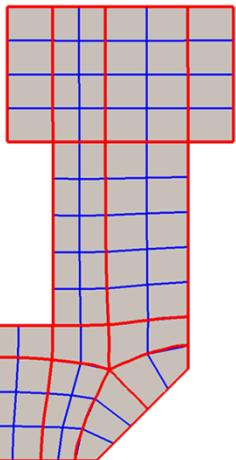


QUAD MESHING, CROSS FIELDS, AND THE GINZBURG- LANDAU THEORY

SAND2017-8794C



Ryan Viertel^{a,b}, Braxton Osting^a

Sept 29 – Oct 1, 2017

**The 3rd Annual Meeting of SIAM Central
States Section**

Colorado State University

Fort Collins, CO

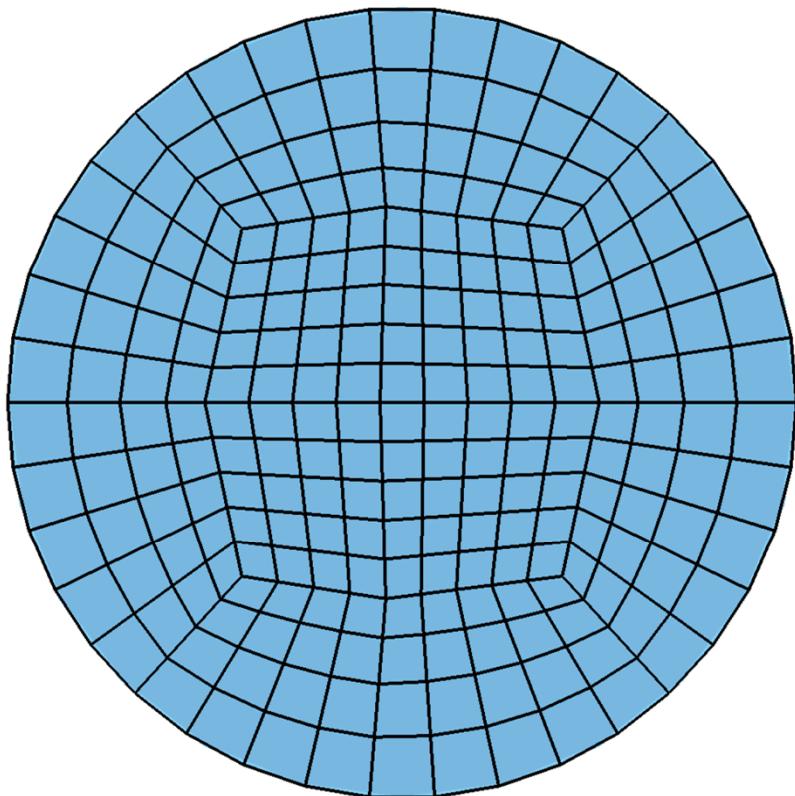
a University of Utah

b Sandia National Laboratories

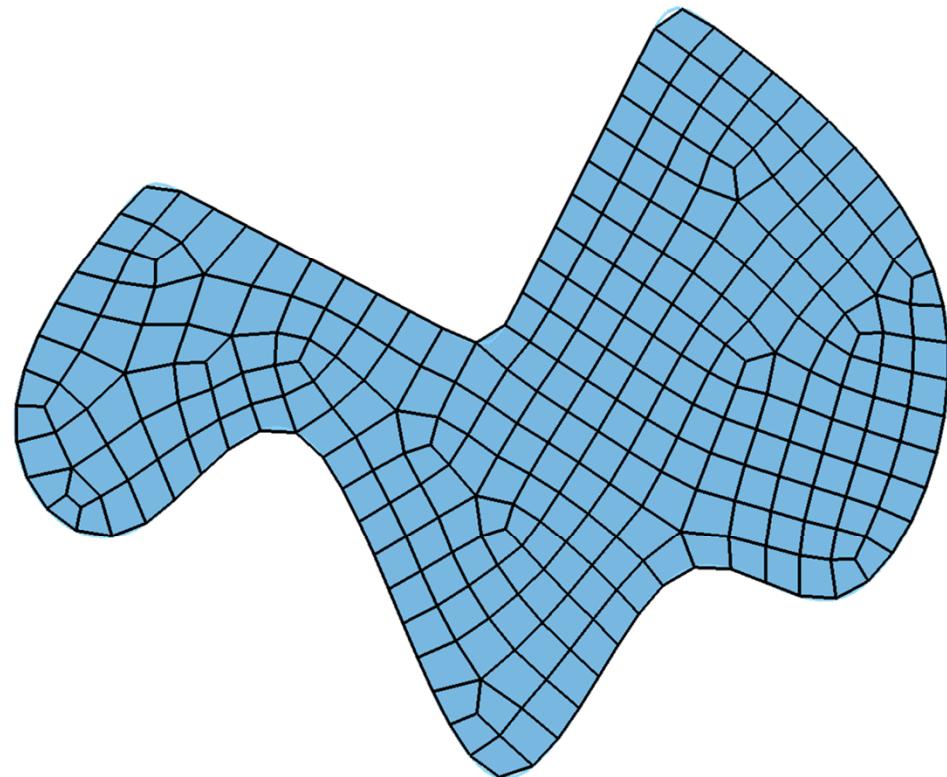
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

Classical Quad Meshing Methods



Pattern Based

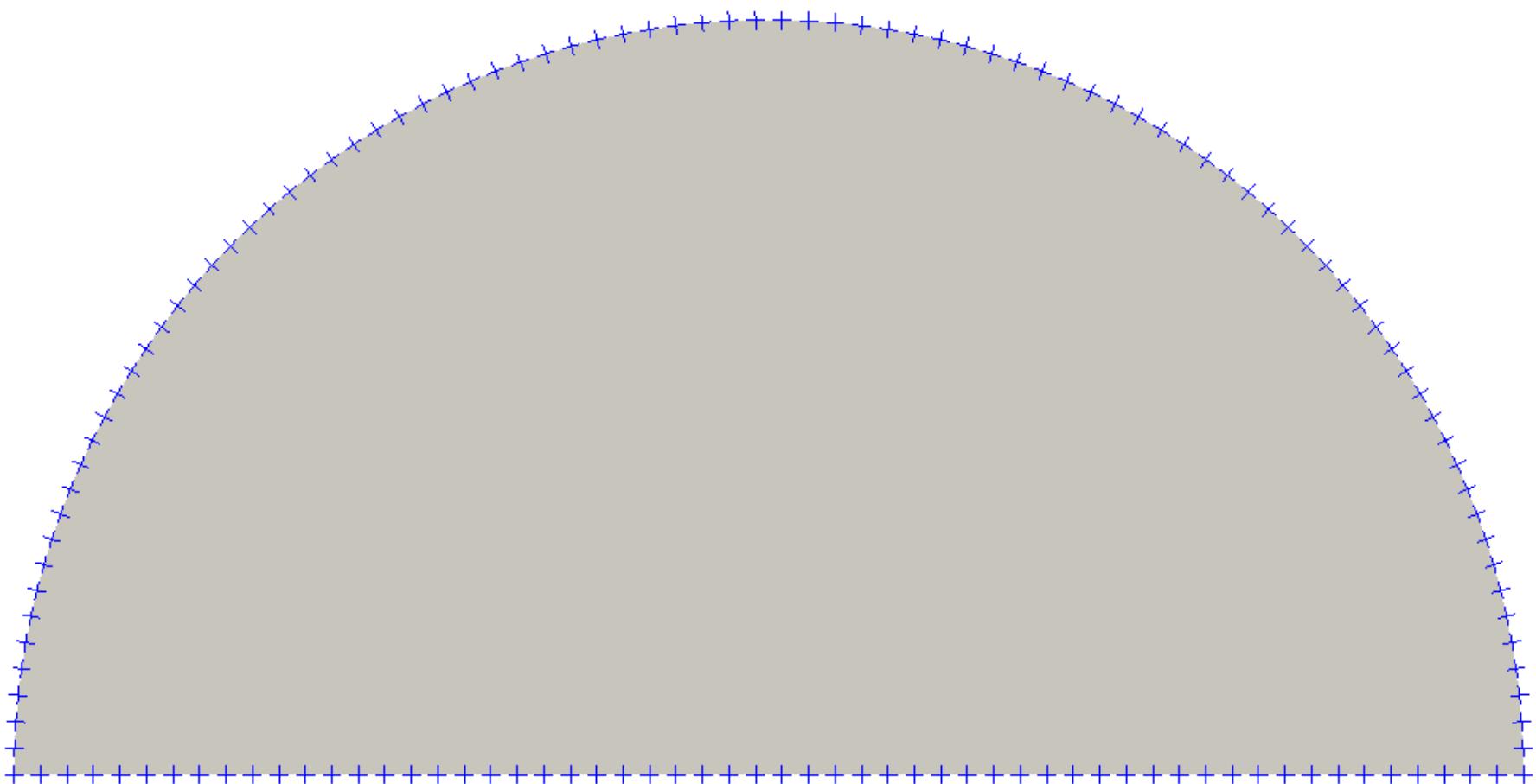


Unstructured - Paving

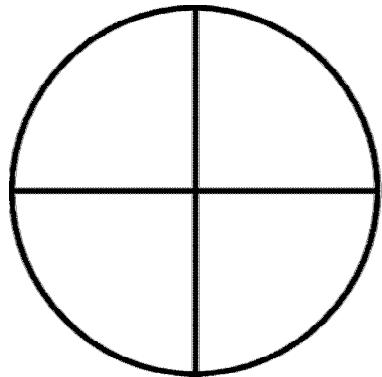
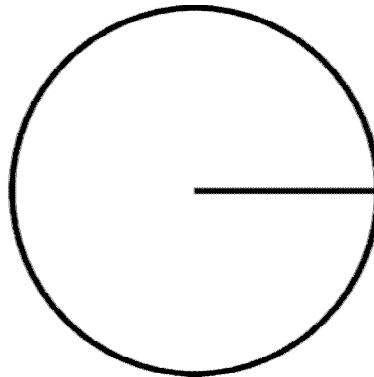
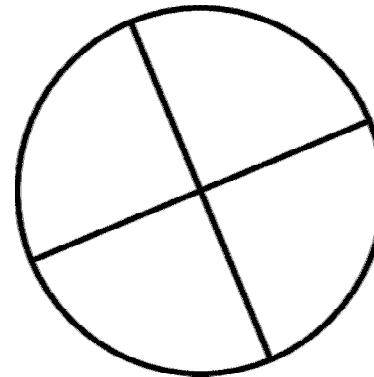
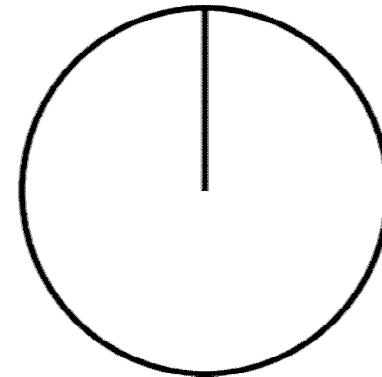
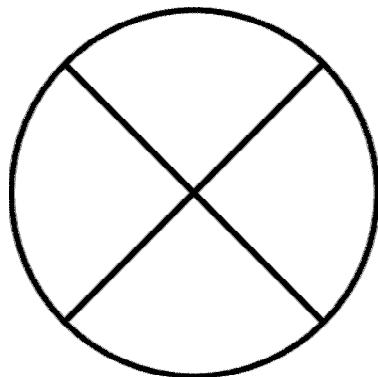
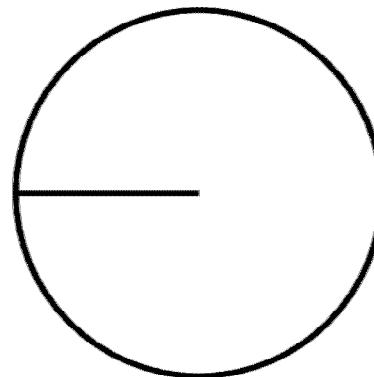
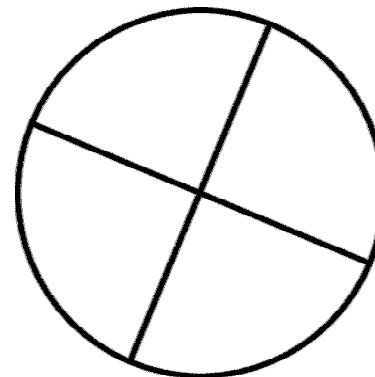
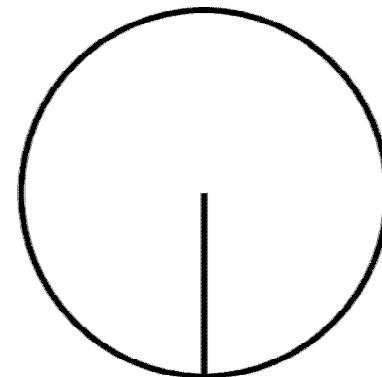
Basic Cross Field Meshing Algorithm (Kowalski et al. 2013)

