
Measuring Minimum Switch Port Metric Retrieval
Time and Impact for Multi-Layer InfiniBand Fabrics

Michael Aguilar, Benjamin A. Allan, and Sergei Polevitzky
Sandia National Laboratories, Albuquerque, New Mexico 87123

Email: {mjaguil,baallan,sipolev}@sandia.gov

Abstract—In this work, we seek to gain an understanding of
the InfiniBand network processing limitations that might exist
in gathering performance metric information from InfiniBand
switches using our new LDMS ibfabric sampler. The limitations
studied consist of delays in gathering InfiniBand metric informa-
tion from a specific switch device due to the switch’s processor
response delays or RDMA contention for network bandwidth.

Keywords-InfiniBand, Switch Port, Metric, Retrieval Time

I. INTRODUCTION

In HPC systems, tightly coupled parallel threads com-
municate information across InfiniBand (IB) networks using
RDMA data exchanges [1]. IB network RDMA carries data for
both applications and network performance metrics when the
Lightweight Distributed Metric Service (LDMS) is used [3].
IB is provided with virtual traffic lanes to implement a type
of quality of service for RDMA network traffic [5] [6]. By
design, the highest priority traffic is given to both IB network
infrastructure commands and performance metric information
from within the IB subnet [7]. In this way, an IB network
Subnet Manager can be notified when either specific switches
or HCAs are unavailable for RDMA communications. There
are 16 Virtual Lanes in an IB network. Virtual Lane 15
(VL15) is designated to be the virtual traffic lane for network
performance metric data.

Large scale HPC IB network fabrics are hierarchical with
several levels of switches. Congestion can degrade the per-
formance of any or all applications whose traffic is transiting
affected ports. Monitoring systems with detailed recording of
network performance metrics can provide important insights
into when, for how long, and possible reasons for IB network
congestion. It is difficult to identify, with high confidence,
correlations between events occurring within an IB fabric
and unsynchronized low time resolution network performance
data. It has been shown that synchronized collection of net-
work performance data at intervals of 1 second can provide
more useful information [2] [4] than the kinds of coarse
grained unsynchronized collection performed by most other
HPC monitoring systems.

The LDMS based sysclassib sampler collects detailed in-
formation about compute node HCA metrics. However, this

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energys National Nuclear Security Administration under
contract DE-NA0003525.

sampler provides only compute node’s views of the periphery
of the fabric and still leaves the fabric internals opaque. To
provide insight into the IB fabric’s internal characteristics, we
created the ibfabric sampler. Our goal is to acquire much more
detailed performance data from IB network fabrics.

II. APPROACH

We created the LDMS based ibfabric sampler to gather
performance metrics from each operational switch port within
an InfiniBand fabric. We additionally wrote a Port Delegator
(or Delegator) to automate scalable configuration of samplers
for distributed monitoring of disjoint portions of an InfiniBand
fabric while maintaining complete fabric port. The Delegator
program reads the IB network fabric configuration information
using the OFED libnetdisc library. It builds a list of available
LIDs and ports to query. Once a list of LIDs and ports is
assembled, the Delegator acts as the central task information
service for the ibfabric samplers (Figure 1). The Delegator
defines, and communicates a subset of the list for each ibfabric
sampler, the set of IB switch ports and metrics for each
sampler to monitor.

Fig. 1. LDMS ibfabric Sampler

For a sampler on a single node serially querying a list
of IB ports, we define spread as the time interval between
the start of the first port query made and the end of the
last port query made. Synchronous acquisition of port counter
data is subject to spread, to clock skew across nodes, and to
jitter due to thread processing on the sampler host. Higher
sampling frequencies, along with low time skews and spreads,
of network performance counters enable higher resolution
exposure of traffic and congestion details within an IB network
fabric.

SAND2017-8817C



We seek to understand the limits and overheads of collecting
system-wide IB port performance snapshots, including:

• the interference of applications with IB data collection.
• the interference of IB queries with applications.
• the worst case effects of redundant port data collection.
• the minimum spread time of port data collection.
• the impact of topology (hops, multiple targets) on spread.

Experimental details and results are provided in Sections IV
and V respectively.

III. RELATED WORKS

Previous research has been performed, using simulations, to
try to predict how often IB network congestion occurs and the
severity of the congestion when computations are performed
[8]. Current hardware and firmware for reducing contention
on IB networks involves checking network drain interfaces
for congestion and then reporting back to the network source
interface. Delay injection is performed in some implementa-
tions of IB hardware [17]. Note that source initiated delay
injection reduces the overall flow rate of data and can reduces
computational performance.

