Scaling Post-Meshing Oper&ioiis™™
on Next Generation Platforms

Roshan Quadros, Brian Carnes,
Madison Brewer, and Byron Hanks

DOE Centers of Excellence Performance Portability Meeting
Aug 22-24, 2017
Denver

U.S. DEPARTMENT OF V' VAT <) m
AN @ National
@ENERGY NISA Netional
Sandia National Laboratories is a multi mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0O003525.

Layout of Presentation

Geometry & Meshing Efforts at SNL

Scaling Post-Meshing Operators
= Refinement
= Smoothing

= Projection
Future Work
Conclusion

CUBIT and Percept combined workflow for
generating large meshes

Percept

CUBIT

CUBIT provides extensive
capabilities for preparing
geometry and generating

an initial mesh Initial Mesh Generation:

advanced meshing
https://cubit.sandia.gov algorithms for Tri, Quad,
Tet, and Hex mesh
generation

Parallel decomosition,
refinement, smoothing, & projection

Post-Meshing Operations:

Refinement->Projection->Smoothing

Mesh refinement workflow:

» Generate refined meshes in
memory from an existing
mesh

* Project new boundary nodes
onto geometry

« Smooth interior mesh nodes
to improve mesh quality

N
VAVA%"

RRARK

<
4

7
=

\

\VAVAY)
eA#A#A#&‘

VAN

\ A\

Supported mesh types:
» block-structured

e unstructured

* hybrid

Post-Meshing Operator #1: Projection

processor _id
7 10.5 1.400e+01
R |

i

0.000e+00 3

wﬁmmu

Geometry Kernel: OpenNURBS

= Open Source from
www.rhino3d.com

= Lightweight & easy to
Port

= Query operations are | {
thread safe S

= Supports various curves |) R <
& surface definitions | &

Parallel Kernel:
Project Points on a NURBS Surface

[

7777
[/)]]

LLHA1TT]
A
AT

Programming Model: MPI + Kokkos (OpenMP)

Three levels of parallelism is required:
1) Distributed memory parallelism via MPI

2) Shared memory thread level parallelism on the MIC device
using Kokkos with OpenMP runtime

3) Vectorization for Vector Processing Unit (VPU)

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

a 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset

connected by ooRME € Node: 1-Socket only

2D Mesh o Fabric: Omni-Path on-package (not shown)

Interconnect 4

Vector Peak Perf: 3+TF DP and 6+TF SP Flops

Scalar Perf: ~3x over Knights Corner

Triad (GB/fs): MCDRAM : 400+; DDR: 90+ §

e e

Hardwar:
Trinity testbed containing 72 core KNL
Image courtesy of http://www.hotchips.org

Programming Model: MPI + Kokkos (OpenMP)

{ // MPI distributes data to n processes
ON_3dPoint *buff p;

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (rank == 0 X
for(int r=1; r < numtasks; r++){

ierr = MPI_Send (p_start, num_pnts*3, MPI_DOUBLE, r, Tag, MPI_COMM_WORLD);
}

} elsef

ierr = MPI_Recv (buff_p, num_pnts*3, MPI_DOUBLE, MPI_ANY_SOURCE, Tag, MPI_COMM_WORLD,
&status);

}
projection_method(buff p, num_pnts);

}
void projection_method(ON_3dPoint *buff_p, const int num_pnts){

// Kokkos handles thread level parallelism
Kokkos::parallel_for (num_pnts, KOKKOS LAMBDA(const inti){

// OpenNURBS API for projecting a point on a surface

double u, v;

surface->GetClosestPoint(buff_p[i], &u, &v);

ON_3dPoint projected pt = surface->PointAt(u, v);
)

Point Projection Scaling Results on KNL

—-—-mpi_1 -e—mpi 2 -e—mpi 4 -e—mpi 8 -e-mpi_16 -e-mpi 32 -e-mpi_64

1108.85

033.07 a e ___

640

Speedup (MPI 32 ranks) = 28X

320 Speedup (MPI + Kokkos) = 77X

Runtime (sec)
© o
o o

N
o

N
o

SO

RN
o

1 10 100 1000

Threads per rank

Thread Affinity on KNL

1000
Blue - Scatter
Red - Compact
100
2 10
|_
1 I I I
’ 10 100 1000

Threads per KNL

Post-meshing Operator #2: Refinement

Structured grid refinement was a relatively simple process
» Removed pointers and references to main memory objects
» Replaced structured grid data structures with Kokkos views
= Algorithm :
= Allocate new mesh (view)
= For each block (in serial)
» For each elementin old mesh (in parallel)
» [nterpolate coordinates for new mesh
» Transfer existing node coordinates