2D Cross Field Meshing Algorithm

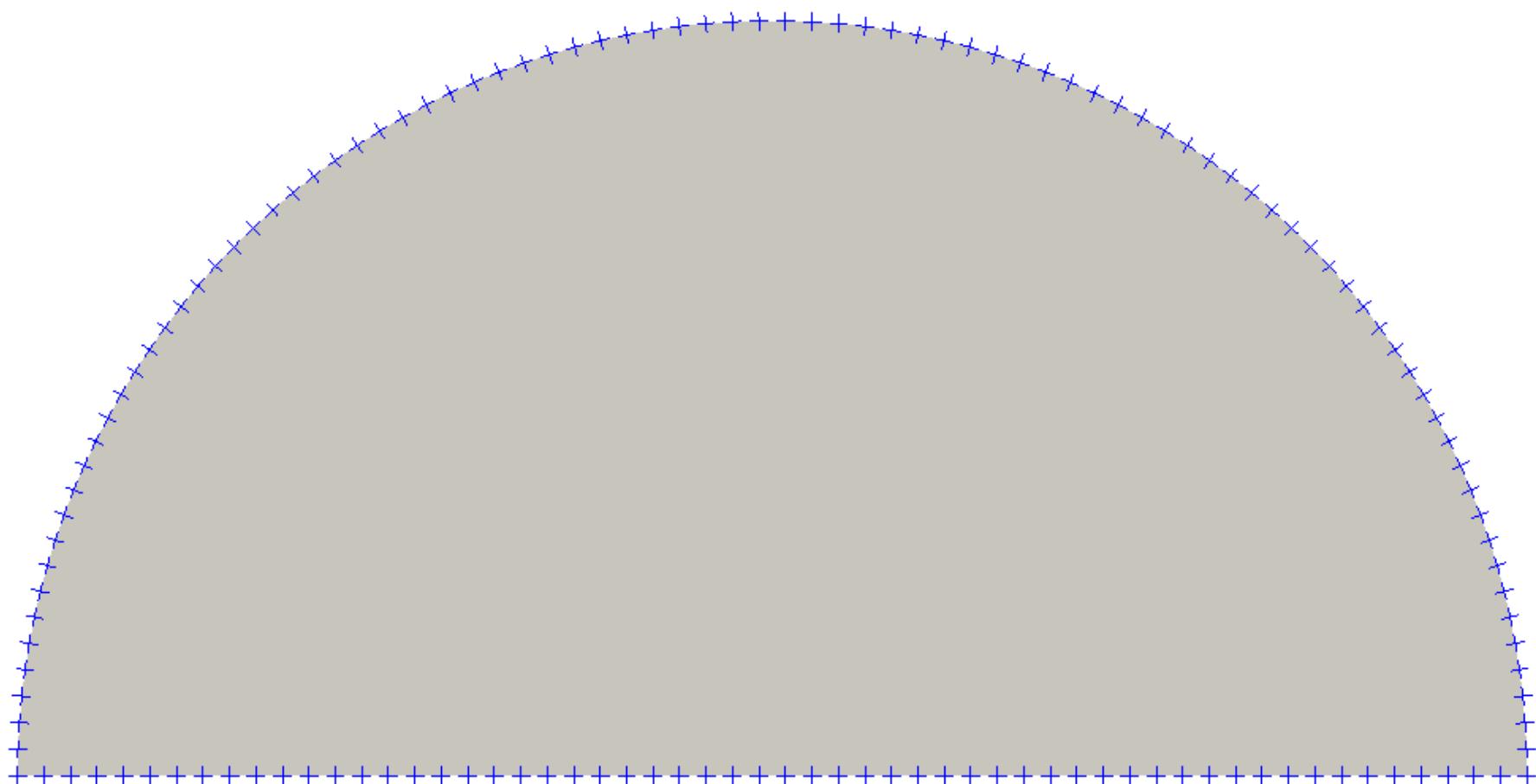
2D Cross Field Meshing Algorithm



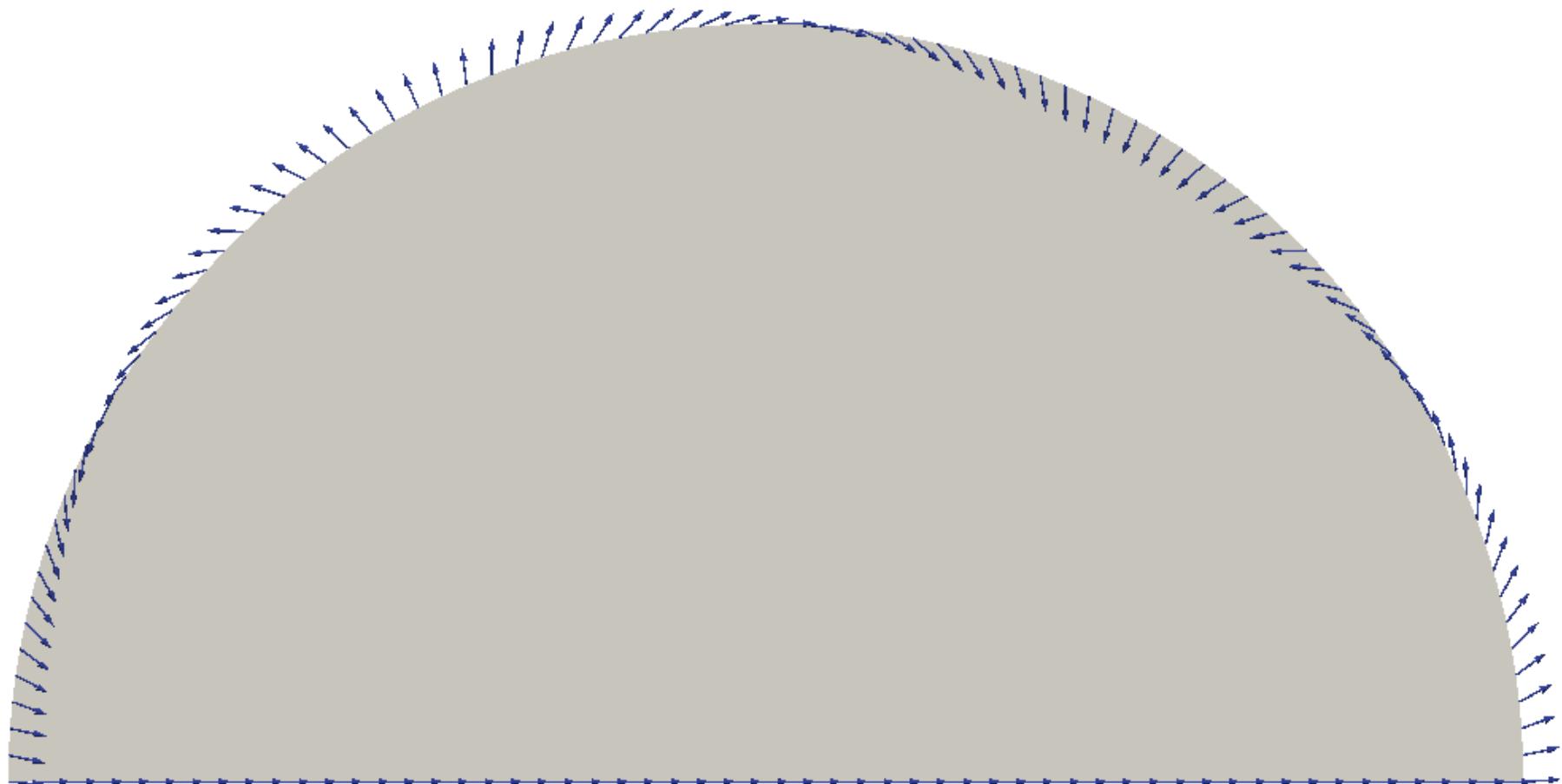
The Representation Map



2D Cross Field Meshing Algorithm



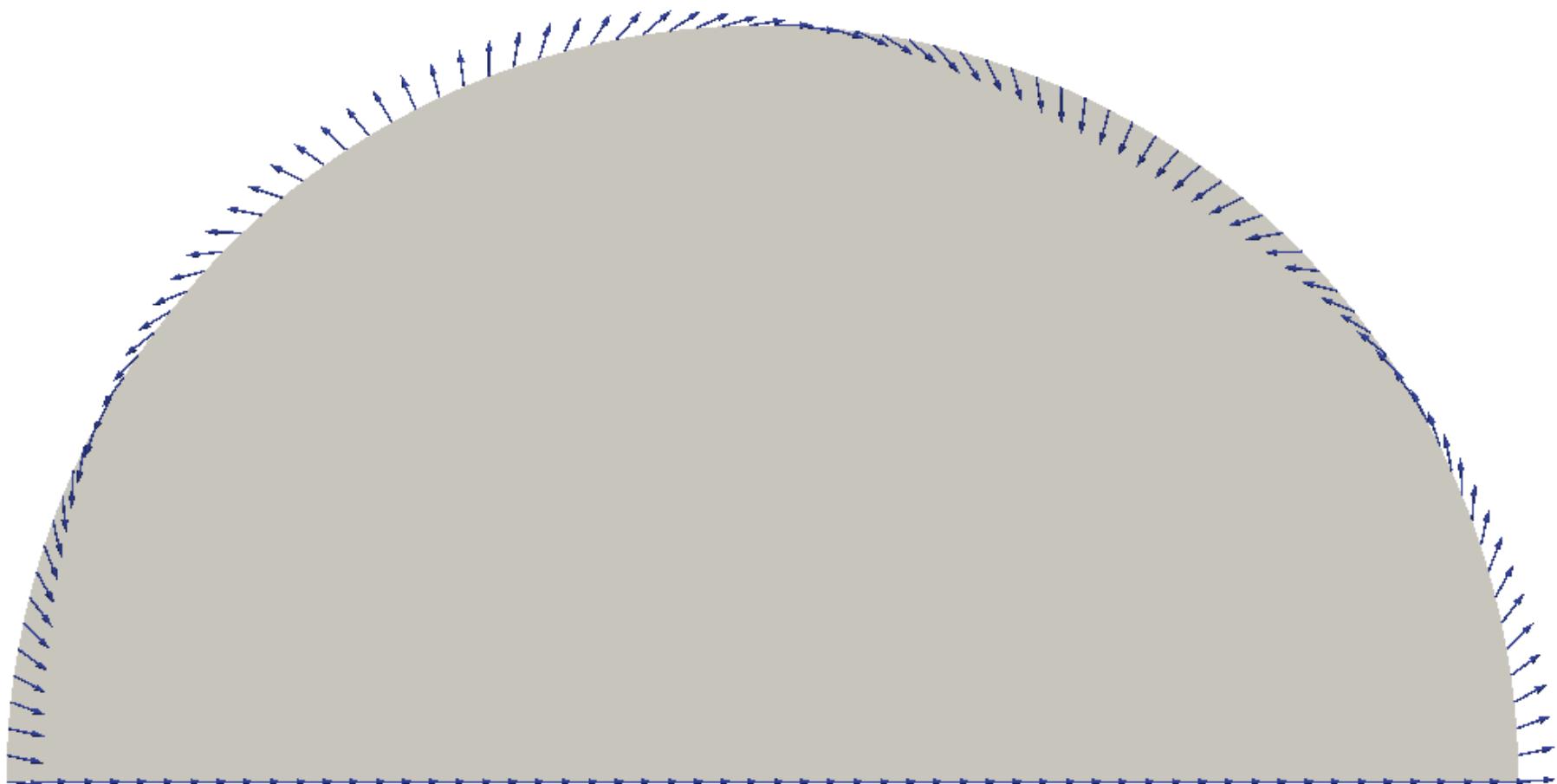
2D Cross Field Meshing Algorithm



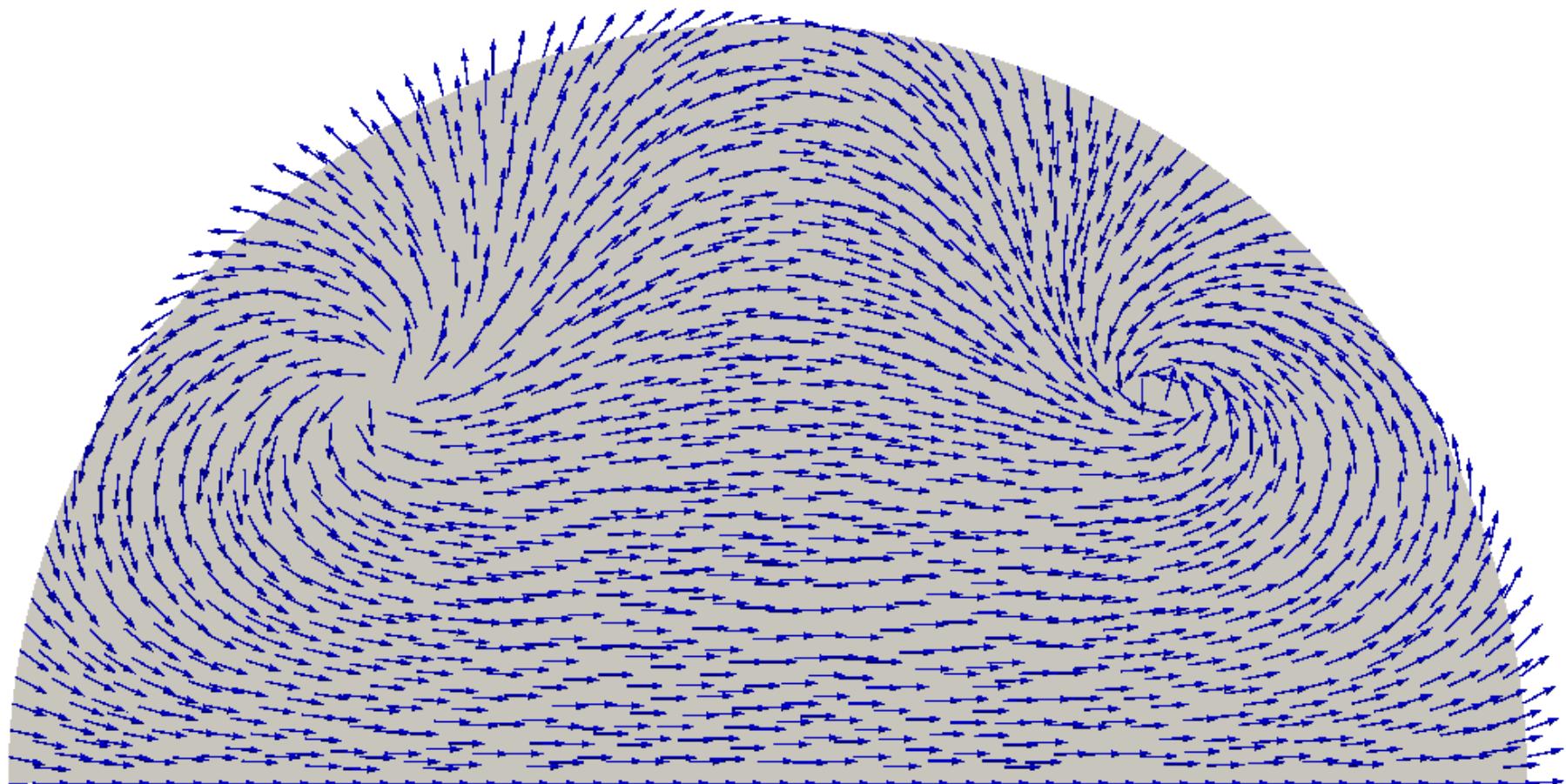
2D Cross Field Meshing Algorithm

$$\left\{ \begin{array}{l} \min_u E(u) \\ E(u) = \frac{1}{2} \int_D |\nabla u|^2 dA \\ u(x) = R(f_0(x)) \quad \forall x \in \partial D \\ |u(x)| = 1 \quad a.e. x \in D \end{array} \right.$$

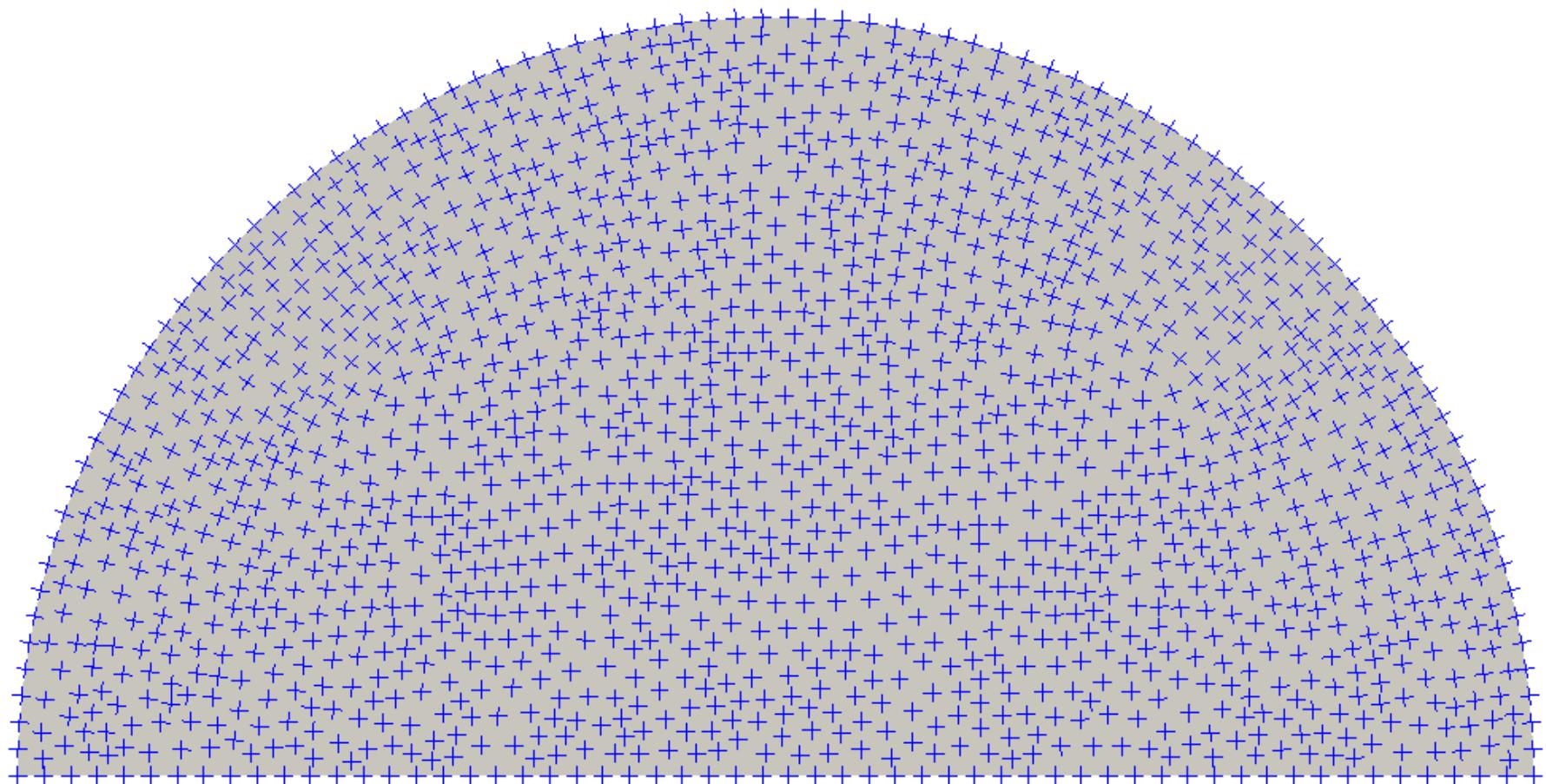
2D Cross Field Meshing Algorithm



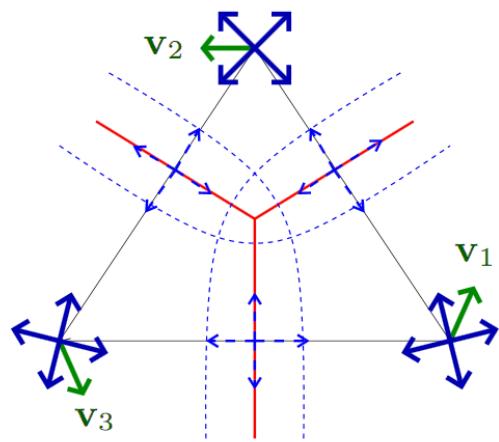
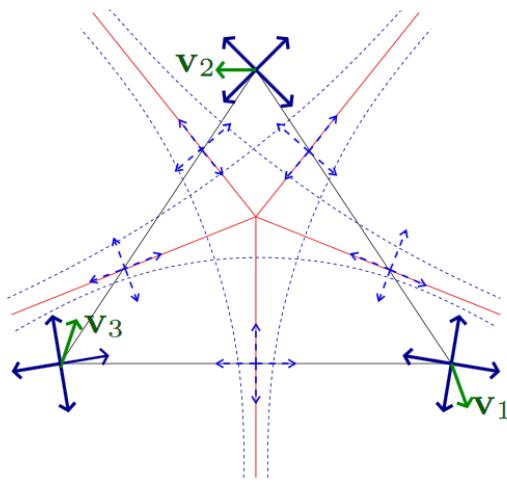
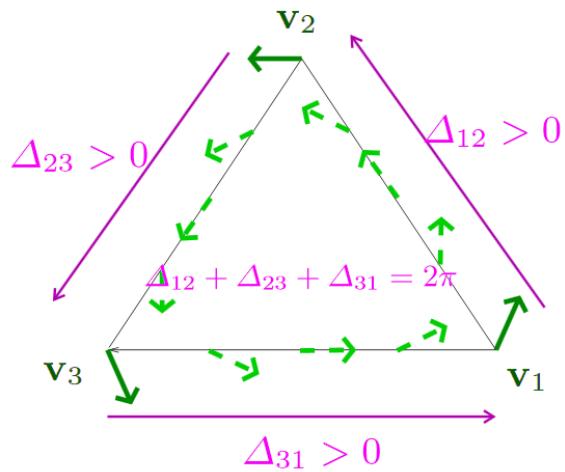
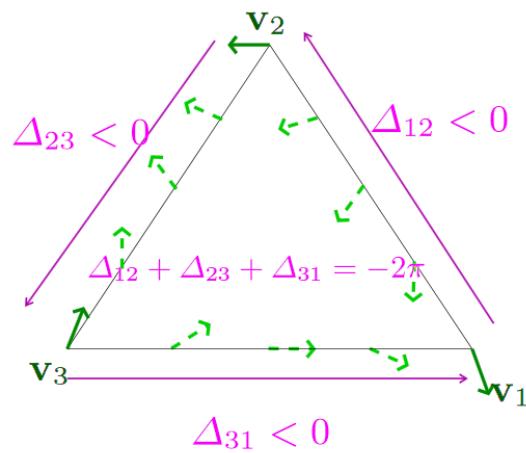
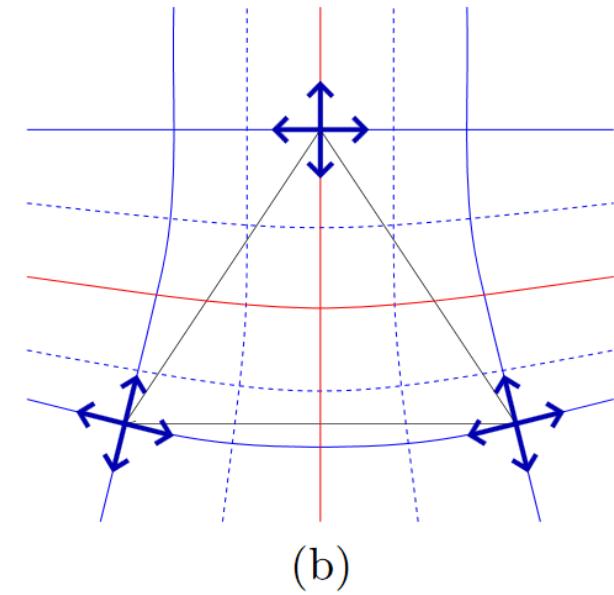
2D Cross Field Meshing Algorithm



