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Parallel decomposition,
refinement, smoothing, & projection

CUBIT

Percept

CUBIT and Percept combined workflow for 
generating large meshes

Initial Mesh Generation: 
advanced meshing 

algorithms for Tri, Quad, 
Tet, and Hex mesh 

generation

CUBIT provides extensive 
capabilities for preparing 
geometry and generating 
an initial mesh

https://cubit.sandia.gov



Post-Meshing Operations:
Refinement->Projection->Smoothing

Mesh refinement workflow:
• Generate refined meshes in 

memory from an existing 
mesh

• Project new boundary nodes 
onto geometry

• Smooth interior mesh nodes 
to improve mesh quality

Supported mesh types:
• block-structured
• unstructured
• hybrid



Post-Meshing Operator #1: Projection



Geometry Kernel:  OpenNURBS

 Open Source from 
www.rhino3d.com

 Lightweight & easy to 
Port

 Query operations are 
thread safe

 Supports various curves 
& surface definitions 



Parallel Kernel: 
Project Points on a NURBS Surface



Programming Model: MPI + Kokkos (OpenMP)
Three levels of parallelism is required:

1) Distributed memory parallelism via MPI

2) Shared memory thread level parallelism on the MIC device
using Kokkos with OpenMP runtime

3) Vectorization for Vector Processing Unit (VPU)

Hardware: 
Trinity testbed containing 72 core KNL

Image courtesy of http://www.hotchips.org



Programming Model: MPI + Kokkos (OpenMP)
{ // MPI distributes data to n processes

ON_3dPoint *buff_p;
MPI_Comm_size( MPI_COMM_WORLD, &numtasks);
…
if ( rank == 0 ){

for( int r=1; r < numtasks; r++){
…
ierr = MPI_Send ( p_start, num_pnts*3, MPI_DOUBLE, r, Tag, MPI_COMM_WORLD);

}
} else{

ierr = MPI_Recv ( buff_p, num_pnts*3, MPI_DOUBLE, MPI_ANY_SOURCE, Tag, MPI_COMM_WORLD, 
&status );

}
projection_method( buff_p, num_pnts );

}

void projection_method( ON_3dPoint *buff_p, const int num_pnts ){

// Kokkos handles thread level parallelism
Kokkos::parallel_for ( num_pnts, KOKKOS_LAMBDA(const int i ){

// OpenNURBS API for projecting a point on a surface 
double u, v;
surface->GetClosestPoint( buff_p[i], &u, &v );
ON_3dPoint projected_pt = surface->PointAt( u, v );

});
}



Point Projection Scaling Results on KNL
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Thread Affinity on KNL
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Post-meshing Operator #2: Refinement
Structured grid refinement was a relatively simple process
 Removed pointers and references to main memory objects
 Replaced structured grid data structures with Kokkos views
 Algorithm :

 Allocate new mesh (view)
 For each block (in serial)

 For each element in old mesh (in parallel)
 Interpolate coordinates for new mesh
 Transfer existing node coordinates



Scalability of Refinement

Sequence of meshes
• 0.5M, 4M, 33M elements
• multiple blocks (12)

Compare
• serial
• GPU
• threading (OpenMP)

Better scalability with 
increasing problem size

Blocks were refined 
sequentially



Post-Meshing Operator #3: Smoothing

Smoothing structured grids was more complex 
process 
 compute global quality metric and gradient
 nonlinear CG optimization with line search
 communication between structured blocks 

(gradients)
Example: smoothing a large cube with initial 
randomly perturbed nodes

Untangling: invalid elements Smoothing: metric/gradientUntangling: metric/gradient



 Abstract mesh interface for both structured and unstructured
 high cost of kernel calls
 sub-optimal interface to structured grid
 functions not safe for threads or GPU

 Suggestion for abstract interfaces: 
 designed with shared memory (Kokkos) from start
 otherwise, opt for specialized interfaces.

Smoothing Pitfall: Abstract Interfaces

StructuredMesh

UnstructuredMesh

Smoother<MeshBase>
• depends on many 

virtual functions in 
MeshType class

MeshBase



 Total metric (long double) was sum of individual metrics (double)
 Problematic for GPU builds as CUDA only uses up to 64 bits (double 

precision) for floating point representation. 
 Causes illegal memory access:

 cudaDeviceSynchronize() error( 
cudaErrorIllegalAddress): an illegal memory access was encountered

 Certain STL classes and functions are problematic on GPUs
 array, unorderedmap, vector, set, …

 array => Kokkos::Array
 unorderedmap => Kokkos::UnorderedMap

 std::max was rewritten locally

Smoothing Pitfall: Hardware Differences



 Memory layout initially caused very poor performance on the GPU
 Smoothing test case: perturbed cube followed by mesh smoothing

Smoothing Pitfall: Memory Layout



Future Work
 Projection:

• Study high water mark of memory usage for different 
combination of MPI ranks and Threads per rank

 Unstructured Refinement:
• More complicated algorithm than structured
• Example: determine number of new nodes 

• use Kokkos map to store needed nodes
• values stored for every mesh edge/face
• map also used to interpolate new coordinates

 Smoothing:
• Investigate other smoothing algorithms (elliptic smoother)



 MPI+ Kokkos programming model was used for scaling post-
meshing operators such as refinement, smoothing, and 
projection

 Kokkos performance portability library assisted in supporting 
heterogeneous architectures.  Scaling studies were performed 
on both KNL and GPUs

Conclusion
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