Experimental work showing use of synchronized fine
grained network performance counter data by user applications
for making run-time partitioning decisions has shown promise
in Cray Gemini based networks [9]. While this example uses
a different network technology, similar methodologies could
provide run-time insight, and potentially improved computa-
tional speed, in IB based networks.

The ability to scan a complete InfiniBand fabric, including
switches, was made possible in the Ohio State University
INAM monitoring system and in the INAM2 monitoring
system [10] [11]. Note that for both INAM and INAM2,
network performance metrics are obtained from Open Subnet
Manager sweeps and the data is neither time synchronized nor
fine-grained.

Ganglia monitoring systems enable end-point analysis of
real-time IB network traffic [13]. However, Ganglia doesn’t
gather performance data from IB switch ports.

Nagios, another common monitoring system used in HPC
systems, can be programmed to collect congestion metrics
[14]. However, Nagios has a very wide and unpredictable
window of sampling time and does not provide time stamps
to help in later analysis of the metric data that was gathered.

The IB Subnet Manager has the ability to query for net-
work congestion metrics during an interval fabric connection
integrity sweep [12]. Each IB switch utilizes an internal
processor to respond to performance metric requests made to
it. During a Subnet Manager sweep, a Perf Manager program
is tasked with retrieving a subset of performance metrics from
each IB switch port. Depending upon the version of Perf
Manager used, transmit wait counter data, which can be used
as an indicator of congestion, may or may not be recorded.
In addition, due to the dynamic and iterative procedure that
the Subnet Manager utilizes to traverse the network fabric and
associated time variation in performance metric data gathering,

find-grained time stamping of IB network performance data is
not performed.

The LDMS ibfabric sampler, that we created for gathering
IB switch data, has the ability to gather and aggregate large
amounts of synchronized high-fidelity IB network performance
data. This sampler also provides a time-stamp to aid in IB
network traffic analysis [15]. We could not find any previ-
ous studies that assess the impact that large volumes of IB
performance counter queries might have on user application
performance.

Our expectation was that application run-times might in-
crease with large volumes of performance metric queries
because the highest suality of service priority is given to
performance metric data requests on IB. These port metric
query requests are served by virtual lane VL15. The goal of
our current work is to quantify any adverse impact that IB
performance counter sampling might have on user applications
and understand the limitations of sampling frequency in terms
of switch capabilities.

IV. EXPERIMENTS

A Sandia National Labs HPC testbed system with 16
compute nodes was used for our overhead analysis work. The
IB fabric consists of a core switch and 2 leaf switches (See
Figure 2) each with 36 QDR ports. Eight compute nodes are
connected to each leaf switch. Each leaf switch is connected to
the core switch with 2 IB links. For our experiments, samplers
were available to be run from each compute node. Each query
experiment utilized either 1 sampler or all 16 samplers. In both
cases, every target port was queried by each active sampler.

Each data sample included 24 port performance data coun-
ters obtained through MAD performance query via. To gather
spread time, we wrapped the MAD calls with gettimeofday.
Each experiment was carried out eleven times to generate
results. Our samplers were configured to request counters once
every second.

Fig. 2. Testbed Cluster Switch Layout

A. Application Loads

In order to provide long enough traffic data generation
periods for each test performance metric query, very large
iterations were chosen for both the InfiniBand bandwidth
tests and the MPI RDMA InfiniBand traffic tests. For spread
time and application interference experiments, our benchmarks
include ib send bw, ib write bw, and ib read bw consisting
of 1,000,000 64K messages and MPI tests.

MPI tests included MPI All-Gather, MPI All-Reduce, and
MPI Scatter. The MPI tests were generated using SLURM,



OpenMPI, and Sandia National Labs MPIPerf [16]. MPI traffic
was generated using long long C variable types, and direct
RDMA messaging was chosen as the thread data exchange
format. The matrix size used in our MPIPerf experiments was
1000 elements by 1000 elements. We exchanged matrix values
1 billion times.

B. Measuring Query Times

IB performance metric sets are collected from switches that
are adjacent to the samplers (local), from samplers where
queries require a traversal to the core switch (1 hop), and
where queries that require a 2-level traversal to the leaf switch
that is located the largest distance from the sampler (2 hops).
For example, in Figure 3, ibfabric Sampler 1 is configured to
request port performance metrics from Leaf Switch 2.