2D Cross Field Meshing Algorithm



Cross Field Singularities

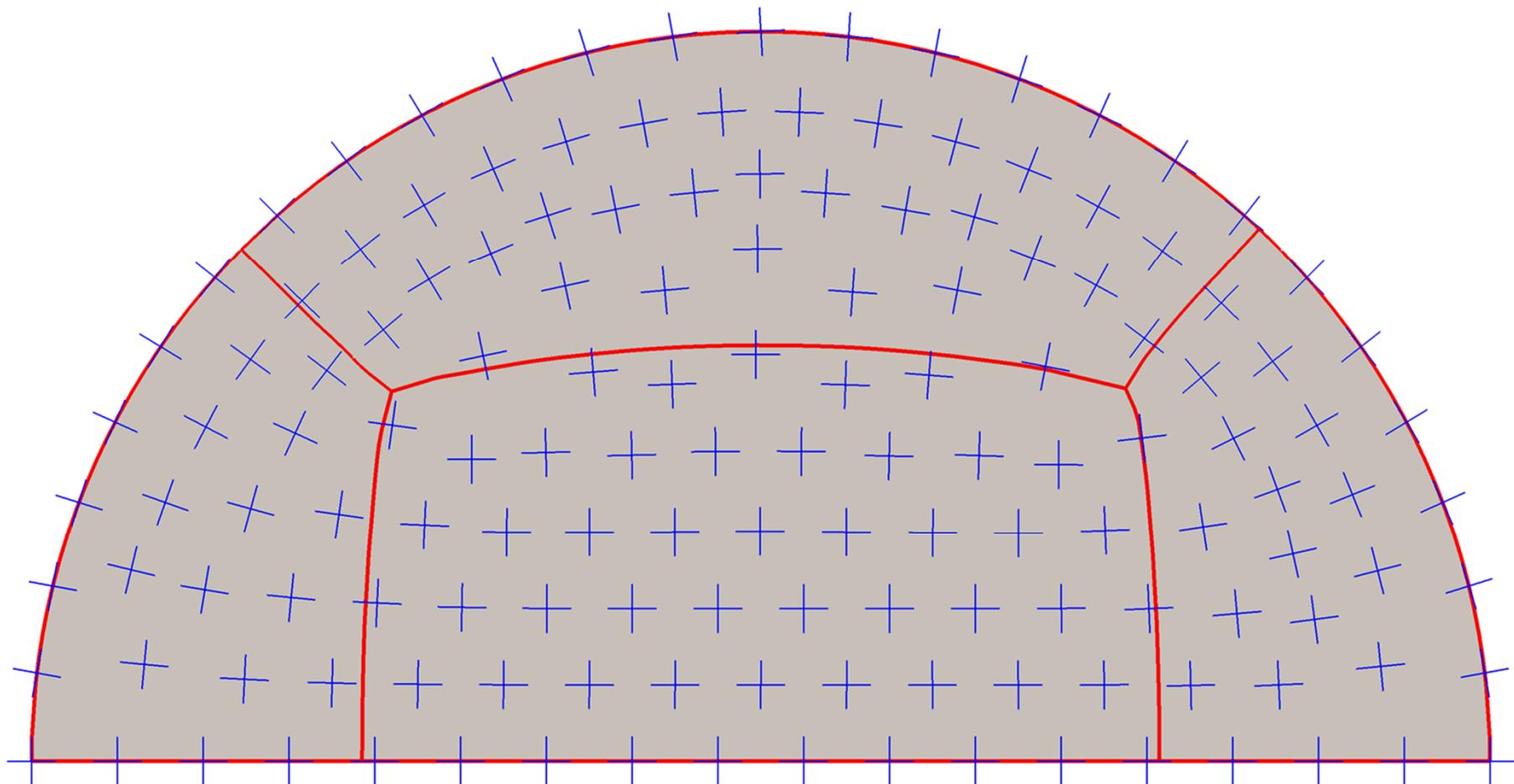


Nonsingular Triangle

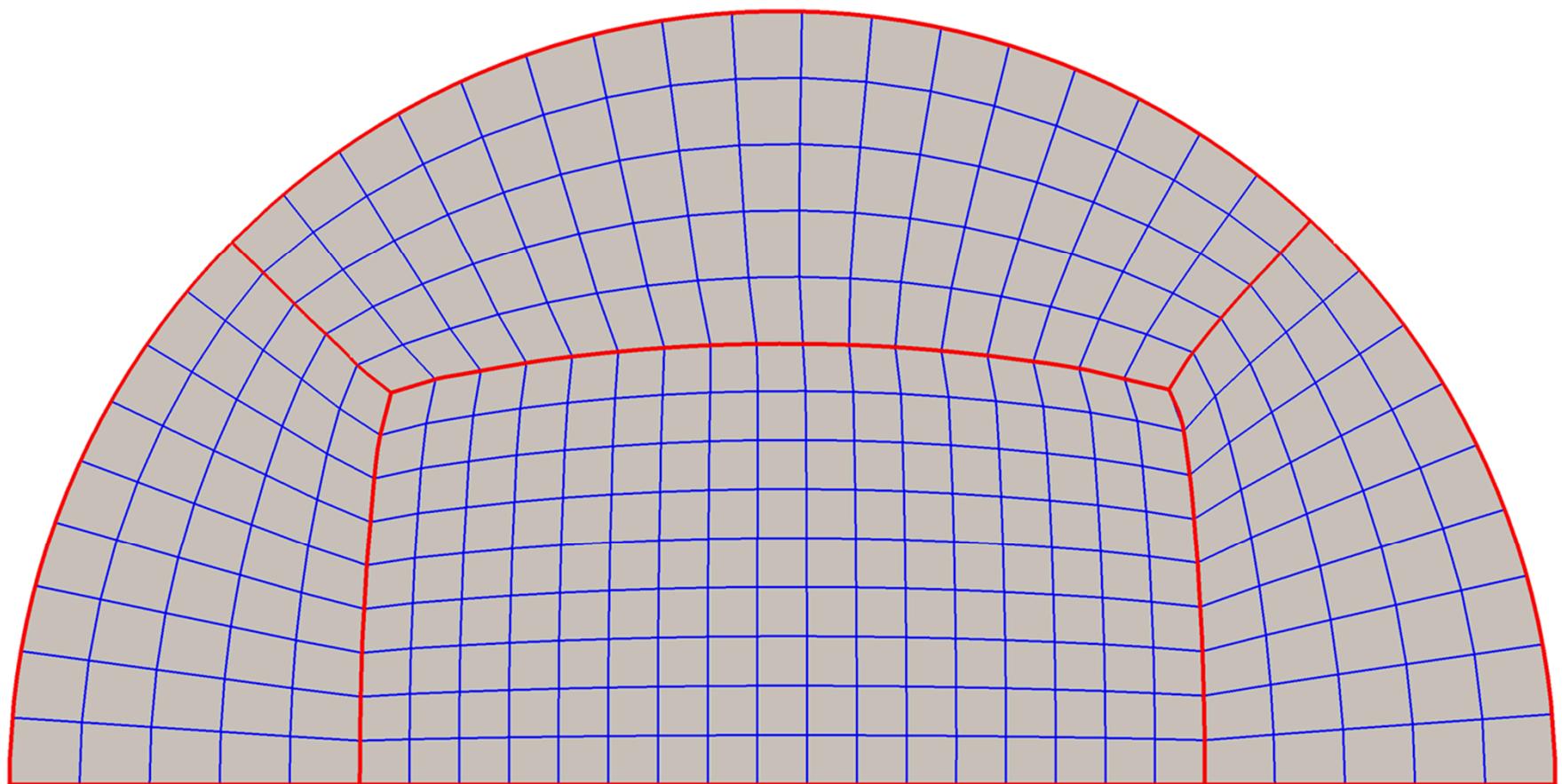
Singular Triangles

Kowalski et al. 2013

2D Cross Field Meshing Algorithm



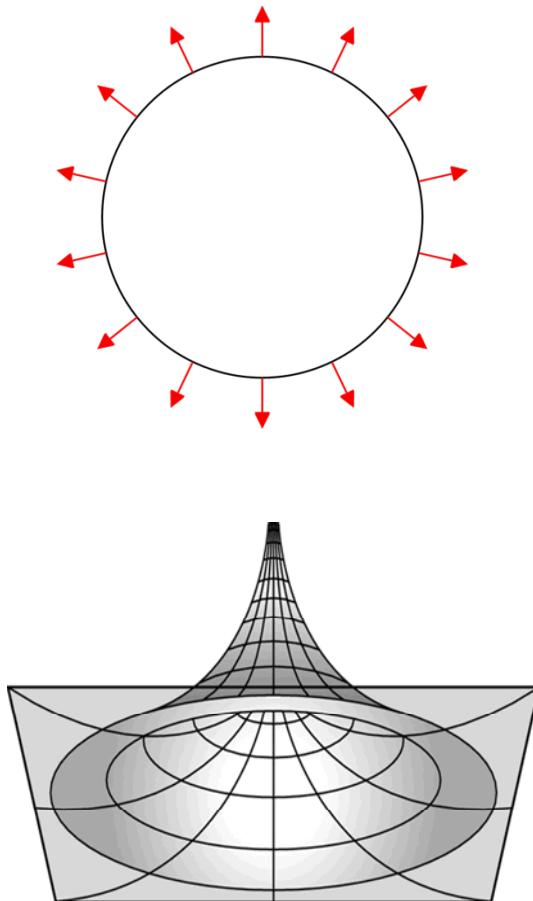
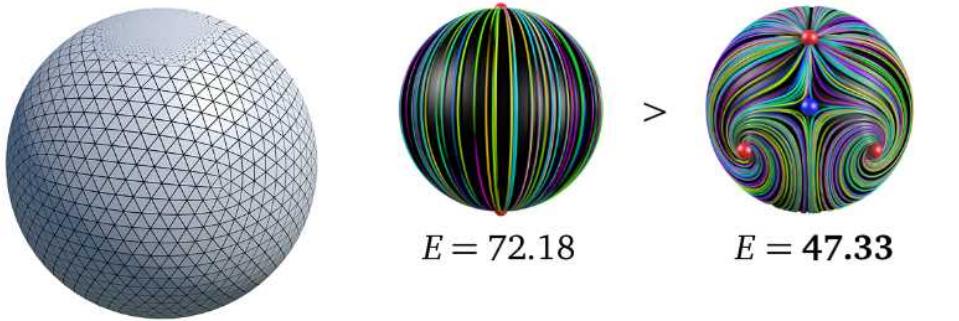
2D Cross Field Meshing Algorithm



Connection to Ginzburg- Landau Theory

Infinite Energy Problem in Cross Field Design

- Unit vector constraint causes problem to become ill-defined.
- How do you find the minimum between multiple infinite values?



