
LLNL-TR-756268

A Strawman for an HPC
PowerStack

C. Cantalupo, J. Eastep, S. Jana, M. Kondo, M.
Maiterth, A. Marathe, T. Patki, B. Rountree, R.
Sakamoto, M. Schulz, C. Trinitis

August 8, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

A Strawman for an HPC PowerStack

Table of Contents

Motivation for Designing an HPC PowerStack 1

A Strawman Design 3
Key Design Principle: A Hierarchical Approach 3
Desired Features for an HPC PowerStack 4
Proposal to Limit the Initial Scope 4
Node Management Modes 5
Communication Model Between Resource Manager and Job Manager 6

Open Questions 8

Conclusions 9

References 9

Appendix: Participating Actors and Their Roles 11

Organizers and Early Contributors (in alphabetical order):

● Christopher Cantalupo, Intel Corporation, USA
● Jonathan Eastep, Intel Corporation, USA
● Siddhartha Jana, Energy Efficient HPC Working Group, Global
● Masaaki Kondo, University of Tokyo, Japan
● Matthias Maiterth, Ludwig-Maximilians University, Germany
● Aniruddha Marathe, Lawrence Livermore National Laboratory, USA
● Tapasya Patki, Lawrence Livermore National Laboratory, USA
● Barry Rountree, Lawrence Livermore National Laboratory, USA
● Ryuichi Sakamoto, University of Tokyo, Japan
● Martin Schulz, Technical University Munich, Germany
● Carsten Trinitis, Technical University Munich, Germany

Note:
Our intent in publishing this document is to propose a strawman architecture for an HPC PowerStack
as a starting point for discussions. We expect significant changes of its design and even approach over
time, and we expect the design and refinements to be a collaborative effort across a broad community
reaching well-beyond the organizers and early contributors.

Part of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. LLNL-TR-xxxxxxx.

Motivation for Designing an HPC PowerStack

The landscape of High-Performance Computing (HPC) is changing as we enter the exascale era and
power and energy management are key design points for any next generation of supercomputers.
Efficiently utilizing procured power and optimizing performance of scientific applications under power
and energy constraints is challenging due to several reasons including dynamic phase behavior,
processor manufacturing variability and increasing heterogeneity of node-level components. Extending
the scope from the node- and application-level up to the system-level introduces further challenges on
top of power-unaware job scheduling, which is known to be NP-hard on its own.

While there exists several individual efforts across the community to research automatic techniques for
managing power and energy better, the majority of these techniques have been specialized to meet the
needs of a specific HPC center or specific optimization goals and provide little support to connect them
to each other. Some projects, most notably the PowerAPI efforts [1], discuss interfaces that form a
good starting point for full stack integration, but these interfaces still need to be hooked up to the wide
range of software components offered by academic partners, developers or vendors. Furthermore, a
recent survey conducted by the EE HPC WG concluded that the majority of such techniques have
lacked the application-awareness required to achieve the best system performance and throughput.
Other observations were that each technique tended to target management of power and energy for a
different subset of the site or system hardware and that the different techniques tended to perform
management at different (and often conflicting) granularities. Unfortunately, the existing techniques
have not been designed to coexist simultaneously on one site and cooperate on management in an
integrated manner [2]. The lack of application-awareness, lack of coordinated management across
different granularities, and the lack of widely accepted interfaces and consequent limited connectivity
between modules, can result in substantially underutilized Watts and FLOPS.

To address these gaps, the HPC community needs a ​holistic ​stack for power and energy management
and none currently exists. In our view, a holistic stack is one that is extensible enough to support the
present and anticipated future needs of various different HPC centers, one that achieves best system
performance and throughput through application-awareness, one that is designed to coordinate
management at different granularities, and one that enables the seamless integration of software
components from different developers and vendors.

In this seminar, our goal is bring together experts from academia, research laboratories, and industry in
order to take stock of existing approaches, design points and power management concepts and
requirements at the various participant’s institutions, and to design concepts for a holistic power and
energy management stack, which we refer to as the HPC PowerStack. Further, we hope to take steps
toward defining the interfaces necessary for providing a complete prototype shared among many
groups. The intention is to align development and research efforts across the community so that we
may share development resources, avoid duplicating effort, agree on common interfaces and reap the
rewards together as a community.