Scalability of Refinement

Sequence of meshes
« 0.5M, 4M, 33M elements 10° - o
° i - ———— Serial . .
multiple blocks (12) | e opu]
[- —¢- — OpenMP (2) ed
— —- — OpenMP (4) ¢
Compare 10' — —&- — OpenMP (8) 7.7 Ao
. serial - — —&- — OpenMP (16) P : LA
° GPU g : - : ; : -~ :
- threading (OpenMP) Sk o 265 100
£ - .
=T E
Better scalability with - .
increasing problem size 107 H10°
Blocks were refined ! :
sequentially 10—y’
0.5M Elems Num Elems 33M Elems
Sandia
National

Laboratoriesss

Post-Meshing Operator #3: Smoothing

Smoothing structured grids was more complex | SR
F < 7
process :) & .
= compute global quality metric and gradient & | T "1
. = F - - P E
" nonlinear CG optimization with line search ¢ R A oM Elems
. . - e
= communication between structured blocks 3 | -~ “7 o
. 10'E v 10
(gradients) B S :
. R PR 7 ~ ~o— - OMP01 |-
Example: smoothing a large cube with initial R - Ao oWRod
10° - - AT Rk
randomly perturbed nodes ‘- el
S T R TR
ga: :"': g"} § | E g T \'_ ﬂl:'g
= 20 1= \'.. =
mn 20 Il_,m:;]llona 20 a0 I':II'.- [+] 2lﬂ Ilet;hona F.:] B0 [+] ﬁJI'J 1$ﬂ 1;ITI Il,e?iriloneg:sn 30 350 400
Untangling: invalid elements Untangling: metric/gradient Smoothing: metric/gradient

Smoothing Pitfall: Abstract Interfaces

= Abstract mesh interface for both structured and unstructured
= high cost of kernel calls
= sub-optimal interface to structured grid
= functions not safe for threads or GPU
= Suggestion for abstract interfaces:
= designed with shared memory (Kokkos) from start
= otherwise, opt for specialized interfaces.

StructuredMesh
MeshBase <

UnstructuredMesh

Smoother<MeshBase>

e depends on many
virtual functions in
MeshType class

Smoothing Pitfall: Hardware Differences

» Total metric (long double) was sum of individual metrics (double)
" Problematic for GPU builds as CUDA only uses up to 64 bits (double
precision) for floating point representation.
= Causes illegal memory access:
= cudaDeviceSynchronize() error(
cudaErrorlllegalAddress): an illegal memory access was encountered

= Certain STL classes and functions are problematic on GPUs
= array, unorderedmap, vector, set, ...
= array => Kokkos::Array
= unorderedmap => Kokkos::UnorderedMap
= std::max was rewritten locally

Smoothing Pitfall: Memory Layout

= Memory layout initially caused very poor performance on the GPU
= Smoothing test case: perturbed cube followed by mesh smoothing

25
20 F
15

——F—— LayoutRight
——+—— LayoutLeft

10 |

(&)
T T

Time (seconds)

\ ! | \ \ \ | \ a1
- 40 60 80 100

Intervals per Edge

Future Work

= Projection:
e Study high water mark of memory usage for different
combination of MPI ranks and Threads per rank
= Unstructured Refinement:
 More complicated algorithm than structured
 Example: determine number of new nodes
* use Kokkos map to store needed nodes
* values stored for every mesh edge/face
* map also used to interpolate new coordinates
= Smoothing:
* Investigate other smoothing algorithms (elliptic smoother)

Conclusion

= MPI+ Kokkos programming model was used for scaling post-
meshing operators such as refinement, smoothing, and
projection

= Kokkos performance portability library assisted in supporting
heterogeneous architectures. Scaling studies were performed
on both KNL and GPUs

Thank You