Knöppel et al. 2013

Ginzburg-Landau Functional

Original problem:

$$\begin{cases} \min_u E(u) \\ E(u) = \frac{1}{2} \int_D |\nabla u|^2 dA \\ u(x) = g(x) \quad \forall x \in \partial D \\ |u(x)| = 1 \quad a.e. x \in D \end{cases}$$

Relaxed problem:

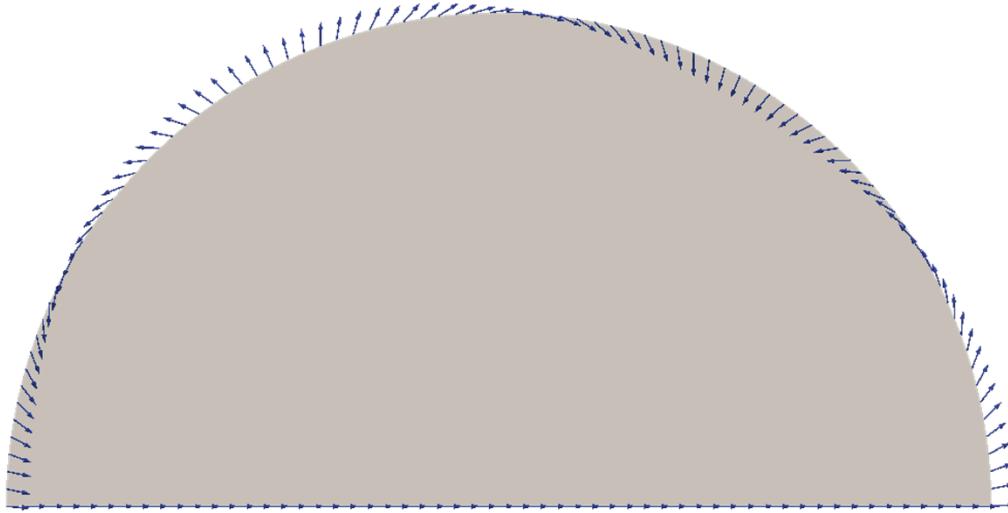
$$\min_{u \in H_g^1(D, \mathbb{C})} E_\varepsilon(u)$$

$$E_\varepsilon(u) = \frac{1}{2} \int_G |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_G (|u|^2 - 1)^2$$

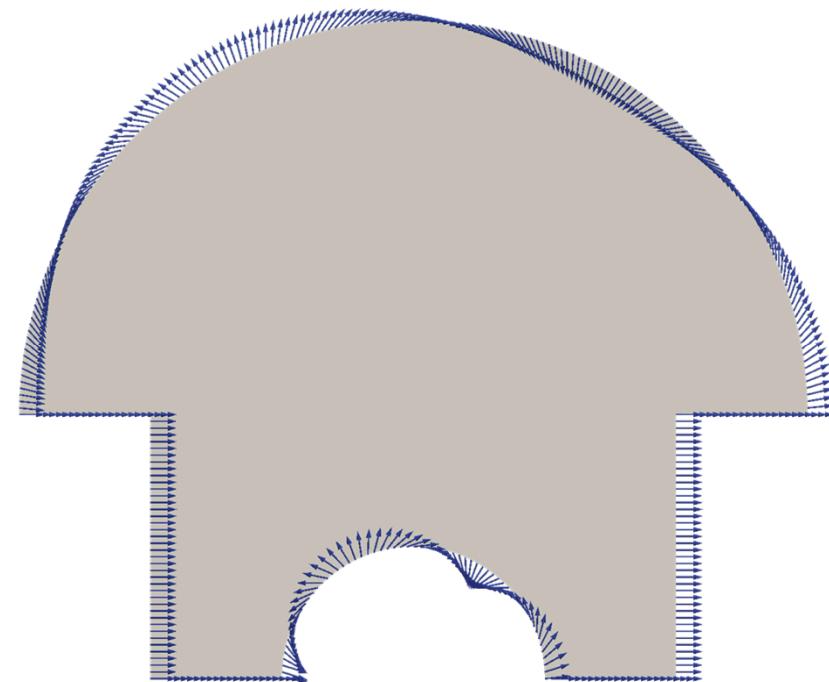
Results of Ginzburg-Landau Theory and Applications to Cross Fields

Brouwer Degree

- Let $g(x)$ be the boundary condition on the domain G .
- Let $d = \deg(g, \partial G)$ be the Brouwer degree.



$$d = 2$$



$$d = 0$$

Result: Well Defined Limit of Relaxed Problem

Theorem 2.2.2 (Bethuel et al. [4]). *Let $d = \deg(g, \partial D)$. Given a sequence $\varepsilon_n \rightarrow 0$ there exists a subsequence ε_{n_i} and exactly d points a_1, a_2, \dots, a_d in $D \subset \mathbb{C}$ and a smooth harmonic map $u_*: D \setminus \{a_1, \dots, a_d\} \rightarrow \mathbb{T}$ with $u_* = g$ on ∂D such that*

$$u_{\varepsilon_{n_i}} \rightarrow u_* \text{ in } C_{loc}^k(D \setminus \bigcup_i (a_i)) \quad \forall k \text{ and in } C^{1,\alpha}(\bar{D} \setminus \bigcup_i (a_i)) \quad \forall \alpha < 1$$

In addition, if $d \neq 0$ each singularity of u_ has index $\text{sgn}(d)$ and, more precisely, there are complex constants (α_i) with $|\alpha_i| = 1$ such that*

$$\left| u_*(z) - \alpha_i \frac{z - a_i}{|z - a_i|} \right| \leq C|z - a_i|^2 \text{ as } z \rightarrow a_i, \quad \forall i$$

This gives us a generalized sense in which to understand the energy minimization problem

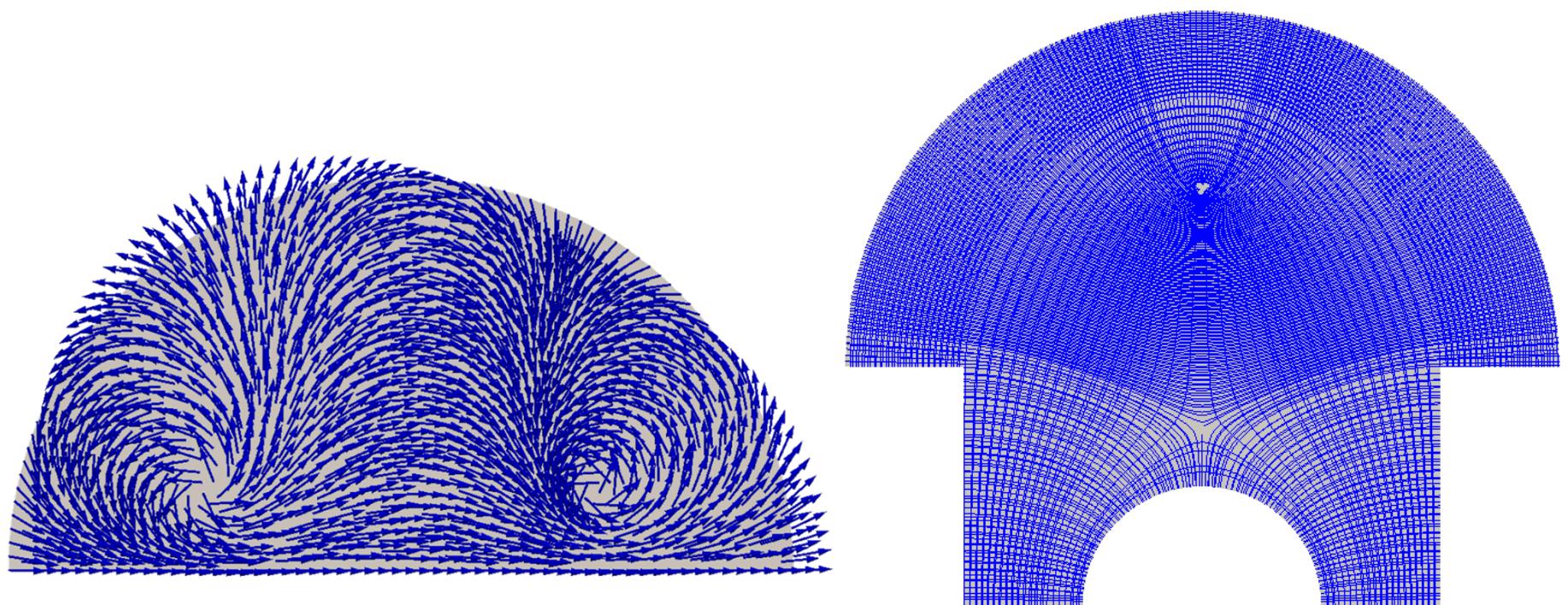
Result: Explicit Formula to Design Field with Fixed Singularities

$$e^{i\varphi_0(z)} = g(z) \frac{|z - b_1|^{\alpha_1}}{(z - b_1)^{\alpha_1}} \frac{|z - b_2|^{\alpha_2}}{(z - b_2)^{\alpha_2}} \cdots \frac{|z - b_n|^{\alpha_n}}{(z - b_n)^{\alpha_n}}$$

$$\begin{cases} \Delta\varphi = 0 \text{ in } D \\ \varphi = \varphi_0 \text{ on } \partial D \end{cases}$$

$$u_0 = e^{i\varphi(z)} \frac{(z - b_1)^{\alpha_1}}{|z - b_1|^{\alpha_1}} \frac{(z - b_2)^{\alpha_2}}{|z - b_2|^{\alpha_2}} \cdots \frac{(z - b_n)}{|z - b_n|^{\alpha_n}}$$

