
LLNL-TR-756282

Simulated Half-Precision Implementation
of Blocked QR Factorization and Graph
Clustering Applications

L. M. Yang, G. D. Sanders

August 8, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Simulated Half-Precision Implementation of

Blocked QR Factorization and Graph Clustering

Applications

Lucia Minah Yang
NSF-MSGI Final Report

Hosting Site: Lawrence Livermore National Laboratory

Mentor: Geoffrey Sanders

Summer 2018

Abstract

We explored half-precision implementation of blocked QR algorithms with the

following motivations:

1. NewGPUs perform fast half-precision arithmetic (4 to 16 times as fast as double-

precision).

2. QR factorization is a basic linear algebra tool useful for many physics and data

analysis applications.

3. Communication-avoiding, parallelizable QR algorithms already exist for tall-

and-skinny matrices.

While the standard QR algorithms are highly unstable in half-precision, our numer-

ical simulations show that the Tall-and-Skinny QR (TSQR) algorithm can improve

the backward error of QR factorization. When using subspace iteration for graph

clustering applications, half-precision accuracy in forming the eigenspace is suffi-

cient for clustering with high precision and recall for some medium-scale benchmark

problems. Note that all half-precision arithmetic were simulated with conversions to

single-precision floats. Therefore, the results from this work are somewhat optimistic.

1

1 Internship Project

1.1 Introduction

1.1.1 QR Factorization

In linear algebra, matrix decomposition of somematrixA identifies two ormorematrices whose

product amounts toA. For example, the full version of the QR factorization involves an orthogonal

Q ∈ Rm×m, and R ∈ Rn×n.

m

n

n

nn

=A Q
R

Figure 1: Tall-and-skinny A and its thin QR factor-

ization.

However, we are interested in A ∈ Rm×n,

that can be represented in a thin QR-form,

where Q ∈ Rm×n is an orthogonal matrix, and

R ∈ Rn×n is an upper triangular matrix such

that A = QR. In many applications, comput-

ing the thin decomposition requires less com-

putation and is sufficient in performance.

Orthogonal matrices have the property that

their columns are an orthonormal set of vectors,

and that their transposes are exactly their in-

verses (Q>Q = I). In addition, triangular ma-

trices are easier to solve. These special prop-

erties of orthogonal Q and upper triangular R

make the QR factorization a key tool in solving many types of linear algebra problems.

We will be looking at highly rectangular matrices, wherem� n. These tall-and-skinny matri-

ces have many more rows than columns.

Finally, there are many methods of computing the QR factorization of a matrix. The three main

methods are done via Householder reflections, Gram-Schmidt process, and Givens rotations. We

used the Householder method, and will describe it in detail in section 1.2.

2

1.1.2 Floating-Point Numbers

Computer representation of real numbers is expressed in a finite number of bits. Most machines

use floating-point numbers, which consist of a sign bit s, k exponent bits {e1, · · · , ek}, and m

mantissa bits {b1, · · · , bm} in base β and minimum exponent, cmin. This means that i for i =

1, · · · , k and bj for j = 1, · · ·m are integers in the set {0, 1, · · · , β − 1}. For example, a floating-

point number x represented with {s, e1, · · · , ek, b1, · · · , bm} has the following value:

x = (−1)s
m∑
j=1

bjβ
j+c, where c = emin +

k∑
i=1

eiβ
i. (1)

In particular, we consider the floating-point formats defined by the Institute of Electrical and Elec-

tronics (IEEE).

• half-precision (binary16)

• single-precision(binary32)

• double-precision (binary64)

The IEEE-754 standard is the most common representation for real numbers represented on com-

puters across operating systems.

sign
exponent
mantissa

5

11

10

238

52

Figure 2: Layout of IEEE-754 binary 16, binary 32, and binary 64 floating numbers.

3

1.2 Householder Reflections and QR Factorization

We chose the Householder QR factorization method because it is numerically stable [1], and

there already exist compact storage formats. Householder reflections are a special type of linear

transformation that reflect about hyperplanes. A Householder transformation in Equation 2 is de-

fined by a Householder vector v, which is orthogonal to the hyperplane.

Pv := I − 2

v>v
vv> (2)

We use Householder reflections to zero-out columns of A beneath the diagonal elements.

