
Z%(i), where 0 < i < N — 2 (i.e., from every point in the transient

simulation except the last, as illustrated in Fig. 3 for N = 3). The
weights of these edges are:
N-2

w(E”, ¢*) = > (Jip()(tix1 —t:)), and (14)
=0

w(Z(3), P)= Jrp(@)(tit1 —t;), VO<i< N —2. (15)

With the introduction of a node representing the objective function,
the sensitivity DAG is “complete”: it now accurately represents all
the intermediate computations involved in calculating the objective
function starting from the DAE parameters. Moreover, the partial
sensitivities of these computations are also available from the DAG’s

edge-weights. Thus, we now have all the information needed to do an
end-to-end sensitivity analysis.

F. Sensitivity analysis = DAG path enumeration

97°(2)

07*(0)

96"
aop*

Fig. 4. The DAG of Fig. 2, with edge-weights denoted by partial derivatives.

Our goal is to compute the sensitivity of the objective function 5
with respect to the DAE parameters p, evaluated at p*. Let us take
a closer look at this computation, through an example. Fig. 4 shows
the sensitivity DAG for a 3-step transient simulation and a final point
objective function. This is the same DAG from Fig. 2, except that we
changed the edge-weight notation to make it clear that the edge-weights
are, in fact, partial derivatives. Now, we repeatedly apply the chain rule
of differentiation to find the sensitivity of the objective function:

Sensitivity _ dg _ dfl;* _ 0(5* 8‘7;* dz*(2)
we need dp dp™ op* OFN2) dp*
S~~~ S——
Chain Rule Chain Rule
8 N 06" (0F7(2) | 0F(2)dE(1) | 9T*(2) dF*(0)
Topt o\ opr | ox(1) dpr | 0x'0) dp”
N——
Chain Rule Chain Rule
_9¢" 06" (0F(2) | 0F(2) (0FXL) | 0F*(1) di*(0) L 957(2) 971(0)
Topr Tarr@ \ opr o () \ apr | 9z0) dp” o7*(0) 9p~
N——
Chain Rule
_ gt | 9gt (07Y(2) | 0a*(2) (9F(1) | 9F*(1) 0i(0) | 0T(2) 97(0)
Topr Tarr)\ opr oz () \ apr | 9FN0) op° 2077(0) 9p”
_[9 a¢* 9T*(2) a¢* 0F*(2) 0F*(1)
|l oF*(2) 0p~ 0z*(2) 07 (1) op~
~—

Path: p* — ¢* Path: 7% — F*(1)— *(2)— ¢*

o 0F*(2) HF*(0)
0z*(2) 05°(0) 0p”]

Path: 7'* — #*(2)— ¢*
d¢* 0E*(2) dF*(1) 0*(0)
0r*(2) 0i*(1) 9F*0) Ip*

Path: 7% — #5(0) = #4(1) = F4(2) — G
m | 7 is a path from
p* to ¢" in the sensitivity DAG

Path: 57* — #*(0)— F*(2) = ¢*

(Product of edge-weights of 7 in reverse)A

The derivation above shows that the sensitivity is a sum of terms,
where each term corresponds to a unique path from p’™ to qb in the
sensitivity DAG; more precisely, each term is a “product of edge-
weights in reverse” of some path from p™ to qg*. Thus, we have a
key insight: solving the sensitivity analysis problem is the same as
enumerating paths in the sensitivity DAG.

Taking a cue from this, we define the “weight of a path” in the
sensitivity DAG to be the product of weights of all the edges along
the path, in reverse. Also, given any two nodes v and v in the DAG,
we define o(u,v) to be the sum of the weights of all the paths in the
DAG that start at v and end at v. Thus, solving the sensitivity analysis
problem is the same as computing o (5, 5*) in the sensitivity DAG.

G. Direct and Adjoint approaches to DAG path enumeration

We just reduced sensitivity analysis to the problem of adding up
the weights of all paths from 5* to ¢* in the sensitivity DAG. The
brute-force approach to this, however, is computationally infeasible
because the number of such paths grows exponentially as the size of
the DAG [20, 21]. Therefore, we use dynamic programming techniques
to efficiently enumerate DAG paths, and hence solve the sensitivity
analysis problem in linear time in the size of the DAG [20, 21].

)
)

Fig. 5 illustrates the key idea that we exploit, which is that the
problem of computing o (p™, d_;*) can be repeatedly broken down into
smaller, simpler, sub-problems. There are 2 ways to do this: (1) the
“direct” approach (Fig. 5a), where we keep the source p™ constant,
and express o(p q?*) in terms of o(p™ u), where u is one step
closer to p* than qg*, or (2) the “adjoint” approach (Fig. 5b), where we
keep the destination qg* constant, and express o(p” qg*) in terms of
o(v, gz?*) where v is one step closer to ¢* than p*. Both approaches
give us optimal sub-structures for dynamic programming, as formalised
in Algorithms 1 and 2 respectively.

)
XD X (ewdeii)
) w | (u,d*)
is an edge in the
(a) sensitivity DAG

a(p”, ¢") =
> (o druev)
v | (5% v)
is an edge in the
sensitivity DAG

Adjoint sensitivity analysis: Optimal sub-structure for dynamic programming

Fig. 5. The key ideas behind efficient direct and adjoint DAG path enumeration
in DAGSENS.