Application: New Cross Field Design Method



Merriman-Bence-Osher (MBO) Method

Merriman-Bence-Osher (MBO) Method

Original Method

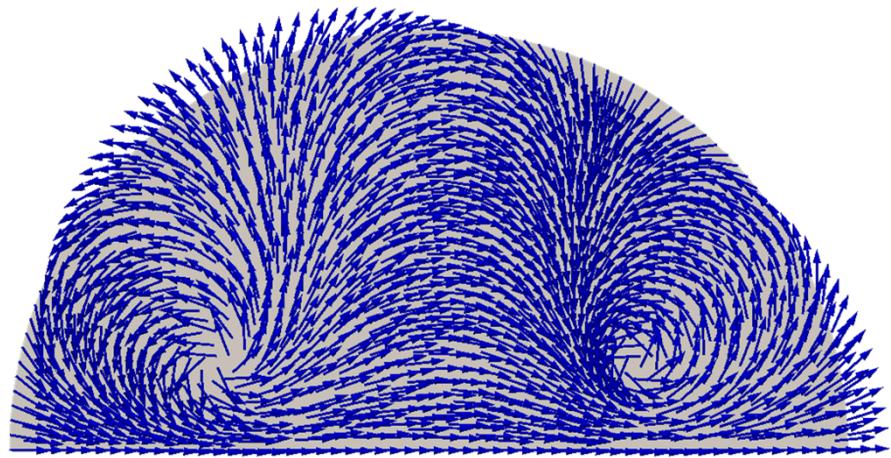
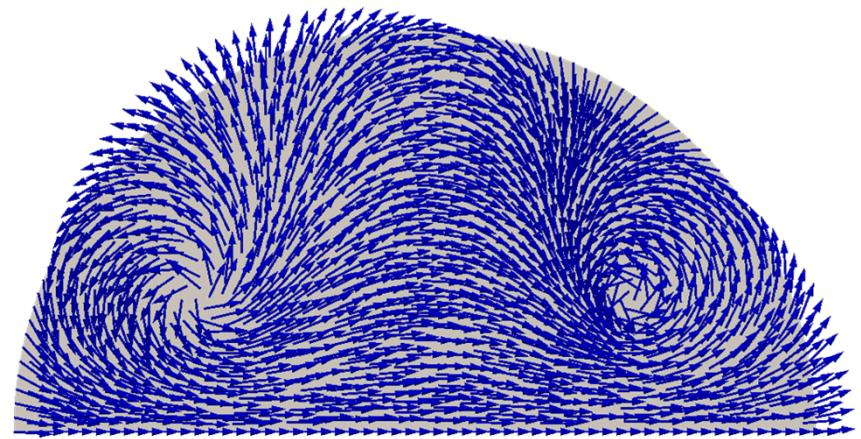
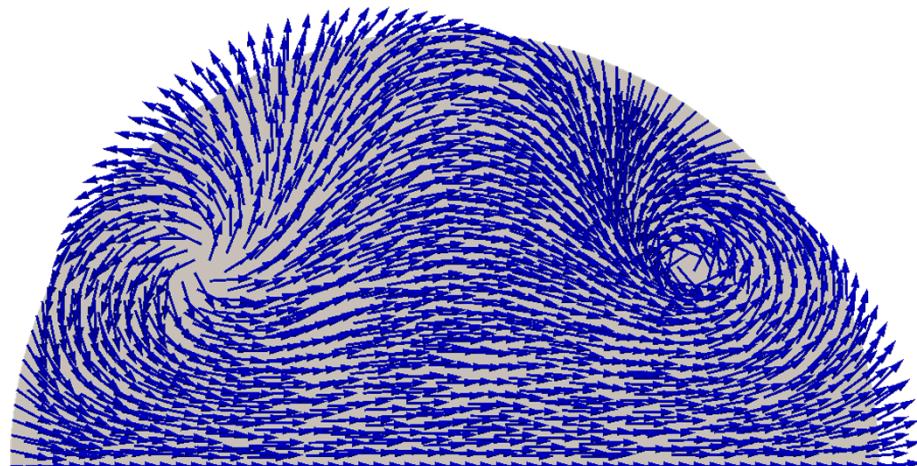
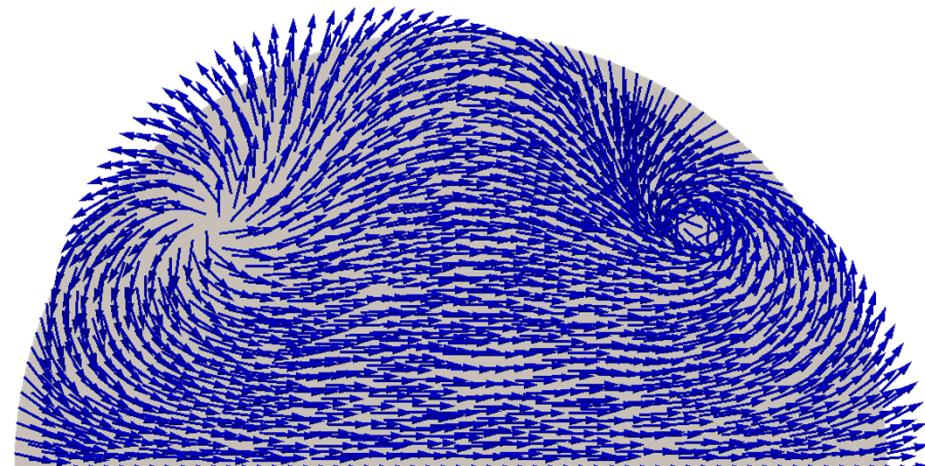
- Introduced as a method for motion by mean curvature
- Minimizes a two-well potential energy analogous to the complex GL energy

New Application to Frame Fields

- Iterative method to minimize cross field energy:

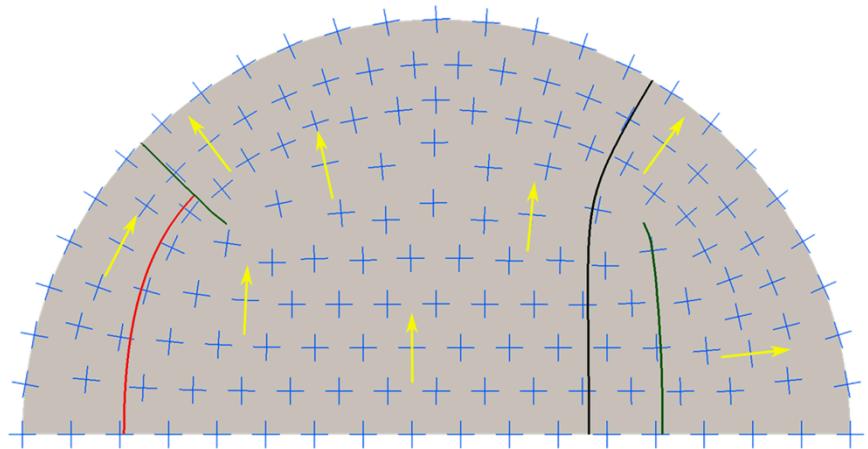
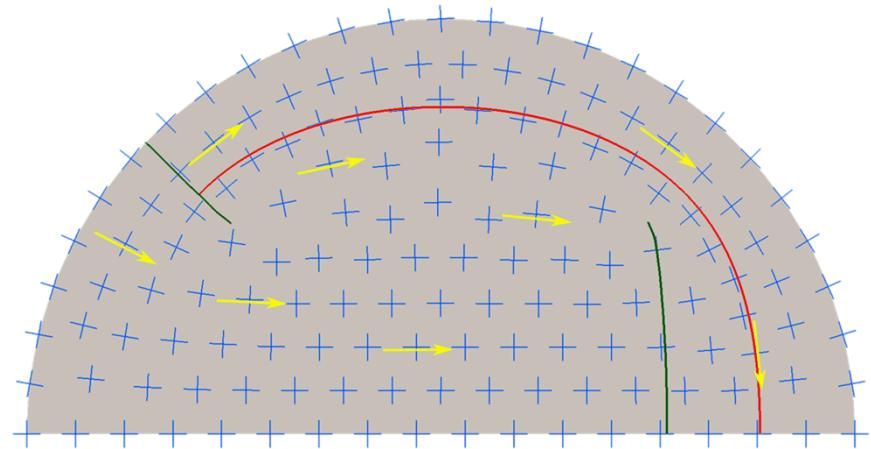
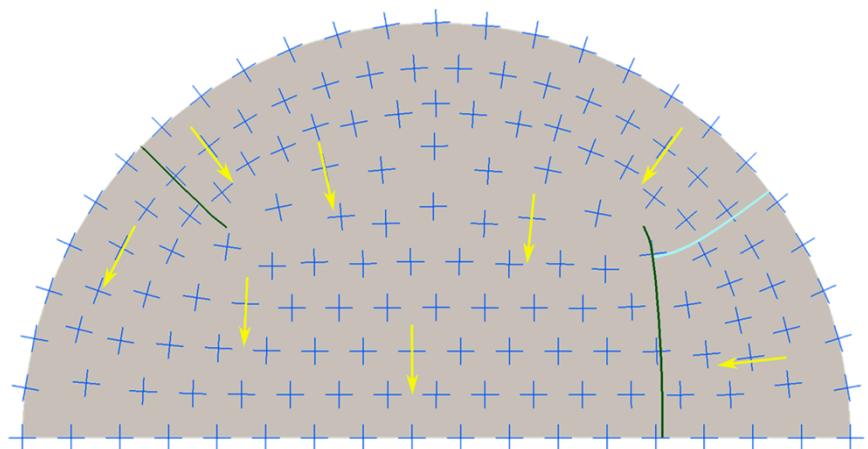
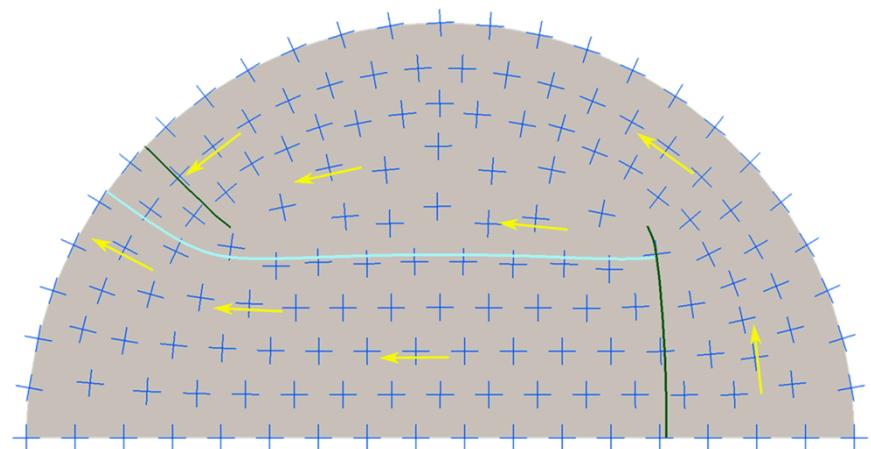
$$u_0 = \frac{\tilde{u}}{|\tilde{u}|} \quad \text{and} \quad u_k = \frac{e^{\tau\Delta} u_{k-1}}{|e^{\tau\Delta} u_{k-1}|} \quad k \geq 1.$$

MBO Method



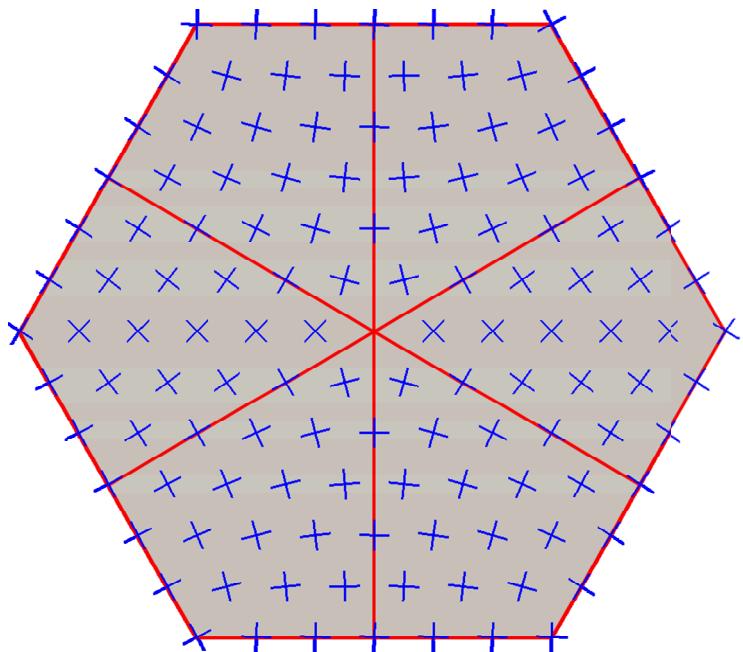
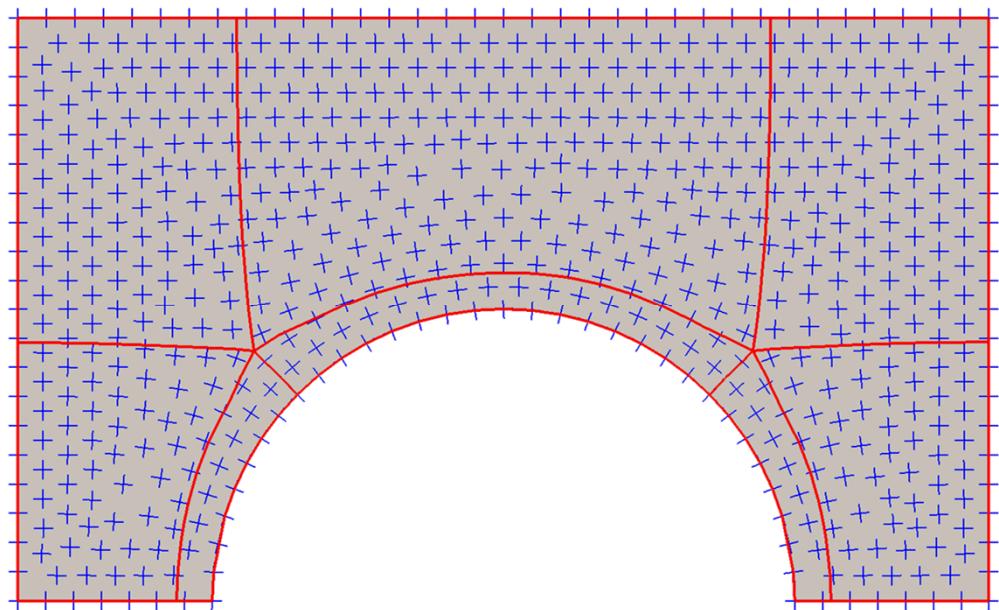
Asymptotic Behavior of Cross Fields Near Singularities