The intended final outcome of this collaboration will be a holistic, flexible and extensible concept of a
software stack ecosystem that allows us to combine product-grade open-source software components
to enable runtime optimization of system power, energy, and performance.

1

A Strawman Design
We envision a holistic power and energy management stack concept that is extensible,
application-aware, has well defined interfaces and is capable of coordinating power and energy
optimizations across many granularities of site or system hardware.

Key Design Principle: A Hierarchical Approach

Based on the state-of-the-art of the components available in the community for power and energy
management, we propose a hierarchical HPC PowerStack concept to manage power and energy at
three levels of granularity: the system level, the job level, and the node level. This implies the need for
at least a power-aware system resource manager / scheduler, a power-aware job manager, and a
power-aware node manager, but the discussions at the seminar may identify additional important
actors that need to be integrated in the hierarchy.

Figure 1: Conceptual diagram of the three levels of hierarchy needed for power and energy
management (system, job and node level) driven by site-level requirements.

As shown in Figure 1, at each level in the hierarchy, a HPC PowerStack should provide options for
adaptive management depending on requirements of the supercomputing site under consideration.
Site-specific requirements such as system-level power bounds, user fairness, or job priorities will be
translated as inputs to the job scheduler. The system-level job scheduler will choose power-aware
scheduling plugins to ensure site-level compliance, with the primary responsibility of allocating nodes
and job-level power constraints across multiple users and diverse workloads. Such allocations of
physical nodes and job-level power bounds will serve as inputs to a fine-grained, job-level runtime
system whose responsibility is to coordinate optimizations of compute node hardware control settings
across the compute nodes in a job. The job-level runtime, in turn, relies on node-level measurement
and control mechanisms. Continuous monitoring and analysis of application behavior may be required
for decision-making.

2

Desired Features for an HPC PowerStack

Based on the high-level goals laid out above, we formulate the following (unsorted) general
requirements or desired features, which he hope serve as a starting point for refinement at the seminar:

● Holistically coordinated power optimizations across the whole system in a scalable manner
● Capabilities for ensuring safe operation within electrical operating parameters, including

protective layers to enable scenarios where system power caps are hard limits that must be
enforced at all times

● Integration into the security concepts of existing and future HPC solutions, which is likely to be
site specific

● Open source implementations with a flexible (not-sticky) software license to enable commercial
as well as research uses

● Cross-platform and vendor neutral support to avoid locking users to a specific vendor
● Production-grade quality and easy deployment through standard package management

interfaces, for both user and system level components
● Extensibility (e.g., through plugins or exchangeable components) to support diverse preferences

at different HPC centers and facilitate rapid prototyping of new power, energy or performance
optimization techniques

● Integration of software components from multiple vendors and developers using a set of
well-defined and possibly standardized interfaces

● Real-time monitoring and control in order to adapt to dynamic scenarios. These can be
system-level (e.g.: adapting the power cap at the system level due to power availability or node
failures), or ​application-level (e.g.: adapting to critical path, CPU/memory boundedness,
manufacturing variation in the allocation, load imbalance, etc.)

Proposal to Limit the Initial Scope
For the first design revision of HPC PowerStack strawman and our first seminar, we are deliberately
limiting the scope of the HPC PowerStack design and discussion and then expanding the discussions
as needed from this initial set. In particular, for now we expect to exclude advanced scheduling,
management of power in non-compute-node hardware or infrastructure, and energy efficiency metrics,
although this could and should be discussed and adjusted during the seminar. Examples of advanced
scheduling parameters include job priorities, user fairness, accounting/charging, cross system
scheduling and co-scheduling jobs on nodes of a system. Examples of non-compute hardware, which
we consider to keep out of scope for now, include the network fabric, IO nodes, and cooling
infrastructure.

In order to have a concrete starting point for the discussion rather than a blue-sky concept, we propose
to define the Roles and Responsibilities (R&Rs) for each actor as well as actor-actor interactions
pragmatically, basing the R&Rs and interactions on experience with existenting open source software
projects. This will provide the necessary starting point for the definition of the conceptual glue between
actors, along with agreements on common interfaces between them, to ensure they coordinate
management across granularities and interoperate properly. For any actors where suitable open source
code is not available, we must undertake development of that actor ourselves as part of our envisioned
HPC PowerStack collaboration, but for the remaining actors we will leverage existent product-grade
open source code from the participants. The HPC PowerStack must leverage open source software to
the extent possible to limit development effort and avoid duplication of past efforts.