Algorithm 1: Direct transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG @, with nodes p™ and (5* representing the
DAE parameters and the objective function respectively
Output: The sensitivity o (p™, 5*), calculated via dynamic programming
using the “direct” optimal sub-structure (Fig. 5a)

o(P*, 7)) = Ligr x5+ // identity matrix
order = topological_sort(Q)
for u in order do
o (P u) = Opyx ||
for v such that (v, u) is an edge in G do
| o @) += w(o,0) o5 v)

A MR W N =

7 return o (5%, ¢*)

Algorithm 2: Adjoint transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG G, with nodes p* and q;* representing the
DAE parameters and the objective function respectively
Output: The sensitivity o (p™, q;*) calculated via dynamic programming
using the “adjoint” optimal sub-structure (Fig. 5b)
a(@" ¢) = Lig 40
order = reversed(topological_sort(G))
for v in order do

(v, 9) = 015
for w such that (v, u) is an edge in G do

| o(v, ¢") += o(u, ¢*) w(v,u)

7 return o(p™,)

// identity matrix

- N7 T U VR Y

Algorithms 1 and 2 both compute a topological ordering, i.e., a
permutation of the DAG nodes such that if (u, v) is a DAG edge, then
u occurs before v in the permutation [20,21]. But while Algorithm 1
traverses the nodes in topological order, Algorithm 2 traverses them in
reverse topological order. At every such node w (v), Algorithm 1 (2)
computes o (5, u) (o(v, ¢*)), making use of the optimal sub-structure
logic in Fig. 5a (5b). This continues until, finally, the 5* (p™*) node
is reached, at which time the computed o (5%, ¢*) is returned as the
required sensitivity. Thus, while Algorithm 1 involves computing the
sensitivity of each intermediate DAG node with respect to the DAE
parameters, Algorithm 2 involves computing the sensitivity of the
objective function with respect to each intermediate DAG node. So,

the former (latter) implements direct (adjoint) sensitivity analysis in
DAGSENS [4, 12-16].

Finally, Line 6 of Algorithm 2 involves pre-multiplying the edge-
weight w(v, u) by the matrix o(u, ¢*). Since most edge-weights
are of the form B~'C (Egs. 6, 7, and 8), this is a computation of
the form AB~'C, which can be done either as A(B~'C), or as
(AB™HC = ((BT)"'AT)TC (where matrix/matrix solves are sparse
in many applications of interest). If the number of rows of A is much
smaller than the number of columns of C' (i.e., the dimension of the
objective function is much smaller than that of the DAE parameter
space), the latter is likely to be much more efficient than the former,
which we exploit heavily in DAGSENS.

H. Event-driven objective functions

As mentioned in §I, we would like to define “events” that happen
during a transient simulation (e.g., a node voltage crossing a particular
threshold, a PLL in a circuit achieving lock, efc.), and then compute
sensitivities of objectives that are based on these events. For our
purposes, an “event” ev is specified by the condition:

gev(Te*w f*(Te*v)v ﬁ*) =0, (16)
where 7, is the time at which the event occurs during a transient
simulation. In practice, we may need additional constraints to uniquely
identify the event (such as limits on 7., or a specification such as
“the third time Eq. (16) is satisfied”, efc.). But for sensitivity analysis,
we can ignore these additional specifications because we only do
perturbation analysis of Eq. (16) in a small neighbourbood around
To. Also, we note that events corresponding to a signal reaching its
maximum/minimum value are specified by adding a new DAE state
variable representing the derivative of the signal in question, and by
equating this variable to zero via Eq. (16) (see §III for examples).

Given a sequence of M events 1 < ev < M, our event-driven
objective function takes the form:

& = h(ri, 75, o Thn, (), E°(73), o, E (TR, BT (A7)

Thus, event-driven objective functions depend on the times of
occurrence of a set of events, as well as the DAE states at these times,
both of which change when the DAE parameters are perturbed.

1. Sensitivity analysis of event-driven objective functions

Let us denote by S, and Sg,,, where 1 < ev < M, the sensitivities
of our event times, and DAE states at these times, respectively. Note
that S, # Sz(7a); while S.(7.;) only takes into account the
sensitivity of the DAE state Z, S,,, takes into account the sensitivities
of both the DAE state & and the event time 7.,. With this distinction
in mind, perturbation analysis of Eq. (16) yields:

J;evxSx (T;’) + J;evp

Sr, = — — and (18)
J!;evx:t (Tg{') + J!;evT

Saw = Su(T2) + 5*(Te:)578‘,, where (19)

i(rr) = %f*(t) ,V1<ev< M, (20)

*
Tev

and where Jacobian terms have their usual meanings, and are all
evaluated at (7o, Z*(7s), p*). Therefore, we first need to solve for
the event, i.e., find 7, and Z*(7;;), before we can compute S, and
Sz,,. We do this by finding a time-point ¢; of the transient simulation
where the ge (., ., .) function undergoes a sign change between ¢; and
ti+1. We then solve the following “modified” LMS equations:

(ae"(07 Tet') q(f*(Tet*)7 ﬁ*) + /Bev(07 T(:’) f(f*(Tet*)7 ﬁ(Tet*)7 ﬁ*))

3 (a7 76— 410, 57)
j=1

+ Bn(72) F @), i), 7)) =0, and
(21)
(22)

Skl x

gﬂ‘"(T;M z (Tev)7 ﬁ*) =0.