We wanted to measure how network topology and applica-
tion load affect spread time. We configured samplers to gather
performance metrics from 1, 2, or 3 switches. Each sampler
would gather metrics for either 36 ports, 72 ports, or for 108
ports (3 switches by 36 ports each).

Fig. 3. Sampler Retrieving Metric Data From 2 Hops

C. Measuring Application Impact

We expected that there would be some impact on appli-
cations when the ibfabric samplers are making performance
metric requests. We varied the sampler topology and the
network switch sampling frequency to see if there was an
effect on application network bandwidth. Data was taken at
once a second (1 Hz), at 10 Hz, and at 100 Hz. We performed
impact test experiments on application network bandwidth
using the case of 1 sampler requesting performance metrics
for all 3 switches and for 16 samplers for all 3 switches.

V. RESULTS

For each observation set, we computed the mean, standard
deviation, maximum, and minimum. For deployment purposes,
worst cases are often more important than the standard devia-
tion, so the error bars plotted in Figures 4 and 5 are extreme
observations rather than the standard deviation.

Metric spread time: As seen in Figure 4, the largest delays
in gathering IB switch performance metrics occured when all
16 ibfabric samplers queried the same 36 ports on the same
core switch at the same time. The core switch is located 1 hop
from the samplers over their leaf switches. Our worst result
shows the spread time reaches just over 1 millisecond.

Our spread time experiments showed that the shortest per-
formance counter query times are found for a single ibfabric
sampler reaching its locally connected switch.

After adding application loads, we found small increases in
the performance metric access times when we were accessing
local ports. As might be expected, a single sampler accessing
portions of the fabric has lower performance metric acquisition
times than all samplers accessing the same switches in the
fabric simultaneously.

Interestingly, the minimum observed sample spread times
are around 50 microseconds independent of topology, and the
minimum observed spread time is significantly higher for the
ib read bw test at around 150 microseconds.

Data collection impact on applications: As seen in Figure
5, a single sampler gathering metrics from all 3 switches (108
ports) has minimal impact on the IB (IP-over-IB) bandwidth
benchmarks. When we ran our experimental case with all the
samplers simultaneously making requests to all 3 switches,
the entire switch hierarchy, we found that sampling reduces
bandwidth performance significantly at 100 Hz for both read
and write benchmarks, but insignificantly at 1 Hz.

A naive t-test suggests the bandwidth increase seen with
the 1 Hz and 10 Hz non-redundant samplings of the write
benchmark is due to the sampling with a 99% confidence level.

VI. CONCLUSIONS & PRELIMINARY RECOMMENDATIONS

Analysis conducted thus far suggests the following:
1) We can measure IB switch performance metrics with

negligible bandwidth overhead and at frequencies up to
100Hz if the data collection is organized carefully.

2) Local and remote access have similar spread time when
there is no redundancy.

3) Figures 4 and 5 both suggest that the presence of average
metric collection activity may slightly improve perfor-
mance of both the sampling process and co-located
applications; explaining this effect requires further study.

4) Collecting with complete redundancy slows response to
performance metric queries.

Recommendations Include:
1) Following conclusions 1 and 2, sampling of the switch

hierarchy in a production cluster can be done from a few
service nodes rather than spread across compute nodes.

2) Prefer sampling local switches over remote switches,
when possible.

VII. FURTHER WORK

To maximize the amount of IB performance metric data
available, we will:

1) Repeat this work on a larger fabric where core switch
port counts number in the hundreds.

2) Perform experiments where switch ports are distributed
to multiple samplers, non-redundantly.

3) Quantify how the ibfabric sampler affects MPI applica-
tion and RDMA benchmark runtimes and latencies.

4) Seek a method for determining near-optimum organiza-
tion of sampling for various switch topologies, under
application interference and sampler process failures.

5) Publish our LDMS ibfabric plugin code.



 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

1 to 36 local ports

16 to 36 local ports

16 to 36 core switch ports

1 to 108 ports

16 to 108 ports

P
o
rt

 q
u
e
ry

 t
im

e
 (

s)

Topology

no load
scatter

allreduce
allgather

IB write
IB send
IB read

Fig. 4. Comparison of Average Sample Spread Time vs Load and Topology with Error Bars Indicating Extreme Spread Times Observed

-5

-4

-3

-2

-1

 0

 1

1
 t

o
 1

0
8

 r
e
a
d

1
 t

o
 1

0
8

 w
ri

te

1
6

 t
o
 1

0
8

 r
e
a
d

1
6

 t
o
 1

0
8

 w
ri

te%
 I
B

 b
a
n
d

w
id

th
 g

a
in

Topology and test

1 Hz
10 Hz

100Hz

Fig. 5. IPoIB Overhead as Percentage of Average Unsampled Bandwidth
vs Sampling frequency and Redundancy with Error Bars Indicating Extreme
Individual Change Observed

REFERENCES

[1] Web article about InfiniBand use in HPC systems. [Online].
Available: https://www.hpcwire.com/off-the-wire/infiniband-continues-its-
position-as-preferred-top500-supercomputing-interconnect .

