
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

Roshan Quadros, Brian Carnes,
Madison Brewer, and Byron Hanks

DOE Centers of Excellence Performance Portability Meeting

Aug 22-24, 2017

Denver

Scaling Post-Meshing Operations
on Next Generation Platforms

SAND2017-8825PE

 Geometry & Meshing Efforts at SNL

 Scaling Post-Meshing Operators

 Refinement

 Smoothing

 Projection

 Future Work

 Conclusion

Layout of Presentation

Parallel decomposition,
refinement, smoothing, & projection

CUBIT

Percept

CUBIT and Percept combined workflow for
generating large meshes

Initial Mesh Generation:
advanced meshing

algorithms for Tri, Quad,
Tet, and Hex mesh

generation

CUBIT provides extensive
capabilities for preparing
geometry and generating
an initial mesh

https://cubit.sandia.gov

Post-Meshing Operations:
Refinement->Projection->Smoothing

Mesh refinement workflow:
• Generate refined meshes in

memory from an existing
mesh

• Project new boundary nodes
onto geometry

• Smooth interior mesh nodes
to improve mesh quality

Supported mesh types:
• block-structured
• unstructured
• hybrid

Post-Meshing Operator #1: Projection

Geometry Kernel: OpenNURBS

 Open Source from
www.rhino3d.com

 Lightweight & easy to
Port

 Query operations are
thread safe

 Supports various curves
& surface definitions

Parallel Kernel:
Project Points on a NURBS Surface

Programming Model: MPI + Kokkos (OpenMP)
Three levels of parallelism is required:

1) Distributed memory parallelism via MPI

2) Shared memory thread level parallelism on the MIC device
using Kokkos with OpenMP runtime

3) Vectorization for Vector Processing Unit (VPU)

Hardware:
Trinity testbed containing 72 core KNL

Image courtesy of http://www.hotchips.org

Programming Model: MPI + Kokkos (OpenMP)
{ // MPI distributes data to n processes

ON_3dPoint *buff_p;
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
…
if (rank == 0){

for(int r=1; r < numtasks; r++){
…
ierr = MPI_Send (p_start, num_pnts*3, MPI_DOUBLE, r, Tag, MPI_COMM_WORLD);

}
} else{

ierr = MPI_Recv (buff_p, num_pnts*3, MPI_DOUBLE, MPI_ANY_SOURCE, Tag, MPI_COMM_WORLD,
&status);

}
projection_method(buff_p, num_pnts);

}

void projection_method(ON_3dPoint *buff_p, const int num_pnts){

// Kokkos handles thread level parallelism
Kokkos::parallel_for (num_pnts, KOKKOS_LAMBDA(const int i){

// OpenNURBS API for projecting a point on a surface
double u, v;
surface->GetClosestPoint(buff_p[i], &u, &v);
ON_3dPoint projected_pt = surface->PointAt(u, v);

});
}

Point Projection Scaling Results on KNL

933.07

1108.85

10

20

40

80

160

320

640

1 10 100 1000

R
u

n
ti

m
e

 (
se

c)

Threads per rank

mpi_1 mpi_2 mpi_4 mpi_8 mpi_16 mpi_32 mpi_64

Speedup (MPI 32 ranks) = 28X

Speedup (MPI + Kokkos) = 77X

Thread Affinity on KNL

1

10

100

1000

1 10 100 1000
Threads per KNL

T
im

e
 (

s
e
c
)

Blue - Scatter
Red - Compact

Post-meshing Operator #2: Refinement
Structured grid refinement was a relatively simple process
 Removed pointers and references to main memory objects
 Replaced structured grid data structures with Kokkos views
 Algorithm :

 Allocate new mesh (view)
 For each block (in serial)

 For each element in old mesh (in parallel)
 Interpolate coordinates for new mesh
 Transfer existing node coordinates

Scalability of Refinement

Sequence of meshes
• 0.5M, 4M, 33M elements
• multiple blocks (12)

Compare
• serial
• GPU
• threading (OpenMP)

Better scalability with
increasing problem size

Blocks were refined
sequentially

Post-Meshing Operator #3: Smoothing

Smoothing structured grids was more complex
process
 compute global quality metric and gradient
 nonlinear CG optimization with line search
 communication between structured blocks

(gradients)
Example: smoothing a large cube with initial
randomly perturbed nodes

Untangling: invalid elements Smoothing: metric/gradientUntangling: metric/gradient

 Abstract mesh interface for both structured and unstructured
 high cost of kernel calls
 sub-optimal interface to structured grid
 functions not safe for threads or GPU

 Suggestion for abstract interfaces:
 designed with shared memory (Kokkos) from start
 otherwise, opt for specialized interfaces.

Smoothing Pitfall: Abstract Interfaces

StructuredMesh

UnstructuredMesh

Smoother<MeshBase>
• depends on many

virtual functions in
MeshType class

MeshBase

 Total metric (long double) was sum of individual metrics (double)
 Problematic for GPU builds as CUDA only uses up to 64 bits (double

precision) for floating point representation.
 Causes illegal memory access:

 cudaDeviceSynchronize() error(
cudaErrorIllegalAddress): an illegal memory access was encountered

 Certain STL classes and functions are problematic on GPUs
 array, unorderedmap, vector, set, …

 array => Kokkos::Array
 unorderedmap => Kokkos::UnorderedMap

 std::max was rewritten locally

Smoothing Pitfall: Hardware Differences

 Memory layout initially caused very poor performance on the GPU
 Smoothing test case: perturbed cube followed by mesh smoothing

Smoothing Pitfall: Memory Layout

Future Work
 Projection:

• Study high water mark of memory usage for different
combination of MPI ranks and Threads per rank

 Unstructured Refinement:
• More complicated algorithm than structured
• Example: determine number of new nodes

• use Kokkos map to store needed nodes
• values stored for every mesh edge/face
• map also used to interpolate new coordinates

 Smoothing:
• Investigate other smoothing algorithms (elliptic smoother)

 MPI+ Kokkos programming model was used for scaling post-
meshing operators such as refinement, smoothing, and
projection

 Kokkos performance portability library assisted in supporting
heterogeneous architectures. Scaling studies were performed
on both KNL and GPUs

Conclusion

Thank You