These equations are similar to Eq. (2). But here, we treat both the
next time-point 7,, and the next DAE state & *(7,;) as unknowns. So,
the v and [coefficients become functions of the unknowns as well.
Also, we use LMS approximations to calculate the & *(Te’;) term in
Egs. (18) and (19).

Finally, the sensitivity of our event-driven objective function is given
by:

M
So = Tip+ > (Jiire v+ Tiia(ra) S -

ev=1

(23)

J. Augmenting the sensitivity DAG for event-driven objective functions

Fig. 6 shows how to add an event-driven objective function to the
sensitivity DAG. For each event 1 < ev < M, we add three new
nodes (Fig. 6a): a partial Z*(7,;,) node whose sensitivity equals S, (74)
(which is created just like any other node in the transient simulation,
following §II-D), and nodes corresponding to 7., and #*(7,), which
are created according to Eqs. (18) and (19) respectively. The edges
associated with these nodes, and their weights, are shown in Fig. 6a.

Finally, we add a new node 6* to capture the event-driven objective
function. As shown in Fig. 6b, this node has incoming edges from p’*,
as well as from all the 7,5 and Z*(7,,) nodes above. The weights of
these edges, as shown in the figure, follow Eq. (23).

K. DAGSENS: The overall flow for event-driven objective functions

Based on the preceding sections, Algorithm 3 outlines the overall
flow that DAGSENS uses for computing direct and adjoint sensitivities
of event-driven objective functions.

Algorithm 3: Event-driven sensitivity analysis in DAGSENS
Input: A DAE D in the form of Eq. (1), nominal DAE parameters p’*,
DAE inputs () over an interval [to,tf], events 1 < ev < M in
the form of Eq. (16), and an event-driven objective function ¢ in
the form of Eq. (17)
Output: The sensitivity of the objective function with respect to the
DAE parameters, evaluated at p™*

1 Do a transient analysis of D, using parameters p*, with inputs (%),
over the time-interval [to, ¢ f].

2 Record Jacobians Jg, (), Jgp(t), J7,(t), and JF,(t) from the transient
simulation.

3 Build a sensitivity DAG G, using information from the transient run and
the Jacobians above, via Eqs. (6), (7), and (8).

4 for 1 < ev< M do

5 Solve for event ev, i.e., find 7., and Z*(7,,), by constructing and
solving Egs. (21) and (22).
6 Augment the sensitivity DAG with nodes corresponding to ev, as

outlined in §II-J.

7 Augment the sensitivity DAG with a 5* node, as outlined in §II-J.

8 Traverse the sensitivity DAG using either Algorithm 1 (for direct
sensitivities), or Algorithm 2 (for adjoint sensitivities).

9 Return the sensitivities computed above.

III. RESULTS

We have developed a Python implementation of DAGSENS, which
we now use to compute event-driven sensitivities in some electronic
and biological applications, including high-speed communication, sta-
tistical cell library characterization, and gene expression in Drosophila
embryos.

= ~Jiur i

Jina® (T8 4 e Tgad (78) + Jgr

New nodes added

*
\
Weights calculated

using Eq. (9)

Weight calculated

Jha(rar)

Fig. 6. Adding (a) events, and (b) an event-driven objective, to the sensitivity
DAG.

A. High-speed communication sub-systems

1) A “maximum crosstalk” example: In modern high-speed I/O
links, “crosstalk” between parallel channels (e.g., in a CPU/DRAM
interface) often adversely impacts bandwidth [33—35]. When two signal-
carrying lines lie physically close together on-chip, the bits transported
in one of the lines (the aggressor) often interfere with those in the
other line (the victim), via cross-coupled capacitances [33-35]. Fig. 7a
shows the circuit that we designed to tease out the impact of such
crosstalk. The aggressor and victim are both modelled as RC chains
driving capacitive loads. The circuit has two sub-circuits: the right one
where crosstalk is modelled via cross-coupled capacitances, and the
left one without crosstalk. The difference between the victim’s outputs
in these two sub-circuits is a measure of crosstalk (Fig. 7a).

Our “event” of interest is when the crosstalk reaches its maximum
value during a transient run. And our event-driven objective function ¢
is the value of this maximum crosstalk. Parts (b) and (c) of Fig. 7 depict
these events during a transient simulation, where the aggressor and
victim transmit their bits without and with pre/de-emphasis respectively.
While pre/de-emphasis is a good strategy for boosting bandwidth by
improving signal integrity at the receiver, it can have the drawback of
increasing crosstalk [33-35].

Parameter Without With % impact of
Pre/De-Emphasis ~ Pre/De-Emphasis ~ Pre/De-Emphasis

é (V) 0.1183 0.1372 15.98%
Total Rseg (k) 0.6611 0.5219 —21.06%

Sens(g) 1ol Ciex (pF) 0.7770 0.7851 1.04%
Total Ceross (pF) 3.9643 4.7049 18.68%
Cloaa (pF) 4.0547 4.7960 18.28%

Table 1. The impact of using pre/de-emphasis on the sensitivities of maximum

crosstalk (¢), with respect to total segment resistance, total segment capacitance,
total cross capacitance, and load capacitance.