1.2.1 Householder QR Factorization Algorithm

Given A ∈ Rm×n, we can repeat the process of:

1. Find and store the Householder vector that would zero out the ith column beneath the ith

element.

2. Apply the corresponding Householder transformation to the entire matrix.

3. Move to the next column,

until only an upper triangular matrix remains.

Consider the following 4-by-3 matrix example.

A =


× × ×
× × ×
× × ×
× × ×

 P1−→


× × ×
0 × ×
0 × ×
0 × ×

 P2−→


× × ×
0 × ×
0 0 ×
0 0 ×

 P3−→


× × ×
0 × ×
0 0 ×
0 0 0


Since R = P3P2P1A, and each of the Pi’s are orthogonal matrices, we result in:

Q = P1 · · ·Pn, and R = Q>A. (3)

In addition, each of the Householder transformation matrices are rank-1 updates of the identity.

Therefore, when we build Q or when we update A to build R, we can use inner and outer products

instead of matrix-matrix multiply. In other words, an efficient way to compute a Householder

4

transformation defined by Householder vector v to some other matrix (or vector) B, we compute

B − 2
v>v

v(v>B), instead of forming the matrix P , then computing PB.

Note that Equation 2 gives a single Householder transformation matrix P for all v′ in the span

of v. This allows for many different ways of normalizing the Householder vectors, or with the

choice of not normalizing them. For example, if we normalize Householder vectors such that the

first element is 1, we can store one less number for each vector. The choice of how to normalize the

Householder vectors is less important and weakly influence the overall results in single and double-

precision floats. However, in half-precision where machine precision is approximately 10−3 and

the largest number is 65, 504, a careful selection of the normalization can lead to greater stability

in the Householder QR algorithm.

1.3 Tall-and-Skinny QR (TSQR) Factorization Theory and Error Bound

Of the many blocked QR factorization methods, we explored the Tall-and-Skinny QR (TSQR),

otherwise known as the AllReduce algorithm [2]. A detailed description of the algorithm can be

found in [2], and we present a pseudocode for the algorithm here.

Algorithm 2 will find the QR factorization of a matrix A ∈ Rm×n wherem >> n.

The inlined function qr outputs V ∈ Rm×n and R ∈ Rn×n.The columns of V are the House-

holder vectors (normalized to
√
2) that can form the matrixQ = H1 · · ·Hn. Note thatQ := Qthin =

QfullIm×n, and Hi = I − viv
>
i .

Algorithm 1 is the implementation of multiplying Q := H1 · · ·Hn to another matrix or vector,

when only the householder vectors to constructHi’s are given. This takes advantage of the special

property of householder matrices– Hi’s are rank-one updates of the identity. let B ∈ Rm×d. The

straightforward method of computing QB costs O(m2d) where the costs of constructing Q itself

is ignored. However, Algorithm 1 describes a method that is only O(mnd).

1.3.1 Notation

1. Im×n :=

[
In×n

0m−n×n

]
2. A[a : b, c : d] represents rows a to b and columns c to d of matrix A. Just the use of colon

indicates all rows or all columns.

5

3. Define Ij1,j2 = I[:, j1 : j2]. Then we can write column and row selections of a matrix as a

product.

• Column selection of a matrix A. A[:, j1 : j2] = Ij1,j2A, where Ij1,j2 = I[:, j1 : j2].

• Row selection of a matrix A. A[i1 : i2, :] = I>i1,i2A.

4. For j = 1, · · · ∈ N, define the following:

• α(j) = d j
2
e

• β(j) = 2 + j − 2α(j)

• or j = 2(α(j)− 1) + β(j)

5. We write Q
(i)
j =:

[
Q̃

(i)
j,1

Q̃
(i)
j,2

]
, where Q̃

(i)
j,k ∈ Rn×n for i = 1 : L, and Q̃

(0)
j,k ∈ Rh̃×n where

h̃ ∈ {h, r}. For more details on this part of the algorithm, look at section 1.3.3.

Algorithm 1: QB ←hh_mult(V,B): Given a set of householder vectors {vi}ni=1 all nor-

malized to
√
2, compute H1 · · ·HnB.

Input: V ∈ Rm×n wherem >> n. B ∈ Rm×d.