3

Node Management Modes

Figure 2: Interactions between the three layers of hierarchy.

We currently envision that the HPC PowerStack needs to support three compute node management
modes. Each compute node must be managed according to a single mode at a given time, but all three
management modes may be employed across the nodes of the system simultaneously. The modes
involve similar but slightly different interactions and communications between actors (as illustrated in
Figure 2). The three modes are as follows:

1. Job-aware active node management: in this mode, the nodes allocated for executing a job
are managed as a unit by the job manager. The job manager actively optimizes job power,
energy, or performance by coordinating optimizations of hardware controls in the compute
nodes across all compute nodes in the job. In this mode, the system resource manager is
responsible for conveying power or energy constraints for the job and the choice of optimization
strategy to the job manager. The job manager employs the optimization strategy instructed by
the system resource manager while enforcing the given constraints. Some or all of the
supported optimization strategies leverage application-awareness (and optional application
profiling data) to obtain the best power, energy, or performance improvements.

2. Job-agnostic active node management: ​in this mode, the nodes allocated for executing a job

are managed as a unit. However, the job manager actor is not present or is inactive. Instead,
the system resource manager is responsible for optimizing job power, energy, or performance.
To do so, it talks directly to the node manager on each compute node to configure that node’s
hardware controls such that job power or energy constraints are enforced. In this mode,
optimizations for power, energy, and performance are neither performed on each node nor
coordinated across nodes. Since this approach is not job-aware, it leads to missed opportunity
for optimizing power, energy, or performance but does enforce constraints on power or energy.

4

3. Idle node management: ​in this mode, nodes are managed as individual units. This mode is

used on nodes that are not actively assigned any jobs (i.e., idle nodes). In this mode, the
system resource manager talks directly to the node manager on each compute node to
configure that node’s hardware controls and enforce power or energy constraints on that node.
These constraints are decided based on system constraints and power or energy resources
allocated to other running jobs.

Communication Model Between Resource and Job Manager

The concepts of HPC PowerStack are intentionally designed for both present-day centralized resource
manager / scheduler designs and future decentralized designs. The model for communication between
the resource manager / scheduler and the job manager is different in each case. What the two cases
have in common is that the job scheduler propagates power or energy constraints and optimization
settings to the job power manager through scheduler daemons running on the compute nodes.
Similarly, the job power manager propagates power consumption measurements and other feedback
through the scheduler daemons to the rest of the scheduler.

In the centralized case (Figure 3), the scheduler propagates power or energy constraints and
optimization settings to the job manager through the scheduler daemon on one compute node that is
deemed the master. Similarly, the job manager provides its feedback to the scheduler through the
scheduler daemon on the master compute node. The job manager is a scalable distributed runtime that
is expected to have agents running on all job compute nodes. The job manager is responsible for
ensuring that inputs from the scheduler daemon on the master compute note are properly propagated
to its agents on all other compute nodes. Similarly, the scheduler daemon on the master compute node
is responsible for ensuring that feedback from the job manager is propagated to the rest of the
scheduler daemons and scheduler as needed.

Figure 3: Centralized Case: Master Node Representing all the Compute Nodes Within a Job

5

In the decentralized case (Figure 4), the scheduler daemons can propagate power or energy
constraints and optimization settings to the job manager on any or all compute nodes. Similarly, the job
manager can propagate its feedback to the scheduler to the scheduler daemon on any or all compute
nodes. The job manager is responsible for ensuring that inputs from the scheduler daemons are
properly propagated to its agents on all compute nodes, and it is also responsible for resolving
conflicting inputs. Similarly, the scheduler daemons are responsible for ensuring that feedback from the
job manager is propagated to the rest of the scheduler daemons and scheduler as needed.

Figure 4: Decentralized Case: No Specific Master Node - All Nodes Receive Job Constraints
and Optimization Settings

Open Questions
The following is a list of open questions to help drive the discussions at the seminar. The list is not
intended to be sorted or exhaustive. Further open questions are to be identified and discussed at the
HPC PowerStack seminar.

● Are the three layers of hierarchy (system, job, node) sufficient or is a further refinement
needed? Are the communication and node management modes adequate?

● Which pieces of the software stack should be pluggable and/or interchangeable between
developers, users, partners, vendors, … and hence need a set of rigid APIs and API
approaches, for interoperability between components?