Parts (d) to (i) of Fig. 7 show the results of applying DAGSENS to
the system above, where the sensitivities of the maximum crosstalk with
respect to each segment resistance, segment capacitance, and coupling
capacitance are plotted as bar charts. It is interesting to see (parts
d, e) that the maximum crosstalk is more sensitive to the first few
segment resistances when pre/de-emphasis is employed. Also, it is
interesting that the sensitivities with respect to segment capacitances
rise in a convex manner (parts f, g), while those with respect to coupling
capacitances rise in a concave manner (parts h, i). Table 1 shows
the precise impact of using pre/de-emphasis on maximum crosstalk
sensitivities with respect to various system and load parameters. Thus,
event-driven DAGSENS can allow high-speed link engineers to obtain
insights that would not be possible with existing sensitivity analysis
tools.

Max Crosstalk Sensitivities

Aggressor ¢ N units > Aggressor |« N units . i) .
_ N _ ~ Bit Pattern Without Pre/De-Emphasis With Pre/De-Emphasis
I I I I T T Sensitivity(Max Crosstalk) Sensitivity(Max Crosstalk)
Cioad Cseq Cseg Cseq . PreéDe_ == Cseg ==Cseg 0.06
. mphasis
N T A Vo R | R R) (@)
out 4 s oo b . < » 0.04 0.05
< >
H H
0.04
(a) == Ccro =cC §003 §
- R ?; i 003
. < »- 2 2
Vovi J_ Reey J_ Rueo J_ Rey V mrepe—] | Vi Reg Ruey Reey £ 20w
Cioad Cseq Cseg Cseg Emphasis == Cseg = Caeg < <
I 1 I 71 Foor Fom
- Ny - - victim - N
I | I
Victim I« Munis > Bit Pattern i« N units 000, 5 10 15 20 0% 5 10 15 20
Subcircuit without crosstalk Subcircuit with crosstalk Segment Resistance Index Segment Resistance Index
N o] P Sensitivity(Max Crosstalk) o Sensitivity(Max Crosstalk)
> —{ abs() | <
Without Pre/De-Emphasis : With Pre/De-Emphasis (f) (g)
Crosstalk 0.08 0.08
— Vin(agg) —— Real Vout(agg) —— Real Vout(vic) ~—— Crosstalk — Vin(agg) —— Real Voutagg) —— Real Vout(vic) ~—— Crosstalk
— Vin(vic) ==~ Ideal Vout(agg) ==~ Ideal Vout(vic) — Vin(vic) === Ideal Vout(agg) ==~ Ideal Vout(vic) < <
Looe Loos
1 1 2 2
(b) (c) > >
ot 0 2008 2004
a a
2 2
& &
0.02 0.02
000 5 10 15 20 000 5 10 15 20
s s Segment Capacitance Index Segment Capacitance Index
4 g Sensitivity(Max Crosstalk) Sensitivity(Max Crosstalk)
8 8
3 3 0.40
o3r (h) osst (i)
0.13‘ . 025 030
\ -* Max Crosstalk Event o o
" E 0.20 E 0.25
2 2020
301 2
-‘é ‘é 015
0.10
L% L% 0.10
0.05 0.05
' 0.00, 0.00,
5 10 15 20 5 10 15 20
0 20 Time f:s) 0 0 0 20 Time (3:5) 0 0 Coupling Capacitance Index Coupling Capacitance Index
Fig. 7. (a) The circuit used to determine the magnitude of crosstalk induced by an aggressor on a victim. (b, ¢) Transient simulation of the circuit in (a) without

and with pre/de-emphasis respectively, with the event corresponding to maximum crosstalk in each case. (d through i) Sensitivities of the maximum crosstalk
with respect to each segment resistance (d, e), segment capacitance (f, g), and coupling capacitance (h, i), without (d, f, h) and with (e, g, i) pre/de-emphasis.

Also, in this example, our objective function has dimension 1
whereas the DAE parameter space has dimension O(3N) (where N is
the number of RC segments). So, this is a good test case to illustrate the
benefits of adjoint over direct sensitivity analysis. We do not provide
these results here due to space constraints, but refer the reader to [29]
instead.

2) A PLL example: PLLs are widely used in high-speed commu-
nication sub-systems for frequency synthesis, clock and data recovery
(CDR), etc. [33,36,37]. The lock time of a PLL, i.e., how quickly a
PLL can lock to a new input frequency, is critical in these applications.
Since a PLL achieving lock is a transient event, we can use DAGSENS
to calculate the sensivities of a PLL’s lock time with respect to its
parameters.

Low Bandwidth
(fe = 0.11GHz)

High Bandwidth
(fe = 0.45GHz)

Loop Filter Loop Filter

- Lock Ve swing Lock Ve swing
Parameter time (ns) (mV) time (ns) (mV)

] 14.85 45.41 1.68 182.94
Kppp (V1) ~1.95 45.76 —0.17 188.67
R (k) 1.47 —32.61 0.27 —259.66

Sens(¢) C (pF) 2.06 —45.65 0.37 —363.53
Kvco (V~1GHz) —1.95 0.35 —0.17 5.72
fyco (GHz) —5.12 —0.01 —0.21 0.93

Table 2. Sensitivities of PLL lock times and peak-to-peak V¢ swings at lock,

with respect to various macromodel parameters, for low and high bandwidth
loop filters.