Output: QB
/* vi = V [i : m, i] ∈ Rm−(i−1) and Bi = B[i : m, i : d] ∈ R(m−(i−1))×(d−(i−1)). */

1 for i = 1 : n do

2 Bi ← Bi − vi(v
>
i Bi)

3 return B

1.3.2 TSQR/AllReduce Algorithm

1.3.3 Details on constructing Q

In the single-level version of this algorithm, we first bisect A into A
(0)
1 and A

(0)
2 and compute

the QR factorization of each of those submatrices.

A =

[
A

(0)
1

A
(0)
2

]
=

[
Q

(0)
1 R

(0)
1

Q
(0)
2 R

(0)
2

]
=

[
Q

(0)
1 0

0 Q
(0)
2

][
R

(0)
1

R
(0)
2

]
=

[
Q

(0)
1 0

0 Q
(0)
2

]
Q

(1)
1 R

(1)
1 ,

where Q
(1)
1 R

(1)
1 =

[
R

(0)
1

R
(0)
2

]

6

Algorithm 2: Finds the QR factorization of a tall, skinny matrix, A.

Input: A ∈ Rm×n wherem >> n, L ∈ N where 2L is the initial number of submatrices.

Output: Q̂ ∈ Rm×n, R̂ ∈ Rn×n such that Q̂R̂ = A+∆A.
1 h← b m

2L
c // Number of rows for all but the last block.

2 r ← m− (2L − 1)h // Number of rows for the last block (h ≤ r < 2h).
/* Split A into 2L blocks. Note that level (i) has 2L−i block */

3 for j = 1 : 2L − 1 do

4 A
(0)
j ← I>(j−1)h,jhA

5 A
(0)

2L
← I>(2L−1)h,mA // Last block may have more rows.

/* Store Householder vectors as columns of matrix V
(i)
j , and set up A

for the next level. */
6 for i = 0 : L− 1 do
7 for j = 1 : 2L−i do

8 V
(i)
2j−1, R

(i)
2j−1 ← qr(A

(i)
2j−1)

9 V
(i)
2j , R

(i)
2j ← qr(A

(i)
2j) // V

(i)
j ∈ R2n×n for i > 0, and R

(i)
j ∈ Rn×n always.

10 A
(i+1)
j ←

[
R

(i)
2j−1

R
(i)
2j

]
/* At the bottom-most level, get the R factor. */

11 V
(L)
1 , R← qr(A

(L)
1)

12 Q
(L)
1 ← hh_mult(V

(L)
1 , I2n×n)

/* Combine Q factors from bottom-up-- look at Notation (4). */
13 for i = L− 1 : −1 : 1 do
14 for j = 1 : 2L−i do

15 Q
(i)
j ← hh_mult

(
V

(i)
j ,

[
Q̃

(i+1)
α(j),β(j)

On,n

])
/* At the top-most level, construct the Q factor. */

16 Q← [];
17 for j = 1 : 2L do

18 Q←

 Q

hh_mult

(
V

(0)
j ,

[
Q̃

(1)
α(j),β(j)

Oh̃,n

])
19 return Q, R

7

Q
(0)
1A

(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

A
(0)
5

A
(0)
6

A
(0)
7

A
(0)
8

Q
(0)
2

Q
(0)
3

Q
(0)
4

Q
(0)
5

Q
(0)
6

Q
(0)
7

Q
(0)
8

R
(0)
1

R
(0)
2

R
(0)
3

R
(0)
4

R
(0)
5

R
(0)
6

R
(0)
7

R
(0)
8

A
(1)
1 Q

(1)
1

R
(1)
1

A
(1)
2

R
(1)
2Q

(1)
2

A
(1)
3 Q

(1)
3

R
(1)
3

A
(1)
4 Q

(1)
4

R
(1)
4

A
(2)
1 Q

(2)
1

R
(2)
1

A
(2)
2 Q

(2)
2

R
(2)
2

A(3) Q(3)AA
R

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

Figure 3: Visualization of the TSQR factorization (AllReduce) algorithm.

Whereas R
(1)
1 is the final R factor of the QR factorization of the original matrix, A, we still need to

constructQ. BisectingQ
(1)
1 into two submatrices allows us to write and compute the product more

compactly.