● What elements of the HPC PowerStack need to run in protected mode and should they interact
with the user and/or the system administrators?

● Are there any actors beyond job manager and node manager that should have direct access to
HW controls and monitors?

○ Monitoring tools? Applications?
○ Read only access? Or read/write?
○ In what setting does it make sense to allow it? Research settings? Production settings?
○ Would allowing write access introduce open-loop control challenges? If applications or

tools could modify controls and not just the job manager or resource manager, how can
a job manager or resource manager ensure power or energy constraints are enforced?

6

● How to handle software or hardware failures or unexpected job terminations?
○ What happens if user software crashes, what if the HPC PowerStack crashes?
○ What protective mechanisms are needed to ensure operation within power or energy

constraints in spite of failures or job terminations? Mechanisms in the resource
manager? Mechanisms in the hardware (e.g., in the BMC)?

○ How to detect failure of job manager? Heartbeat interfaces to protective mechanisms?
○ How to restore node hardware controls to sane states in the event of a crash?
○ How to protect the system from malicious power attacks? (Intended / Unintended)

● What role should Linux power governors / OS components play in the HPC PowerStack?
○ Can coordinated optimization across nodes be accomplished with the governor model?

Too node-local?
○ Would including governors introduce open-loop control challenges? If both the

governors and job manager or resource manager could modify controls, how can a job
manager or resource manager ensure job or system power or energy constraints are
enforced?

○ What interfaces would be needed to coordinate control between governors and job
manager or resource manager? Heartbeat interface? Use existent interfaces to
configure the governor to perform no control?

● Are the two communication models (fully central and fully decentralized) sufficient or what other
consideration for resource/job management interactions should be taken into account?

Conclusions and Seminar Goals
This document proposes a strawman architecture for the HPC PowerStack as a starting point for
discussions at the upcoming HPC PowerStack seminar. We expect significant changes of the design
over time, and we expect the design and refinements to be a collaborative effort across a broad
community reaching well-beyond the organizers and early contributors.

At the seminar we hope to have achieved the following goals:

● Starting with this strawman, a consensus of a mutually agreed upon component and interface
model for an HPC PowerStack matching the experiences and requirements from the attendees.

● Mapping of existing environments and constraints onto the strawman model to ensure its
validity across multiple real-world scenarios.

● A gap analysis of missing components and interfaces compared to currently available hardware
and software solutions, and plans for covering these gaps

● Roadmap from PowerStack-conforming prototypes towards production-ready PowerStack
implementations

● A continued collaboration between the attendees (and possible further community partners) to
continue driving the design and realization of an HPC PowerStack for present systems as well
as exascale systems and beyond.

We are excited about the seminar and the opportunity to work with you towards these goals and
towards a homogenization or, where useful and applicable, standardization of an HPC PowerStack.

References
[1] ​“High Performance Computing - Power Application Programming Interface Specification”,
https://github.com/pwrapi/powerapi_spec
[2] ​“First Global Survey of Energy and Power Aware Job Scheduling and Resource Management”,​ Energy
Efficient HPC Working Group, insideHPC,
https://insidehpc.com/2017/12/first-global-survey-energy-power-aware-job-scheduling-resource-management/

7

Appendix: Participating Actors and Their Roles

Survey of actors and the various levels in the HPC software stack with community examples for each.
The list of examples is certainly not complete, so please add other projects as needed.

Actors Roles and Responsibilities Interoperability with other actors Examples
within the
communit

y
(edit as
needed)

System
Resource
Manager +
Job
Scheduler

Apart from the traditional role of
monitoring resource usage and allocating
resources to jobs, this actor is also
responsible for one/more of the following
power-aware tasks:

1. Assign power budgets for idle
nodes (and potentially other
resources)

2. Assign a job power budget for
the active nodes running a job

3. Monitor and control power
budgets for each job and/or user

4. Perform analysis to determine an
efficient energy/power budget for
a given job and/or node.

5. Account for facility-level and
cooling constraints that are
external to the system.

6. Record energy / power based
telemetry data from each node
(and potentially other resources)

This actor interacts with the Job Manager
to convey settings such as the job’s power
budget, desired operating frequency,
specific job-aware power management
algorithms, etc. These settings can be
configured either by the end user during job
launch or by the system admin. This actor
may also have the capability of receiving
feedback from job profiling tools and
databases.