Fig. 8a shows a high-level block-diagram for a PLL, and also the
equations and parameters associated with each component [36,37].
Parts (b) and (c) of Fig. 8 show transient simulations of two PLLs,
one with a low-bandwidth loop filter (b) and the other with a high-
bandwidth loop filter (c). In each case, the input waveform abruptly
switches its frequency at ¢ = 50ns, throwing the PLLs off lock. The
PLLs eventually regain lock, as can be seen from the red bars that
graph the time elapsed between the peaks of Vi, (the PLL input) and
the nearest peaks of Viu (the PLL output) in each case. Our event-
driven objective functions are the respective PLL lock times, defined

as the time taken for the respective Viy waveforms to settle into a
narrow range around their final expected values, as well as the peak-
to-peak swings in Vi at lock. If one used an ideal loop filter, Veu
would settle to a DC value, so the swing in V¢q is a measure of non-
ideality in the PLL’s response. While we would like PLLs to lock
quickly and have small Viq swings, there is often a tradeoff between
these: high (low) bandwidth PLLs lock quickly (slowly), but exhibit
larger (smaller) Viq swings, as shown in parts (b) and (c) of Fig. 8.
Table 2 shows the sensitivities of the event-driven objectives above
(PLL lock times as well as Vg swings at lock), with respect to the PLL
macromodel parameters shown in Fig. 8a. From the table, it is clear
that when a high (low) bandwidth loop filter is used in the PLL, both
the lock time and its sensitivities tend to be lower (higher), whereas
both the Vey swing at lock and its sensitivities tend to be higher (lower).

B. Statistical cell library characterization

As we approach 7 nm CMOS, statistical characterization of cell
libraries for digital design, taking into account the sensitivities of
important performance metrics like speed and power consumption,
with respect to device parameters, is crucial [4,38,39]. We now use
DAGSENS to calculate the sensitivities of one such event-driven metric,
namely, the 20% to 80% transition delay of a 22 nm CMOS NAND
gate driving an RC load (Fig. 9), with respect to various NMOS, PMOS,
and load parameters.

Fig. 10 shows 2 transitions of the NAND gate above (while there
are 6 possible transitions that switch the output, we show only 2 to
save space, although we analyze the sensitivities of all 6 in Table 3).
Fig. 10 also shows the “20% complete” and “80% complete” events
in each case, as well as our event-driven gate delay objective function,
i.e., the time elapsed between these two events. Table 3 shows the
event-driven sensitivities of the NAND gate delay to various NMOS
and PMOS parameters (including widths, lengths, threshold voltages,
parasitic resistances and capacitances, etc.), as well as load parameters.
It is interesting to see that, in most (although not all) cases, the gate
delay is more sensitive to PMOS (NMOS) parameters during “pull up”

Vig = cos(6in)

(b) PLL simulation with loop filter bandwidth 0.11GHz

Vin — Vout — VCO:Vctl mEm Peak-to-peak time delta between Vin and Vout

ML LEALARLAL

of interest

I

Phase Frequency
Detector (PFD)

1OV
0.4ans

unnuu i
ﬁ%w T

I I I i4— Lock lost

e

VPFD = KPFD VinVout z I I I I I I I
g o I_"__.Illu ENNRNRNNNRRRENRRN]
v
PFD 40 50 Ti hs) 60 70 80
A
Loop Filter (RC) R
° i i W et ko | T vetl Swing A%
Vet = VerD Vo c Lock regained Swing? Lock lost —», Lock—»,
R d I Lock lost 9 regained
€% Ve~ Vgp) =0 = Vet land Exploded view \/\/\/ Exploded view

(c) PLL simulation withAoop filter bandwidth 0.45GHz

Vetl

Voltage Controlled Oscillator (VCO)

Vin — vVout —— vCpfvctl mEm Peak-to-peak time delta betwe nd Vout |

I

T

T

d
g7 %out =27 (

Iveo + KveoVey)

Vout = cos(out)

0.44ns

3 40

TRAN waveforms of interest

v
Vout 0.13ns

Fig. 8.

i~ Lock lost

i«—— Lock regained

AERNNRNNNNNNNNNN NN NNy
60 70 80

Time (ns)

(a) Block diagram of a PLL, with the underlying equations, (b, ¢) Transient simulation of low-bandwidth (b) and high-bandwidth (c) PLLs on an input

waveform that abruptly changes frequency at ¢ = 50ns. The high-bandwidth PLL regains lock more quickly, but features a larger peak-to-peak swing in Viy

around its ideal DC value.
VDD

Fig. 9. A CMOS NAND gate driving an RC load.

NAND gate response for (A, B): (0, 0) -> (1, 1) NAND gate response for (A, B): (1, 1) -> (0, 0)

[— VinA — VinB — vout:c| [— VviniA — VinB — vout:C]
1 ’ 1)
(@)) |
0 0
1| 1 l
s o-—j S o0
- 1+ - 1
P s
Q (]
g‘ 20% g 80%
S Complate event 2 Complote event
80% transition p ! Delay objfunc
x complete event event N
80% 0%
- » g »
ol Detay objfunc o
0.00 0.25 0.50 0.75 1.00 125 0.00 0.25 0.50 0.75 1.00 1.25
Time (ns) Time (ns)
Fig. 10. Transient simulation of the CMOS NAND gate of Fig. 9 for two

different input transitions, showing the 20% and 80% “‘transition complete”
events, and the corresponding “gate delay” objective function in each case.
(“pull down”) transitions, as one would intuitively expect.