Q
(1)
1 :=

[
Q̃

(1)
1,1

Q̃
(1)
1,2

]
⇒

[
Q

(0)
1 0

0 Q
(0)
2

]
Q

(1)
1 =

[
Q

(0)
1 Q̃

(1)
1,1

Q
(0)
2 Q̃

(1)
1,2

]

1.3.4 Variants of TSQR

This is just one variation of the TSQR algorithm, which broadly refers to all blocked QR factor-

ization algorithms that treats tall-and-skinny matrices as a single block-column. While the above

algorithm is extremely parallelizable [2], there do exist other algorithms that are sequential, or those

that combine sequential and parallel methods [3].

1.3.5 Error Bounds

The error bound for the traditional (unblocked) Householder QR algorithm is given in Theorem

18.4 of [1]. In summary, the backward relative error is has an upper bound that depends on the size

8

of the original matrix, A, and the type of precision. Given A ∈ Rm×n(m ≥ n) and with some

preicision with unit round-off, u, computing the thin QR factorization via Householder reflectors

has an upper error bound:

‖QR− A‖F
‖A‖F

≤ nγcm, where γcm =
cmu

1− cmu
. (4)

An error bound for the parallel TSQR algorithm is derived from Equation 4 in [2], and it .

Given A ∈ Rm×n(m ≥ n) and with some preicision with unit round-off, u, and 2L initial blocks,

the bound is:

‖QR− A‖F
‖A‖F

≤
[
nγc· m

2L
+
(
1 + nγc· m

2L

){
(1 + nγc·2n)

L − 1
}]

, (5)

If we can further assume that nγc m

2L
, nγc·2n � 1 then the leading terms of the right hand side

in Equation 5 are nγc· m

2L
+ Lnγc·2n. Note that both error bounds quickly become irrelevant for

half-precision, because ubinary16 ≈ 0.0009. Such a big unit round-off value only allows for matrices

with a couple hundred rows and columns with reasonable stability guarantees. The bound given in

Equation 5 allows for larger matrices, but it still fails to guarantee stability for many problems of

interest.

1.4 TSQR Numerical Simulations and Results

We used Julia v0.6.4 for all of the numerical simulations. Instead of relying on the QR factor-

ization algorithms that Julia calls from LAPACK routines, we wrote the traditional Householder

QR algorithm exactly as is described in the derivation of Equation 4 in [1]. The main difference

between that algorithm and the ones written for LAPACK is that whereas we normalized House-

holder vectors v’s such that v>v = 2, those routines normalize the vectors such that their first

element is 1. Unlike the numerical results shown in [2] where it is implied that the relative error

tends to decrease as we increase the number of initial blocks, we found that is not necessarily the

case.

There were many differences between their simulations and ours since they only experimented

in double-precision, whereas we focused on experimenting in lower precisions.

For the matrix size R6400×100, we found that increasing the number of initial blocks in TSQR

9

more often than not increased the backward relative error for double- and single-precisions. We did

not perform enough of these simulations to get a large enough sample size and a solid conclusion,

but rather moved on to doing experiments in half-precision.

Although Julia v0.6.4 allows for storage of half-precision floats, all operations done on them

were done by converting to single-precision, performing single-precision arithmetic, then casting

back down to half-precision. Therefore, many of our results may be more optimistic than if true

half-precision arithmetic were done.

Furthermore, we attempted TSQR on matrices where their elements were picked from some

random distribution. We found that TSQR performance had some correlations to the type of dis-

tributions the matrices were pulled from. We decided to focus on the relationship between the

condition number of the matrix and performance of TSQR on it.

1.4.1 Constructing Test Matrices

Following example from [2], we build test matrices Aα such that α determines the condition

number.

Aα =
Q′(αE + I)

‖Q′(αE + I)‖F
(6)

Here, Q′ ∈ Rm×n is an orthogonal matrix generated by taking a QR factorization of a random

matrix with same dimensions. The matrix E ∈ Rn×n is a matrix whose entries are all 1, and α is

some constant. The condition number of such a matrix is given by:

κ(Aα) = αn+ 1 (7)

100 101 102

Condition Number

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

Figure 4: Backward relative error for matrices with

condition numbers ranging from 1.1 to 101.