Slurm,
ALPS,
PBSPro,
Cobalt

Power-aware
Job manager

In the job-aware active node management
mode of PowerStack, this actor owns
management of the active nodes running
a job. Management of idle nodes is
outside its scope. This actor performs the
following tasks:

1. Manages the control knobs in all
compute nodes of the job and
optimizes them at runtime to
achieve the desired power
consumption, efficiency, or other
settings

2. Scalably aggregates application
profile/telemetry data from each
node servicing the given job.

This actor should run with different Linux
group permissions from the application:
that group should have sufficient
privileges to access node power and
performance monitors and controls.

This actor interacts with the following:
1. System Job Scheduler: The job

manager provides aggregated
data to the job scheduler during
the execution of the application. In
turn from the scheduler, it
receives configuration settings like
job budgets and selection of
desired optimization algorithms

2. Application profiling framework:
The job manager receives the
per-node application profiling data
from this framework and then
proceeds to aggregate this data to
create a summary of the dynamic
application behavior

3. Application layer: The job
manager may receive additional
optional hints from the actual user
application

4. Node manager: The job manager
interacts with the node manager
to drive per-node monitoring and
control of hardware knobs.

GEOPM,
Conductor

8

Power-aware
Node
manager

This actor is responsible for:
1. Providing telemetry data to

system monitoring tools or
visualization tools external to the
PowerStack.

2. Providing access to node-level
hardware controls and monitors.
It should provide this access to
userspace for a subset of
controls and monitors specified
in a whitelist. Whitelists should
contain the controls and monitors
that are designated “safe” to
access by a privileged Linux
group. Alternatively, OS kernel
modules may be designed and
loaded to enable access to
specific hardware knobs from the
userspace.

This actor interacts with:
1. External system monitoring tools:

the node manager interacts with
system monitoring tools to provide
node-level power, energy,
temperature, and other telemetry.

2. System resource manager: has
direct access to the hardware
control knobs via the node
manager. This access is only
used in cases where the nodes
are either idle or the system is not
equipped with a job manager

3. Job manager: interacts with the
node manager to monitor job
nodes and control job node HW
knobs to enforce job-wide settings
like power consumption limits,
efficiency targets, etc.

msr-safe,
PAPI,
PowerAPI,
libvariorum,
NVML,
Redfish,
HDEEM

Applications This actor corresponds to the application
layer that runs in userspace. This includes
all linked libraries including distributed
memory communication libraries.

This actor interacts with the following:
1. Job manager: applications may

provide optional hints to the job
manager to demarcate specific
regions of code (aka phases) as
optimization targets for the job
manager, or the applications or
libraries may coordinate with the
job manager to optimize tunable
parameters within their code

2. Application profiling framework: if
running, this framework may
optionally collect profiling
information from the application

HPC apps,
MPI,
SHMEM

Application
profiling
framework

This actor has the role of collecting
application profiling data at runtime on
each node of the job.

This actor interacts with the following:
1. Job manager: The per-node

profiling data may be fed to the
job manager

2. System resource manager: In the
absence of the job manager, the
per-node profiling data may also
be provided as feedback to the
system-wide resource
manager/job scheduler.

Caliper,
Score-P,
PowerAPI

Site admin The site admin has the role of configuring
system power/energy policies and setting
constraints.

This actor interacts with:
1. Electricity service provider:

through a demand/response
interface with provider, site admin
configures power caps for
systems at the site.

2. Job manager: either be a one-time
interaction during the setup of the
job manager or an infrequent
interaction after setup, where the
site admin selects the desired
power optimization algorithm

3. Node manager: This is also a
one-time or infrequent interaction
where the site-admin configures
the whitelist to adjust what node
hardware controls and monitors
the job and the system power
manager will have access to.

Human
interface

9

Application
developer

This actor has the role of developing,
debugging, tuning, instrumenting
applications, and modifying applications to
enable tuning of parameters

This actor interacts with:
1. Application profiling framework:

the application developer
instruments their code with
profiling APIs provided by the
application profiling framework.

2. Job manager: the application
developer may optionally modify
application or library code in order
to expose and support tunable
parameters and extend the job
manager’s optimization algorithms
to coordinate optimization of those
tunable parameters

Human
interface

User This actor has the role of requesting
resources to execute a job

The actor interacts with:
1. System resource manager /

scheduler: user makes requests
for resources to execute the job
through job queue tools

Human
interface

10