C. Biological applications

Transcription

; + § mRNA diffusion proportional to conc. difference
< «—

Gene mRNA Gene
& - -
&
D rotein diffusion proportional to conc. difference
= + 9 $ Nothing P prop
§ @ (o)
mRNA

Fig. 11. A model for gene expression in a Drosophila embryo, featuring
transcription, translation, and decay (part a), as well as diffusion across nuclei
(part b).

We now apply DAGSENS to a biological example, i.e., gene expres-
sion via transcription, translation, decay, and diffusion in Drosophila
embryos (Fig. 11) [8,40]. In this system, a Drosophila gene generates

mRNA molecules via transcription, which in turn generate protein
molecules via translation. In parallel, the mRNA and protein molecules
also decay. This is all shown in Fig. 11a [8,40]. Also, these reactions
take place across multiple sites (called nuclei), and whenever there is
an mRNA or protein imbalance between adjacent nuclei, molecules
flow across the border to reduce the imbalance (Fig. 11b) [8,40].
In our example, we have N 52 nuclei, and each nucleus 7
(where 1 < 4 < N) has an mRNA concentration [mRNA];, and a
protein concentration [protein];. The system has a single exponentially
decaying external input u(t) that governs the rate of transcription. The
equations for the system are:

d

dt

[mRNA]i = OmRNA u(t) + dmRNA([mRNA]¢71 — [mRNA],)
————

Transcription

+ dmRNA([mRNA]¢+1 — [mRNA],-) — AmRNA [IIlRNA]i7 and

Diffusion from previous nucleus

Diffusion from next nucleus Decay

(24)

p [protein]; = oprotein [MRNAJ; + dprotein ([protein];—1 — [protein];)

Translation Diffusion from previous nucleus

+ dprotein ([protein];+1 — [protein];) — Aprotein [protein];, (25)

Diffusion from next nucleus Decay

with the understanding that the “diffusion from previous (next) nucleus”
term is O for the first (last) (¢ = 1 (IV)) nucleus.

Gene expression in Drosophila embryo: mRNA and protein concentrations
2

Each nucleus features a maximum [mMRNA] event

5 10 15 20

\

Each nucleus features a maximum [protein] event

[Protein]

4

5 10 25

Time (minutes)

15 20

Fig. 12. Transient simulation of gene expression in a Drosophila embryo.

Fig. 12 shows a transient run of the system above; at each nucleus
i, there is an instant when [mRNA]; peaks (before mRNA decay takes
its toll), and a (slightly later) instant when [protein]; peaks (before
protein decay takes its toll). These “peak concentration” events are of
interest in many gene expression systems, so we set the times of these

Parameter Pull down transitions

Pull up transitions

Input transition (A, B) 0, 00— (1, 1) (0, 1) = (1, 1) (1, 00— (1, 1) (1, 1)—=(1, 0 (1, 1)—=(0, 1) (1, 1) — (0, 0)
é (ps) 292.70 292.89 292.85 302.92 293.93 147.38
W (nm) 7.87 x 1076 3.37 x 107° 2.11 x 107 —4.96 —4.77 —2.37

L (nm) —2.36 x 1072 —1.01 x 10~* —6.32 x 107> 14.87 14.31 7.12

Vin (V) 8.66 x 104 3.71 x 1073 2.32 x 1073 —904.66 —867.64 —431.64

Sens(e) Rq (k) 9.93 x 10~* 9.78 x 1074 9.81 x 107* 0.68 0.66 0.31
wrt PMOS Rs (kS) —3.75 x 107° —1.79 x 107° —1.11 x 107? 2.88 2.76 1.38
parameters Rys (GQ) —0.15 —0.15 —0.15 0.15 0.14 0.04
Cya (fF) 572.50 560.58 562.92 625.30 620.19 326.68

Cys (fF) 3.05 x 1077 1.65 x 1077 1.73 x 1077 5.24 x 1073 5.10 x 1073 4.69 x 1073

Cp (fF) 542.01 544.03 545.59 576.72 573.06 283.58

Cyyp (fF) 5.42 x 10714 5.72 x 10714 5.14 x 10714 4.96 x 1077 4.94 x 1077 5.04 x 1077

W (nm) —6.79 —6.80 —6.82 1.32 x 1073 2.77 x 10~ —2.81 x 1072

L (nm) 13.59 13.61 13.65 —2.65 x 1073 —5.54 x 1074 5.62 x 1073

Vin (V) 813.20 814.42 816.31 —25.84 —0.02 —0.72

Sens(6) Ry (kQ) 2.53 2.54 2.54 7.86 x 1073 3.31 x 1074 5.18 x 1074
wit NMOS R (kQ) 4.51 4.50 4.52 573x107% —2.04x107* —4.64x107°
parameters Rgs (GQ) 0.03 0.03 0.03 —0.06 —0.08 —0.02
Cyq (fF) 321.58 311.81 310.31 510.84 333.66 174.65

Cys (fF) 35.36 32.44 28.97 173.82 2.34 x 1073 11.30

Cap (fF) 208.82 295.27 301.73 462.18 286.53 141.53

Cyp, (fF) 27.84 23.28 28.97 173.82 6.84 x 1077 —0.27

Sens(¢) wrt Rioaa (kS2) 0.57 0.57 0.57 0.54 0.59 0.59
load parameters Clou (272.14 273.15 273.93 289.45 287.71 142.98

Table 3.

events, and the corresponding peak concentrations, to be our event-
driven objectives.