We worked with matrices in R4000×100

whose condition numbers range from 1.1 to

101. We constructed these matrices by setting

log10 α to be spaced equally from 0.001 to 1,

and by picking Q from the QR factorization of

matrices whose entries were picked from the

uniform distribution in the range [0, 1]. We con-

ducted 10 trials for each α value.

10

1.4.2 Results

First, we computed the relative backward error,
‖QR−A‖F

‖A‖F
, of the traditional Householder QR

algorithm. Figure 4 shows positive correlation between the condition number of the matrix and the

relative error of the QR factorization.

L, where there are 2 initial blocks

B
ac

kw
ar

d
R

el
at

iv
e

Er
ro

r
B

ac
kw

ar
d

R
el

at
iv

e
Er

ro
r

improvement
worsening
1.0 relative error
5.2 x 10-3

Figure 5: Top plot shows the relative error of QR factor-

ization for matrices with condition numbers ranging from

5.3 to 101, and the bottom plot shows the errors for ma-

trices with condition numbers ranging from 1.1 to 5.3.

For each matrix, we performed TSQR

with 2, 4, 8, 16, and 32 initial blocks, and

computed the relative error.

Figure 5 shows the relative errors for all

of these matrices. The red line on both plots

marks 5.2 × 10−3. Each line shows the rel-

ative error for TSQR with varying number

of initial blocks. Green indicates reduction

in error, and blue indicates increase in er-

ror. There appears to be two main trends

for this experiment. Level 0 is the error for

using the traditional Householder QR algo-

rithm. When the error is low enough for

the unblocked QR factorization, TSQR per-

forms worse for these matrices. Recall that

machine precision for half-precision is about

10−3. This shows that the traditional QR fac-

torization had been very good to begin with.

Finally, even when TSQR is successful ini-

tially, we can see that too many initial blocks

can become a problem as well.

Overall, this figure shows a variety of re-

sults that encourage further exploration. We

have shown that TSQR can improve on cer-

tain matrices where the unblocked House-

holder QR algorithm was highly unstable

in half-precision. Identifying which matrix

properties correlate to TSQR and why can

help broaden the possibility of using lower

11

precision arithmetic for QR factorizations.

Possible future works include using true half-precision arithmetic for these numerical simula-

tions, and tightening the error bound of the TSQR algorithm. In addition, we can seek to apply

TSQR on single-precision and see how they perform with much larger matrices.

1.5 Graph Clustering Applications

We explored the efficacy of half-precision QR factorization on clustering problems. We iden-

tified eigenspaces of adjacency matrices of graphs via subspace iteration, then applied spectral

clustering methods.

1.5.1 Clustering Problem

We used static graphs with known truths for the Graph Challenge [4]. The graphs we used were

undirected and unweighted– the only elements in the adjacency matrices were 0’s and 1’s which

can easily be represented in half-, single-, and double-precision floats.

1.5.2 Subspace Iteration

Subspace iteration is a modification of the power method, which computes an invariant sub-

space with dimension p > 1 [5]. The simplest variation of this algorithm is shown below in Algo-

rithm 3.

Sincewewere given the true clusters within the data set we simply set k to be exactly the number

of clusters. The matrix productAQ can be computed efficiently sinceA is a sparse matrix, and note

that we are always computing the QR factorization of a tall-and-skinny matrix. This algorithm is

an iterative method with two possible stopping criteria:

1. Themaximumnumber of iterations to complete before exiting the loop is declared asmax_iter.

2. If the eigenspace error is smaller than τ , then exit the loop.

In particular, we highlight the results from performing subspace iteration on a graph with 5000

nodes and 19 true clusters. We set an initial random matrix Y in double-precision, and converted it

12

Algorithm 3: Find orthogonal basis (given by columns of output matrixQ) of an invariant

subspace of the input adjacency matrix, A.

Input: Adjacency matrix A ∈ {0, 1}m×m wherem ≥ n, and max_iter, the maximum

number of iterations, and τ the threshold for the eigenspace error.

Output: Q
1 Initialize Y ∈ Rm×k, a random matrix. // Y would likely be full-rank.
2 Q,R← qr(Y) for i = 1, · · · , max_iter do
3 Y ← AQ

4 if
‖Y−QQ>Y ‖2

‖Y ‖2 < τ then

5 exit loop.

