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Introduction - At present the use of tungsten as the plasma facing material (PFM) is foreseen

at the strikepoints and far-target regions of divertors for next generation (e.g. ITER) tokamak

reactor experiments. Because of the negative influence of even small core W concentrations

on fusion performance [1], it is important to understand the sourcing and migration of W in

thedivertor and scrape-off (SOL) region. The DIII-D
Metal Rings Campaign was designed to address 3 key
questions on the use of high-Z PFM by leveraging the
predominantly low-Z environment on DIII-D: (i) how
does tungsten source in the divertor region: i.e both at
the strikepoint and far-target, (ii)) how does W get
transported to the core, and (iii) how does it affect the
core performance. DIII-D offers a unique environment
for these studies because of the lack of any preexisting
tungsten in the vessel and the use of two toroidal rings
of isotopically distinct W-coated tiles at two poloidal
locations in the outer divertor.

Experimental Arrangement - The experiments used

5-cm wide rings of tungsten-coated molybdenum alloy
(TZM)[2]. The lower 'floor' ring (R=1.32-1.37 m) was
coated with natural isotopic abundance of stable W
isotopes. The upper 'shelf row (R=1.404-1.454 m) was
coated with tungsten where the isotope W-182 was
enriched from 26 at% up to 92.9 at%. Different plasma

.
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Figure 1: (top) lower divertor of DIII-D,
showing  floor ring(left) and W-182
enriched  shelf  ring(right)  (bottom)

equilibrium schematic showing typical
strikepoint and far SOL.

equilibria (LSN and DN) were employed to place the lower outer strike point on either one of



the rings, or between the two, to assess the dependence of sourcing, transport, and core
concentration on strike point location and its proximity to the rings.

To determine the tungsten source intensity, gross erosion from each of the rings was
estimated using the S/XB ratio and the W I intensity from filtered photodetectors, in conjunction
with a survey spectrometer and local (ne,Te) estimates from divertor Thomson scattering and
nearby Langmuir probes [3,4]. The apparatus is capable of resolving the inter-ELM and intra-
ELM W flux. The SOL transport of W ions cannot be measured directly but is inferred on a
shot-to-shot basis from the deposition profile of W on an ensemble of carbon collector probes
inserted in the main SOL near the midplane [5]. Radial profiles of the deposited layers are
analysed post-exposure using Rutherford backscattering and inductively-coupled plasma mass
spectrometry. Because of the use of distinct isotopic mixtures, the relative contribution of each
ring can be determined using this latter technique with a simple isotope mixing model [6]. The
use of differing diameter collector probes provides measurements over a range of sampling
volumes in the SOL. Finally, the core tungsten concentration is inferred from VUV and X-ray
measurements of the W*>* brightness in conjunction with STRAHL calculations constrained by
radiated power profiles from bolometry and SXR tomography{ 7].

Results - In DIII-D ELMs source tungsten at many times W source, Pyg; = 6 MW
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energy [Figure 2]. The size of the ELM also influences the

3

relative efficiency of transport of tungsten sputtered from the
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far target (representative of the divertor throat) compared to
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that sputtered at the strikepoint directly. This was investigated
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by placing the strikepoint on the inner ring with the far SOL

Figure 2: W source rate for a
variety of ELM frequencies.

on the outer ring, and normalizing the collected tungsten to the
relative source strengths. With high-frequency small ELMs,
tungsten transported from the strikepoint is dominant, with
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Fig 4 shows normalized W deposition profiles for a series of
L-mode LSN discharges.
having a sampling length Lcorr ~ +/- 0.5-0.6 m, analysis of

For the smaller diameter probe

the OTF (outer target facing) and ITF (inner target facing)
sides showed symmetric deposition profiles, indicating a
uniform SOL concentration. In contrast, for the largest
diameter probe (Lcorr ~ +/- 4-10 m) there is a substantially
larger deposit on the ITF side, despite the fact that the W-tile
rings were in the outer divertor.
explained by a W buildup in the SOL at the crown of the
plasma (i.e., above the probe), driven by the balance of the

These results may be

parallel grad-Ti and frictional forces. The larger probe
samples this SOL region while the smaller probe does not [6].
The buildup and its rough poloidal location are consistent
with OEDGE
discharges [9]

impurity transport modelling of these

and support long-standing theoretical
predictions about impurity transport in the divertor and
SOLJ[10].

The compatibility of DII-D Advanced Tokamak
operation with the use of W in the divertor was also
investigated. The radial location of the ECCD appears to be
a key factor in maintaining good AT performance. In the
case of a steady state hybrid scenario with qo~1 with the
strike point on the ring, the use of on-axis ECCD was
successful in mitigating the accumulation of W in the core
and B, and energy confinement were equivalent to those of
an all-carbon divertor shot [Figure 5], with no increase in
core radiation. In contrast, for a higher qmin (qo ~ 1.7) scenario
where off axis ECCD is used to broaden the current profile,
enhanced core W buildup and excessive core radiation lead
to a drop in both B, and confinement [11]. The difference in
the core radiation profiles, obtained from bolometric
inversion is shown in Figure 6.

Conclusions - Targeted diagnostics and isotopically
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Figure 4: Upstream and downstream
W deposition profiles for probes
having different poloidal collection
lengths.
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Figure 5: Comparison of AT

discharge with (red) and without

(black) W divertor inserts. a) H-

factor; b) total injected power, P,ux;
¢) Greenwald fraction, few; and d)

central electron temperature, Te(0).

distinct W rings have been used to understand localized divertor W sourcing and SOL transport

in DIII-D discharges. Consistent with earlier JET studies [12], high performance plasmas have

been successfully run with tungsten at the outer divertor strike point with on-axis electron

heating. However this presently depends on the enhanced impurity transport due to central



ECH to achieve adequate W concentration control. In the
future, we plan to install additional W rings at different
poloidal locations in the new Small Angle Slot Divertor
[13] to study the advantage of this type of slot divertor
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with respect to impurity retention and core
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performance.
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