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Summary of Control Design

I Microgrid - Single or networked power grid
I Agents - Software that coordinates how the
different controls operate the microgrid based on
information from the sensors and its own internal
algorithms

I Sensors - Any instrumentation that provide
information about the microgrid

I Real-time Controller - Control that provides fast,
subsecond updates

I On-line Controller - Control that provides medium to
long term planning

I Predictive Engine - Algorithm that provides long
term forecasting for the microgrid
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Summary of Control Design
On-line

I Executes in a variable amount of time
I Solves for new control while the system is in
operation

Optimal Control
I Control based on an optimization formulation
I Generally, solution time only deterministic for a
linear-quadratic control

Receding Horizon Control
I Behavior of system predicted over a time period
called the planning horizon

I Control based on this prediction
I Control executed for as long as the prediction
remains accurate, which is called the execution
horizon

This presentation details an optimal control algorithm
based on an on-line optimization engine that solves for
a receding-horizon control
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High-level View of Optimal Control

Minimize Use of storage devices
Change in boost converter duty cycles
Parasitic losses
Power used by storage devices

Subject to Boost converter state equations (A)
DC bus state equations (B)
DC to DC bus state equations (C)
Power and energy equations
ODE discretization
Bounds on voltages, currents, duty cycles, etc.

Detail of microgrid components to come next
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Microgrid Components
Boost Converter (A)

LA ˙iA =−RAiA + vA
+uAuAswitch
−λA(Φ1vB)

DC Bus (B)

CBv̇B =− vB
RB + uBuBswitch

+ΦT
1(λAiA)− ΦT

2 iC
+ΦT

3(λCiC)

DC to DC Bus (C)
LC ˙iC =−RCiC + uCuCswitch

+Φ2vB − λC(Φ3vB)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

Control Design

Predictive Engine

Results

Summary



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenge of Receding-Horizon Controls

I Receding-horizon controls can effectively plan into
the future

I Planning into the future requires a prediction
I Predicting the future can be difficult at best
I Receding-horizon controls handle this challenge
with a shorter execution-horizon than planning

I Nonetheless, efficacy of the method depends on a
good prediction

I In a microgrid, prediction generally means
predicting the load demands

I If the future loads are known exactly, the following
is unnecessary
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Adaptable Signals

Let φ : R → R be a known signal and consider
I Time shift - φ(t− T)
I Time scaling - φ(αt)
I Amplitude scaling - βφ(t)

Combining each of these produces an adaptable signal

βφ(αt− T)
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Matching Adaptable Signals

To match φ to data {(ti,yi)}mi=1, solve

min
(T,α,β)∈R3

m∑
i=1

(βφ(αti − T)− yi)2.

If exact signal unknown, match against multiple signals
{φj}nj=1 by solving

min
j=1,...,n

{
min

(T,α,β)∈R3

m∑
i=1

(βφj(αti − T)− yi)2
}
.

Essentially, match multiple signals and pick the best fit.
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Why Not Use Machine Learning?
I Machine learning certainly applicable for load
prediction

I Requires large amount of data, which we may or
may not have

I Potential dimensionality and mapping problems
I Input to method is a number of samples
I Output from method is a function at best or at least
a specified number of predictions at various time
intervals

I Machine learning models must fix number of inputs,
no more or less information tolerated

I Require one machine learning model for each point
in time in the output

I Optimization approach above exploits that we know
the kinds of loads that will occur, but not
necessarily the time delay or scaling
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Predicting Inverse Exponential Spike in Load

Consider an inverse exponential

φ(t) =
{
a− be−t t ≥ 0
a− bet t < 0

where

I v = 480 V
I pmin = 5000 W
I pmax = 15000 W
I rmin = v2

pmin

I rmax = v2
pmax

I a = rmin
I b = rmin − rmax

Want to predict this load given limited information with
error



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Predicting Inverse Exponential Spike in Load
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Predicting Inverse Exponential Spike in Load
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Differentiating Between Different Loads
Consider a quadratic spike in load

φ(t) = at2 + bt+ c
where

I W = 5

I a = rmin−rmax
W2

I b = 0 Ω

I c = rmax

and an oscillatory spike in load that follows a Ricker
wavelet

φ(t) = a+ b
(
1− t2

σ2

)
e

−t2
2σ2

where

I σ = 1
I a = rmin

I b = rmax − rmin

Want to differentiate between three different load types
and predict the correct load
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Differentiating Between Different Loads
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Differentiating Between Different Loads
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Differentiating Between Different Loads
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Differentiating Between Different Loads
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Optimal Control for Navy Ship

Consider the Navy ship configuration

Microgrid 1

DC Bus

AC/DC

~

Grid-to-Grid

PM Generator

10 kW Energy 

Storage

Pulsed Load

Grid-to-Grid
Microgrid 2

DC Bus

Energy 

Storage
AC/DC

~

Microgrid 3

DC Bus

Energy 

Storage

240 V DC

240 V DC

480 V DC

4.0 kW

4.0 kW

4.0 kW
PM Generator

10 kW

14 kW/5 kJ

14 kW/5 kJ

14 kW/5 kJ
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Optimal Control for Navy Ship

Model the Navy ship with

In this experiment, we
I Predict spike in load over a 3 s time horizon for a
10 s load

I Solve for an control over 10 s given both the exact
load as well as prediction

I Control minimizes the use of storage devices
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True vs Prediction in Spike in Load
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−2000

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10

Po
w
er

(W
)

Time (s)
Starboard Generator

Port Generator
Starboard Bus

Port Bus
Starboard Connector

Port Connnector
Center Bus



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Computed Resistive Load (Using Prediction)
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Energy in Storage (Using Prediction)
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Power from Storage (Using Prediction)
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Voltage (Using Prediction)
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Summary
Summary of Results

I Nested control architecture consisting of
I Agents that coordinate information between the
microgrid and the various control algorithms

I Real-time controller
I Predictive engine
I On-line controller

I Predictive engine works well modulo the amount of
data and errors in the data

I Control inaccuracy directly correlates to error in the
prediction, but operating conditions never violated

Future Work
I Assessment of how errors and limited data affect
the real-time control when integrated with the
on-line control
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