Riemann Surface and Streamlines

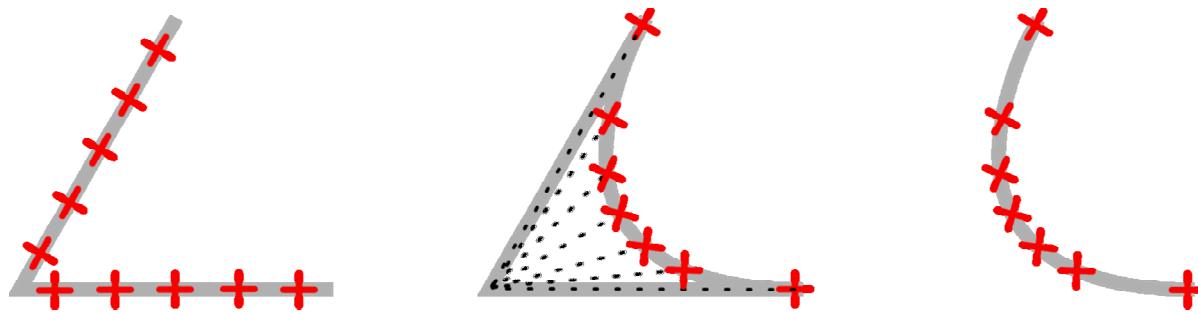


Separatrices of a Singularity

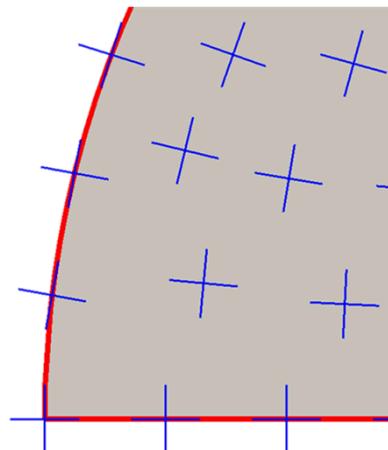
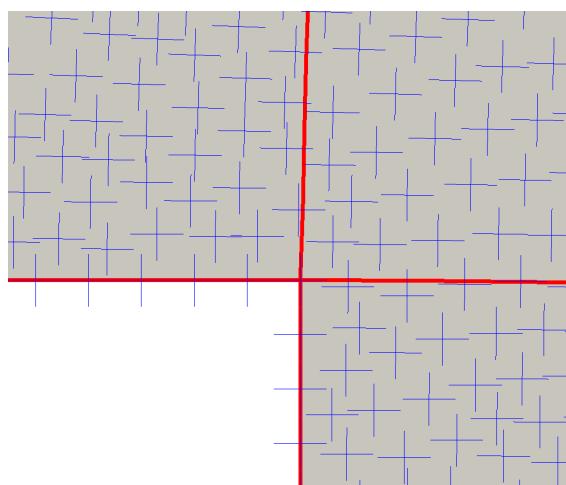
LEMMA 5.1. *Let f be a boundary-aligned canonical harmonic cross field on D . Let a be an interior singularity of f of index $d/4$ with $d < 4$. There are exactly $4 - d$ separatrices meeting at a . These separatrices partition a neighborhood of a into $4 - d$ even-angled sectors.*



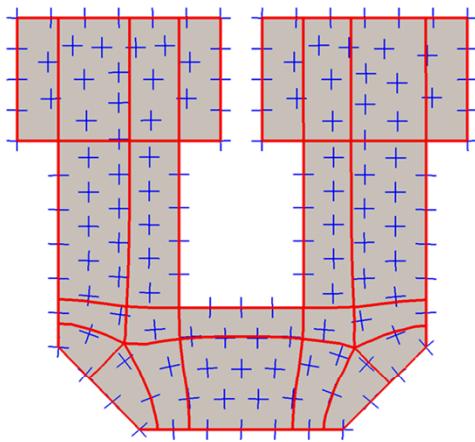
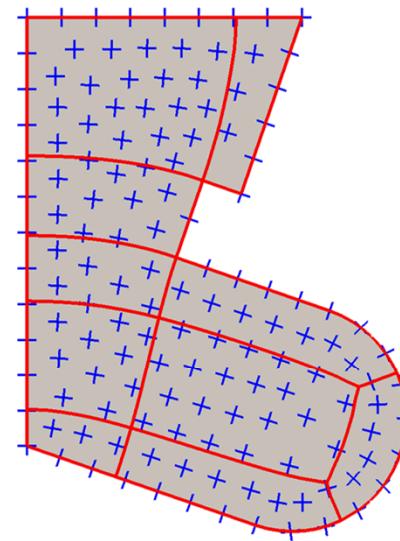
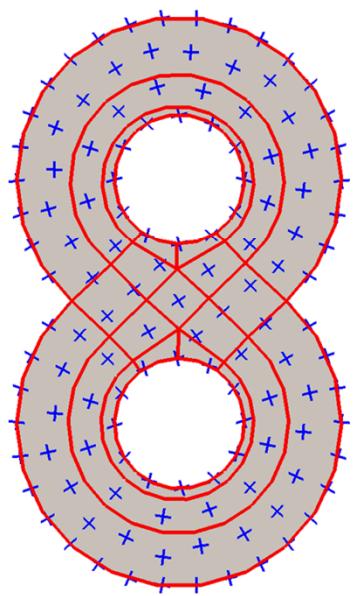
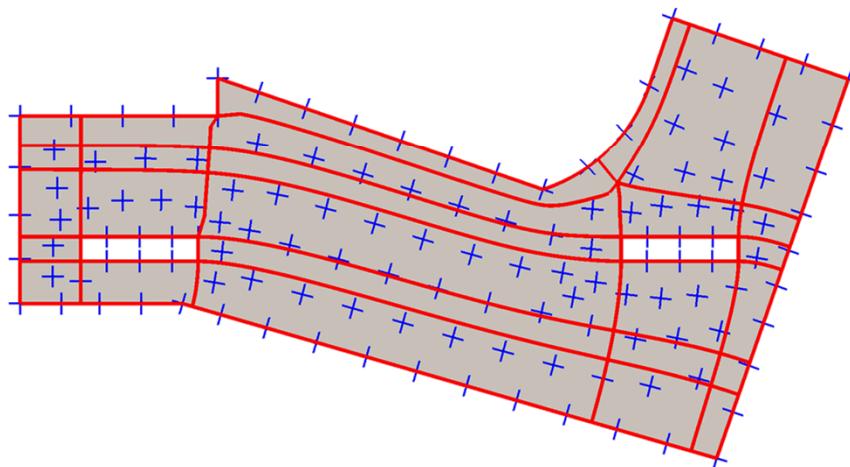
Boundary Singularities



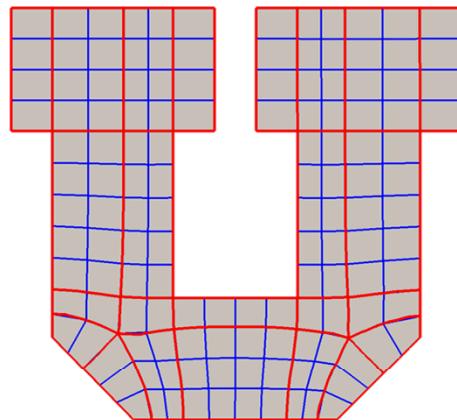
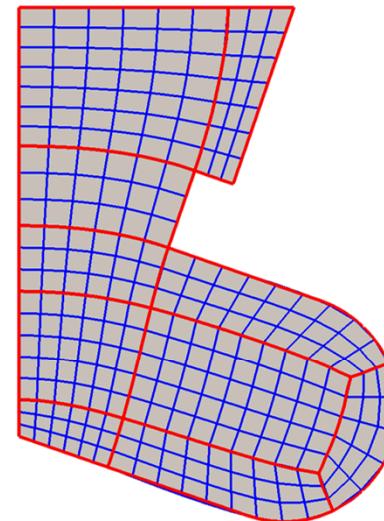
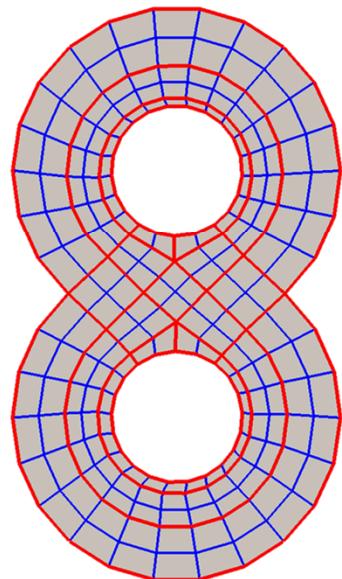
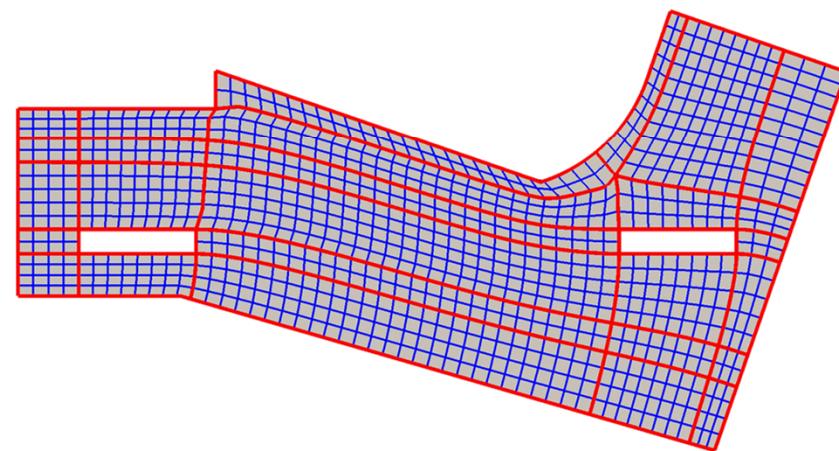
LEMMA 5.4. Let c be a boundary singularity of f of index $d/4$ with $d < 2$. There are exactly $3 - d$ separatrices meeting at c (including the boundaries themselves). These separatrices partition a neighborhood of c into $2 - d$ even-angled sectors.