Sens([mRNA] peak time)

(a)

Sens([protein] peak time)
741~ —————]

(b)
—

10 20 30 40 0 20 30 40
Nuclei Nuclei
Sens([mRNA] peak value) Sens([protein] peak value)
L |

e —_/_

(c) (d)

e —

—,——
0.0 —— ——— o
10 20 30 40 50 0 20 30 40 50
Nuclei Nuclei

= Sens. wrt oypna = Sens. wrt dyrna = Sens. Wrt Apurna

— Sens. Wrt Oprotein == Sens. Wrt dyrotein Sens. Wrt Aprotein

Fig. 13. Sensitivities of peak mRNA and protein concentrations, as well as the
times at which these peak concentrations occur, across nuclei, for the Drosophila
embryo gene expression system.

Fig. 13 shows a plot of these event-driven sensitivities, across nuclei,
with respect to various system parameters. It is interesting to see that,
while the peak mRNA and protein event times, as well as the peak
mRNA concentration value, are all most sensitive to the mRNA decay
constant Amrna, the peak protein concentration value is most sensitive
to the protein translation constant opoein, for all the nuclei.

IV. SUMMARY

To summarise, we have developed and demonstrated DAGSENS, a
simple, elegant, and powerful theory for transient sensitivity analysis
based on directed acyclic graphs. We have shown how DAGSENS can
be used to carry out direct and adjoint transient sensitivity analysis for
an entirely new class of objective functions, defined based on events
that happen during transient simulations. We have illustrated this on sev-
eral real-world applications including high-speed communication (with
I/0 link and PLL examples), statistical cell library characterization, and
gene expression in biological systems.

Acknowledgments: This work was sponsored by the Laboratory Directed
Research and Development (LDRD) Program at Sandia National Laboratories.
Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department

of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

(11

2

=

4

151
(6]

[71
(8]
&)

[10]
[11]

[12]

[13]
[14]

[15]
[16]

[17]
[18]
[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

(301
311
321
33]
341

[35]
[36]

[37]
[38]

[39]

[40]

NAND gate delay sensitivities with respect to various NMOS, PMOS, and load parameters, for all input transitions that switch the output.

REFERENCES

A.R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C. Visweswariah, and C. W. Wu. JiffyTune: Circuit optimization
using time-domain sensitivities. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(12):1292-1309, 1998.

C. Gu and J. Roychowdhury. An efficient, fully non-linear, variability-aware non-Monte-Carlo yield p
with applications to SRAM cells and ring oscillators. In ASPDAC '08: Proceedings of the 13 Asia and South Pacific
Design Automation Conference, pages 754-761, 2008.

I. Stevanovic and . C. C. McAndrew. Quadratic backward propagation of variance for non-linear statistical circuit
modelling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(9):1428-1432, 2009.
B. Gu, K. Gullapalli, Y. Zhang, and S. Sundareswaran. Faster statistical cell characterization using adjoint sensitivity
analysis. In CICC "08: Proceedings of the 30™M Annual Custom Integrated Circuits Conference, pages 229-232, 2008.
T. Turdnyi. Sensitivity analysis in chemical kinetics. International Journal of Chemical Kinetics, 40(11):685-686, 2008.
T. Zichn and A. S. Tomlin. GUI-HDMR: A software tool for global sensitivity analysis of complex models. Environmental
Modelling & Software, 24(7):775-785, 2009.

J. M. Dresch, X Llu D. N. Arnosti, and A. Ay Thum\odynamm modelling of transcription: Sensitivity analysis
diff i 1 1l hanism from t duced effects. BMC Systems Biology, 4(1):142, 2010.
G. D. McCarthy, R. A. Drewell, and J. M. Dresch. Global sensitivity analysis of a dynamic model for gene expression
in Drosophila embryos. PeerJ, 3:¢1022, 2015.

M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano. Robustness as a measure of plausibility
in models of biochemical networks. Journal of Theoretical Biology, 216(1):19-30, 2002.

T. Eissing, F. Allgéwer, and E. Bullinger. Robustness properties of apoptosis models with respect to parameter variations
and intrinsic noise. Systems Biology, 152(4):221-228, 2005.

D. E. Hocevar, P. Yang, T. N. Trick, and B. D. Epler. Transient sensitivity computation for MOSFET circuits. [EEE
Transactions on Electron Devices, 32(10):2165-2176, 1985.

A. Meir and J. Roychowdhury. BLAST: Efficient computation of non-linear delay sensitivities in electronic and biological
networks using barycentric Lagrange enabled transient adjoint analysis. In DAC ’12: Proceedings of the 49Lh Annual
Design Automation Conference, pages 301-310, 2012.

Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint sensitivity analysis for differential-algebraic equations: The adjoint
DAE system and its numerical solution. SIAM Journal on Scientific Computing, 24(3):1076-1089, 2003.