// ‖Y −QQ>Y ‖2 is the eigenspace error.
6 Q,R← qr(Y)

7 return Q

into single- and half-precisions to use as the starting matrix. Figure 6 shows the eigenspace error at

each iteration for double-, single-, and half- precision Householder QR factorization. We used the

traditional, unblocked QR factorization, instead of applying TSQR. The τ values were set to 5×
unit round-off for each of the precisions, and the solid lines are plotted to show the unit round-off

values.

The half-precision implementation approached its best performance close to 10 iterations, and

continued to fluctuate near there without hitting the τ value. Nonetheless, we can see that the first

9 iterations of the subspace iteration technique yielded the same eigenspace errors for all three

precisions. The same pattern continued for single- and double- precision implementations until

they reached single-precision unit round-off near 10−7, and the double-precision unit round-off

near 10−15. Therefore, we can do with lower-precision QR factorizations that require less storage

and faster computation time if low-precision eigenspace error is sufficient for spectral clustering.

Due to the random element of the initial matrix Y at the beginning of subspace iteration, there

is some variability to its performance in identifying an invariant subspace. In addition, we chose

the number of columns of Y to be the number of true clusters, which will likely be unknown in

practice.

1.5.3 Spectral Clustering

We used density-based spatial clustering of applications with noise (DBSCAN) from the Julia

implementation of the SciKitLearn package. This method does not require a predetermined number

13

Subspace Iteration on a 5000-node Graph
2-

no
rm

 e
rr

or

Iterations

half-precision
unit round-off
single-precision
unit round-off
double-precision
unit round-off

Figure 6: Eigenspace Error for subspace iteration with using double-, single-, and half- precision traditional

Householder QR factorizations.

of clusters as a parameter. We used precision and recall (defined below) to evaluate the quality of

clustering.

Definition 1.1. Some relevant evaluation metrics of classification of clustering tasks are precision

and recall. Precision is the fraction of relevant instances among the retrieved instances.

Precision =
True Positive

True Positive+ False Positive
. (8)

Recall is the fraction of relevant instances that have been retrieved over the total amount of relevant

instances.

Recall =
True Positive

True Positive+ False Negative
. (9)

We gathered clustering results for just one graph, although we used 10 different random matri-

ces as the initial Y . The variance in precision and recall values for these 10 trials in three precisions

were in the range of 10−6. We only show the minimum values in the table in Figure 7. The ex-

periment shows indiscernible difference in the DBSCAN clustering results. This suggests that a

lower-precision error in the eigenspace error in subspace iteration can still lead to a sufficiently

14

Precision Recall

half-precision 0.9822 0.9393

single-precision 0.9817 0.9407

double-precision 0.9822 0.9405

Figure 7: Minimum precision and recall values for 10 trials of DBSCAN on graph with 5000 nodes and 19
true clusters.

accurate clustering, and calls for further investigations into a variable precision approach to other

spectral clustering methods as well.

1.6 Conclusion and Future Works

We introduced a brief summary of QR factorization [1] and commonly used floating-point num-

bers in section 1.1, then the Householder reflection approach of computing QR factorizations in

section 1.2. A theoretical overview of the TSQR (or AllReduce [2]) algorithm, and its error bound

and stability expectations are given in section 1.3, and section 1.4 describes our numerical simu-

lations and experiments and their results. The last section, 1.5, shows simple spectral clustering

applications with simulated half-precision arithmetic, and further opens the possibilities of contin-

uing research in this area.

Our simulated half-precision arithmetic is in one way a variable precision method since all

numbers are stored in half-precision but are converted into single-precision for the arithmetical

operations. An exploration of true half-precision arithmetic and if it has a significant disparities

with the current work would be a possible future direction. Also, a study of whether TSQR can

increase stability of QR factorizations in double- and single-precision for larger matrices, a practical

formulation of how to integrate half-precision QR factorizations into spectral clustering, theoretical

research into stability of blocked QR algorithms with tighter error bounds in mind, and testing other

applications of QR factorization in half-precision are more options.

