QUAD MESHING, CROSS cucorr srouc
FIELDS, AND THE GINZBURG-
LANDAU THEORY

Ryan Viertel®®, Braxton Osting?
Sept 29 - Oct 1, 2017

~ S The 3rd Annual Meeting of SIAM Central
1 [ States Section
Colorado State University
Fort Collins, CO

a University of Utah
b Sandia National Laboratories

) Sandia
U.S. DEPARTMENT OF ! ¥V J .!b 2@ E/\SI_ i
@ ENERGY MINISA @ Mational _

National Nuciear Securtty

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology \&
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.




Introduction




Classical Quad Meshing Methods

Pattern Based Unstructured - Paving




Basic Cross Field
Meshing Algorithm
(Kowalski et al. 2013)




2D Cross Field Meshing Algorithm




2D Cross Field Meshing Algorithm
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2D Cross Field Meshing Algorithm
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2D Cross Field Meshing Algorithm




2D Cross Field Meshing Algorithm
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2D Cross Field Meshing Algorithm
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Cross Field Singularities
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2D Cross Field Meshing Algorithm




2D Cross Field Meshing Algorithm
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Connection to Ginzburg-
Landau Theory




Infinite Energy Problem in Cross Field Design

e Unit vector constraint causes problem to become ill-defined.
* How do you find the minimum between multiple infinite values?
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Ginzburg-Landau Functional

Original problem:

( mmE
) / Vul?dA
u(x) = g(x) Vo € 0D
lu(z) =1 aexeD

\.

Relaxed problem:

min  F.(u)
uw€H1(D,C)
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Results of Ginzburg-Landau
Theory and Applications to
Cross Fields




Brouwer Degree

* Let 9(z) be the boundary condition on the domain G.
* Let d =deg(g,0G) be the Brouwer degree.




Result: Well Defined Limit of Relaxed Problem

Theorem 2.2.2 (Bethuel et al. [4]|). Let d = deg(g,0D). Given a sequence
en — 0 there exists a subsequence €,,, and exactly d points a1, as, ...,aq in D C C

and a smooth harmonic map u,: D\ {a1,...,aq} — T with uy = g on D such
that

Ue,. — Ui |in Clho (D \ U(a;)) Yk and in CH*(D \ U(a;)) Yor < 1

In addition, if d # 0 each singularity of u, has index sgn(d) and, more precisely,
there are complex constants (o) with |o;| =1 such that
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This gives us a generalized sense in which to understand the energy
minimization problem




Result: Explicit Formula to Design Field with
Fixed Singularities
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Application: New Cross Field Design Method




Merriman-Bence-Osher
(MBO) Method




Merriman-Bence-Osher (MBO) Method

Original Method

* Introduced as a method for motion by mean curvature
* Minimizes an two-well potential energy analogous to the complex
GL energy

New Application to Frame Fields

* [terative method to minimize cross field energy:
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MBO Method
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Asymptotic Behavior of Cross
Fields Near Singularities




Riemann Surface and Streamlines




Separatrices of a Singularity

aligned canonical harmonic cross field on D.
—d

of index d/4 with d < 4. There are exactly 4 — d

LEMMA 5.1. Let f be a boundary
separatrices meeting at a. These separatrices partition a neighborhood of a into 4

Let a be an interior singularity of f
even-angled sectors.
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Boundary Singularities

. a [
i +
)(7‘ ++ ‘l~+

LEMMA 5.4. Let ¢ be a boundary singularity of f of index d/4 with d < 2. There
are exactly 3 — d separatrices meeting at ¢ (including the boundaries themselves).
These separatrices partition a neighborhood of ¢ into 2 — d even-angled sectors.




Partition into four-sided regions
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Meshing
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Limit Cycles




Future Research




Future Research: Paver Replacement

1
——

L |

Wish List

. High element quality — isotropic, close to a perfect squares
. Boundary aligned elements

Block Structured mesh — Minimal number of singularities
Prescribed size map

Prescribed boundary intervals.

. Guaranteed results

Produces predictable output
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Extend New Algorithms to Higher Dimensions

* Extend fixed frame field
design algorithm to 2-
manifolds with arbitrary
borders

e Extend MBO
method to 3D

Ray et al. 2016




Summary

1. Connection with Ginzburg-Landau Theory

2. MBO method for minimizing cross field energy
3. Fixed Frame field design method

4. Asymptotic Behavior of Singularities

5. Cross Field Partitioning Theorem
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Extra Slides




Implication for Cross Fields: Strange Minimizer
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Cross Fields Automatically
Generate Good Meshes in 2D
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