F. Y. Liu and P. Feldmann. A time-unrolling method to compute sensitivity of dynamic systems. In DAC *14: Proceedings
of the 515 Annual Design Automation Conference, 2014.

R. M. Errico. What is an adjoint model? Bulletin of the American Meteorological Society, 78(11):2577-2591, 1997.

R. Bartlett. A derivation of forward and adjoint sensitivities for ODEs and DAEs. Technical Report SAND2007-6699,
Sandia National Laboratories, Albuquerque, NM, USA, 2008.

S. Director and R. Rohrer. The generalized adjoint network and network sensitivities. IEEE Transactions on Circuit
Theory, 16(3):318-323, 1969.

Synopsys. HSPICE® user guide: Simulation and analysis, 2010.

E. R. Keiter, K. V. Aadithya, T. Mei, T. V. Russo, R. L. Schiek, P. E. Sholander, H. K. Thornquist, and J. C. Verley. Xyce ®
parallel electronic simulator (v6.6): User’s guide. Technical Report SAND2016-11716, Sandia National Laboratories,
Albuquerque, NM, USA, 2016.

J. Kleinberg and E. Tardos. Algorithm design. Pearson Education, 2006.

C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to algorithms. The MIT Press, 2001

A. Griewank and A. Walther. Evaluating derivatives: Principles and techni i
2008.

C. H. Bischof, P. D. Hovland, and B. Norris. On the implementation of automatic differentiation tools. Higher-Order
and Symbolic Computation, 21(3):311-331, 2008.

J. Roychowdhury. Numerical simulation and modelling of electronic and biochemical systems. Foundations and Trends
in Electronic Design Automation, 3(2-3):97-303, 2009.

L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits. PhD thesis, UC Berkeley, 1975.

L. Edelstein-Keshet. Mathematical models in biology. SIAM, 2005.

A. L. Sangiovanni-Vincentelli. Computer Design Aids for VLSI Circuits, chapter Circuit Simulation, pages 19-112.
Springer, Netherlands, 1984.

L. O. Chua and P. M. Lin. C t
1975.

K. V. Aadithya, E. R. Keiter, and T. Mei. DAGSENS: Directed acyclic graph based direct and adjoint transient
sensitivity analysis for event-driven objective functions. Tuhmull Report SANDZOI7 8569, Sandia National Laboratories,
Albuquerque, NM, USA, 2017. https://xyce.sandia. p 2017_8569.pdf.

H. Shichman. Integration system of a non-linear transient network analysis program. IEEE Transactions on Circuit
Theory, 17(3):378-386, 1970.

C. W. Gear. The numerical integration of ordinary differential equations. Mathematics of Computation, 21(98):146-156,
1967.

R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
24(3):293-318, 1992.

G. Balamurugan, B. Casper, J. E. Jaussi, M. Mansuri, F. O’Mahony, and J. Kennedy. Modelling and analysis of high-speed
1/0 links. IEEE Transactions on Advanced Packaging, 32(2):237-247, 2009.

P. K. Hanumolu, G. Y. Wei, and U. K. Moon. Equalizers for high-speed serial links. International Journal of High
Speed Electronics and Systems, 15(2):429-458, 2005.

J. A. Davis and J. D. Meindl. Interconnect technology and design for gigascale integration. Springer, Netherlands, 2003.
B. Razavi. Design of analog CMOS integrated circuits. Tata McGraw-Hill Publishing Company Ltd., New Delhi, India,
2001.

J. L. Stensby. Phase-locked loops: Theory and applications. CRC Press, 1997.

A. Goel and S. Vrudhula. Statistical waveform and current source based standard cell models for accurate timing analysis.
In DAC '08: Proceedings of the 45 Annual Design Automation Conference, pages 227-230, 2008.

L. Yu, S. Saxena, C. Hess, I. M. Elfadel, D. Antoniadis, and D. Boning. Statistical library characterization using belief
propagation across multiple technology nodes. In DATE 'I5: Proceedings of the 18‘h Design, Automation & Test
Conference in Europe, pages 1383-1388, 2015.

J. M. Dresch, M. A. Thompson, D. N. Arnosti, and C. Chiu. Two-layer t ical delling of gene exp:
Incorporating DNA-level information and system dynamics. SIAM Journal on Applied Mathematics, 73(2):804-826,
2013.

SIAM,

di
ithmic

of al

ided analysis of el ic circuits: Algorithms and computational techniques.

ACM Computing Surveys,

https://xyce.sandia.gov/publications/_assets/documents/sand2017_8569.pdf

	Introduction
	Core Techniques and Algorithms for DAG-based Event-driven Sensitivity Analysis
	DAE models of dynamical systems
	Transient analysis of DAEs
	Transient sensitivity analysis of DAEs
	The sensitivity DAG
	Objective functions and the sensitivity DAG
	Sensitivity analysis = DAG path enumeration
	Direct and Adjoint approaches to DAG path enumeration
	Event-driven objective functions
	Sensitivity analysis of event-driven objective functions
	Augmenting the sensitivity DAG for event-driven objective functions
	DAGSENS: The overall flow for event-driven objective functions

	Results
	High-speed communication sub-systems
	A ``maximum crosstalk'' example
	A PLL example

	Statistical cell library characterization
	Biological applications

	Summary
	References