2 Impact of Internship on My Career

My summer at Lawrence Livermore National Laboratory (LLNL) made possible by the Na-

tional Science Foundation’s (NSF) Mathematical Sciences Graduate Internship (MSGI) allowed

me to conduct research full-time. Having spent my first two years in graduate school focused on

15

coursework and completing preliminary exam requirements, this was a well-needed shift towards

mathematical research.

The project I chose placed me in the Variational Precision Computing (VPC) project in the

Center forApplied Scientific Computing (CASC) division at LLNL. The VPC project is comprised

of applied mathematicians, computer scientists, and electrical engineers working together reeval-

uating and redesigning computational techniques at all aspects. My contribution was in the linear

algebra library, whereas other areas in the project include hardware and software engineering, and

more specifically data compression and new data representations. Being a part of such a large and

long-term project has been a new experience for me that showed the inner-workings of a collabo-

rative environment for technical research outside of academia.

First, I felt very welcome and comfortable with my mentor, Geoffrey Sanders, and with the rest

of the math group within the VPC project. They helped me identify my goals for the summer, and

offered guidance for all aspects of acclimating to working at the lab. Diversity within this group

included people of color and women scientists, an uncommon feat in most STEM institutions. As

a woman of color, this environment felt comfortable and I did not feel like an outsider. I was

grateful to have been able to connect with women mathematicians outside of CU, and felt renewed

motivations for me to contribute to the Association for Women in Mathematics (AWM) chapter at

my graduate school, University of Colorado at Boulder, as well as other groups dedicated to sup-

porting underrepresented minority groups in STEM fields. In addition, there were many lab-wide

events at LLNL designed to help summer interns network with people outside of their immediate

vicinity. Overall, I perceived LLNL to be an institution that cares for the personal advancement of

each employee and intern, as opposed to only caring for the advancement of the institution itself.

Speaking to many post-docs at the lab helped me identify what kind of resources I would desire at

a workplace in a few years when I will be actively looking for jobs.

Next, I experienced how scientists across disciplines work together. Weekly and monthly

project meetings encourage each member of the group to work on communicating their achieve-

ments and aspirations to others who may not be able to fully comprehend the technical details of

their work, but still be able to provide a fresh view. My takeaways from this include a desire to

seek collaborations outside of my department, to participate in interdisciplinary scientific organi-

zations, and to be more open to opportunities outside of my direct path. Also, I have learned new

technical skills and knowledge that has broadened my interests within applied math, and made my

awareness of the field more complete. I had been trained on the more theoretical components of

mathematical research, and had paid less attention to their practical computational applications. I

realized that how machines store, transfer and process data are interesting mathematical questions

16

that are relevant to my existing skills.

I ammuchmore confident about the next few years of graduate school, which will be focused on

my dissertation research. This summer experience has influenced me to think more independently

about the direction of research I had been doing at school. I hope to continue collaborating on the

work I contributed to this summer, and potentially return in future summers to continue research

for the VPC project. This professional experience will be valuable in shaping the remainder of my

graduate student years as the beginning ofmy career. My utmost priority will still bemy dissertation

research and the completion ofmy degree, but I am not limited to just that single project. In addition,

I have widened my network of peers and collaborators.

I am very grateful for this fellowship opportunity from NSF-MSGI, and would like to thank

Geoffrey Sanders and Jeffrey Hittinger for being wonderful mentors and hosts at LLNL. I hope

this program continues to give students in the mathematical sciences similar opportunities as I

have experienced.

References

[1] N. J. Higham,Accuracy and Stability of Numerical Algorithms. Philadelphia, PA, USA: Society

for Industrial and Applied Mathematics, 2nd ed., 2002.

[2] D. Mori, Y. Yamamoto, and S.-L. Zhang, “Backward error analysis of the allreduce algorithm

for householder qr decomposition,” Japan Journal of Industrial and Applied Mathematics,

vol. 29, pp. 111–130, Feb 2012.

[3] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-optimal parallel and

sequential qr and lu factorizations,” SIAM Journal on Scientific Computing, vol. 34, no. 1,

pp. A206–A239, 2012.

[4] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra, P. Monticciolo, A. Reuther,

S. Smith,W. Song, D. Staheli, and J. Kepner, “Static graph challenge: Subgraph isomorphism,”

2017.

[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and van der Vorstm H., Templates for the Solution

of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 1st ed., 2000.

17