[2] A. Agelastos, B. Allan, J. Brandt, A. Gentile, S. Lefantzi, S. Monk,
J. Ogden, M. Rajan, and J. Stevenson Continuous whole-system moni-
toring toward rapid understanding of production HPC applications and
systems, Journal of Parallel Computing, October, 2016.

[3] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, T. Tucker The Lightweight Distributed Metric
Service: A Scalable Infrastructure for Continuous Monitoring of Large
Scale Computing Systems and Applications, SC ’14: Proceedings of the

International Conference for High Performance Computing, Networking,
Storage and Analysis, November 21, 2014.

[4] A. Deconinck, A. Bonnie, K. Kelly, S. Sanchez, C. Martin, M. Mason,
J. Brandt, A. Gentile, B. Allan, A. Agelastos, M. Davis, and M. Berry,
Design and implementation of a scalable monitoring system for Trinity,
CUG2016 Proceedings–Cray User Group, June 13, 2016.

[5] J. Pelissier, Providing Quality of Service over InfiniBand Architecture
Fabrics. Proceedings of the Eighth Symposium of Hot Interconnects,
August, 2000.

[6] F. Alfaro, S. Sanchez, and D. Duato, QoS in InfiniBand Subnetworks.
IEEE Transactions on Parallel and Distributed Systems, September, 2004.

[7] D, Crupnicoff, S. Das, and E. Zahavi, Deploying Quality of Service
and Congestion Control in InfiniBand-based Data Center Networks, .
Mellanox White Paper, October, 2005.

[8] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Wi, W. Rooney,
T. Engbersen, R. Luijten, R. Krishnamurthy, and J. Duato, Solving Hot
Spot Contention Using InfiniBand Architecture Congestion Control, .
Proceedings of the 11th International Symposium on High-Performance
Computer Architecture, February, 2005.

[9] J. Brandt, K. Devine, and A. Gentile, Demonstrating Improved Applica-
tion Performance Using Dynamic Monitoring and Task Mapping, . 2014
IEEE International Conference on Cluster Computing, September, 2014.

[10] N. Dandapanthula, H. Subramoni, J. Vienne, K. Kandalla, S. Sur, S. K.
Panda, R. Brightwell, INAM - A Scalable InfiniBand Network Analysis
and Monitoring Tool, . , 4th International Workshop on Productivity and
Performance, August, 2011.

[11] H. Subramoni, A. M. Augustine, M. Arnold, J. Perkins, X. Lu,
K. Hamidouche, D. K. Panda, INAM2: InfiniBand Network Analysis
and Monitoring with MPI, 31st International Conference ISC High
Performance, May, 2016.

[12] Open Fabrics Alliance (2017). [Online]. Avail-
able: The OpenFabrics Enterprise Download, . ,
https://www.openfabrics.org/downloads/OFED/ofed-4.8-daily/

[13] M. Massie, V. Vuksan, B. Nicholes, B. Li, R. Alexander, J. Buch-
binder, F. Costa, A. Josephsen, P. Phaal, and D. Pocock, Monitoring
with Ganglia–Tracking Dynamic Host and Application Metrics at Scale.
Newton, Massachusetts: O’Reilly Media, 2012.

[14] D. Josephsen, Building a Monitoring Infrastructure with Nagios.
Boston, Massachusetts: Pearson Education, Inc., 2007.

[15] M. Aguilar, J. Brandt, B. Allan, and D. Pase Host Base Inifniband
Network Fabric Monitoring. presented at Open Fabrics Alliance 13th
Annual Workshop, March 30, 2017.

[16] D. Pase MPI Performance Benchmark. private communication, MPI
performance benchmark, August 19, 2016. dmpase@sandia.gov.

[17] Userguide explaining Delay Injection. [Online]. Mellanox OFED for
Linux User Manual, Rev 2.1-1.0.0 . Mellanox Technologies, February
18, 2014, pp. 216-217.