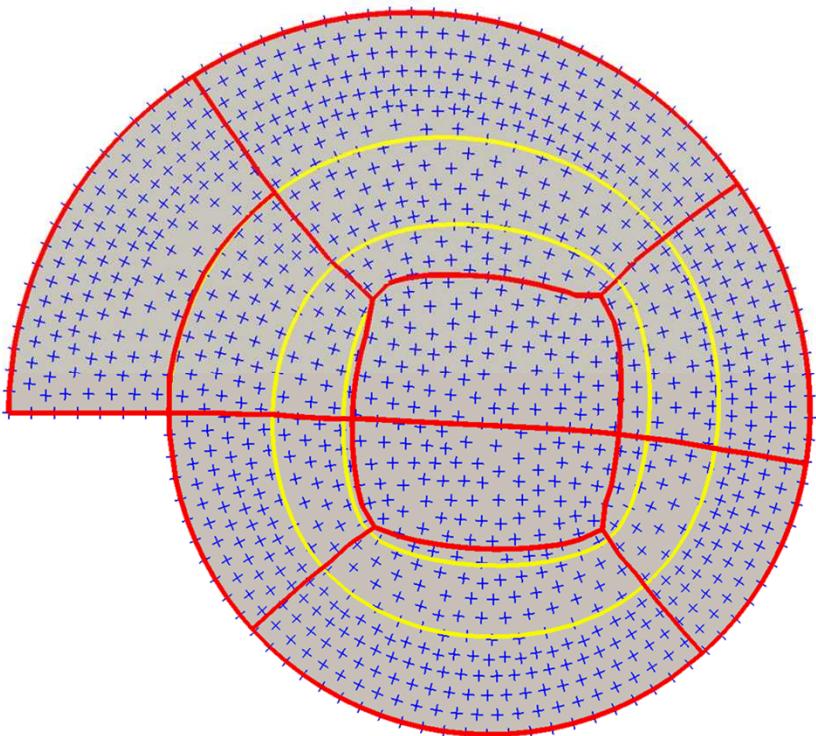
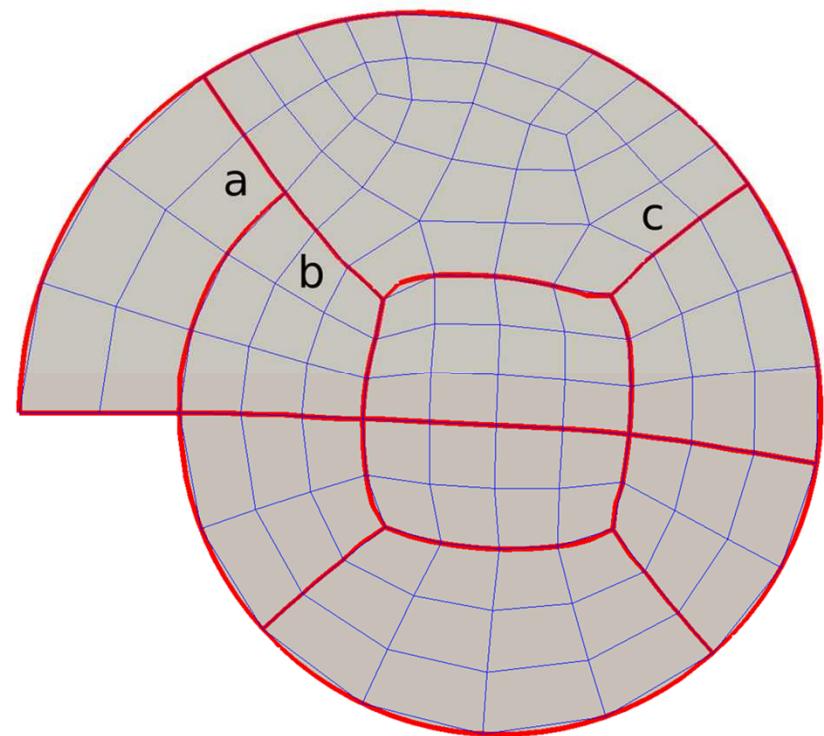
Partition into four-sided regions



Meshing

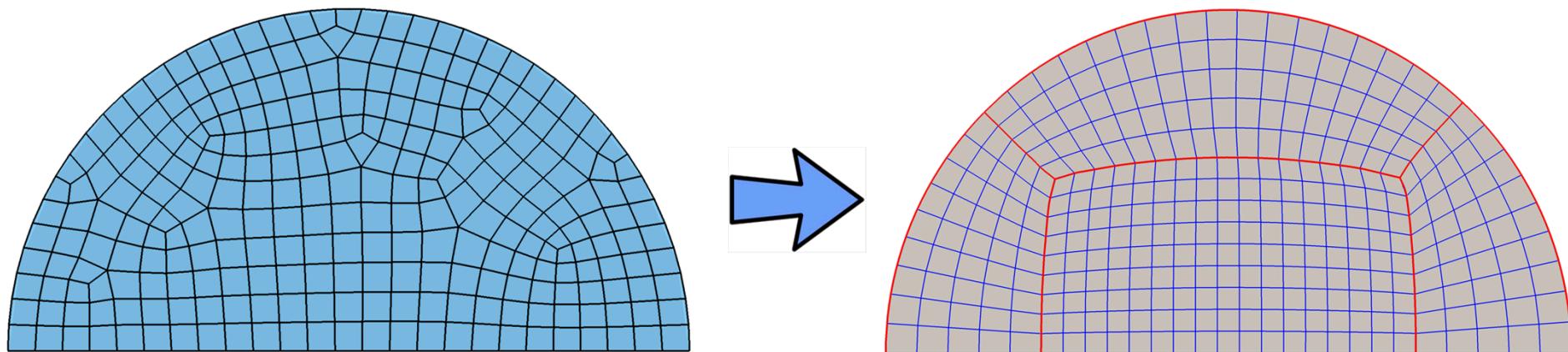


Limit Cycles



Future Research

Future Research: Paver Replacement

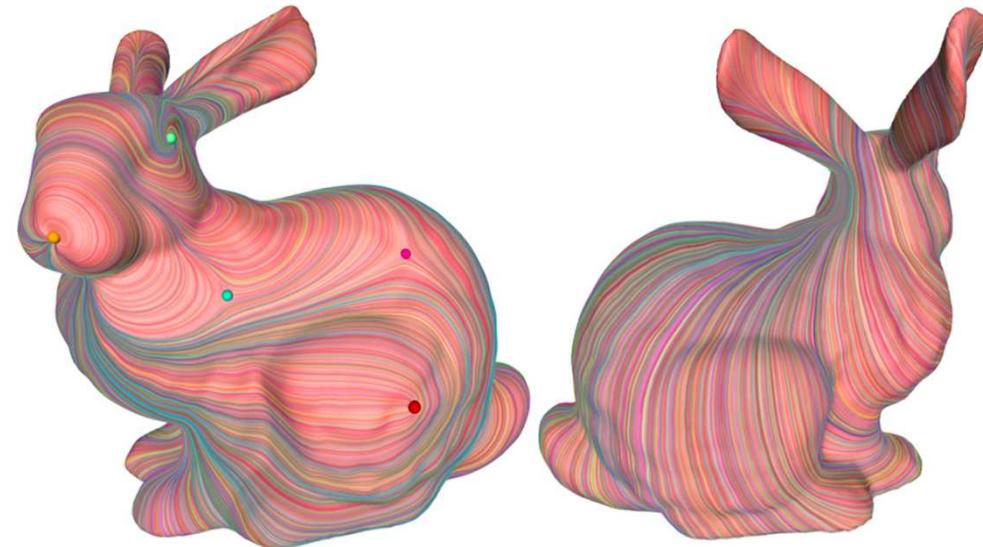


Wish List

1. High element quality – isotropic, close to a perfect squares
2. Boundary aligned elements
3. Block Structured mesh – Minimal number of singularities
4. Prescribed size map
5. Prescribed boundary intervals.
6. Guaranteed results
7. Produces predictable output

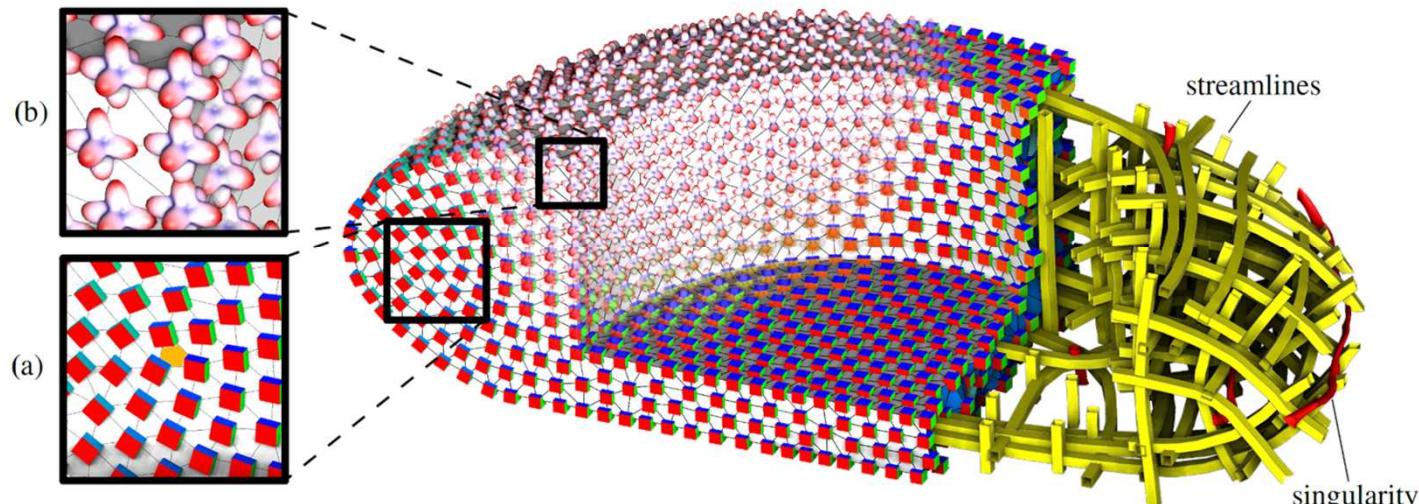
Extend New Algorithms to Higher Dimensions

- Extend fixed frame field design algorithm to 2-manifolds with arbitrary borders



Crane et al. 2010

- Extend MBO method to 3D



Ray et al. 2016

Summary

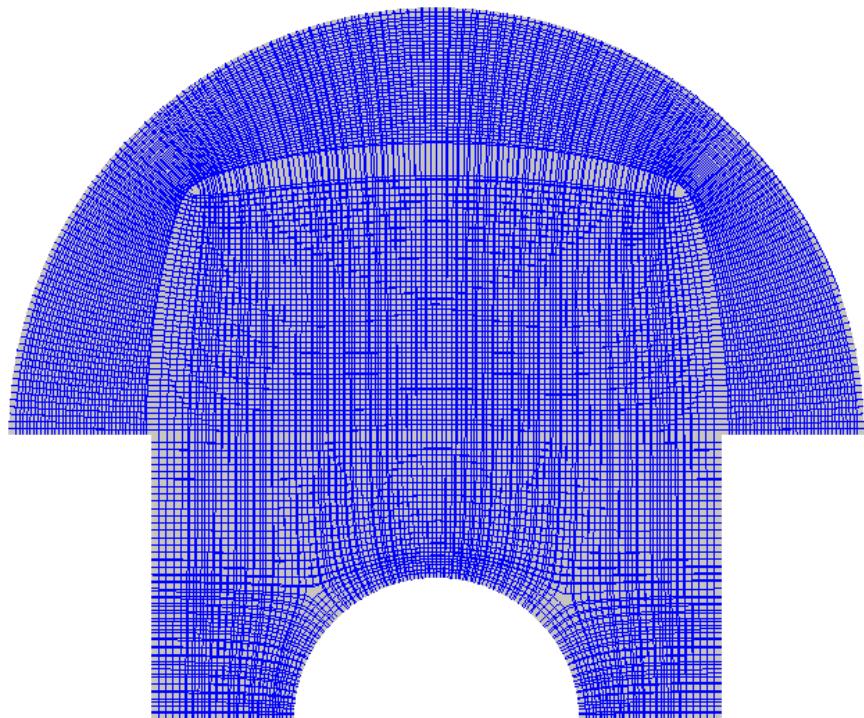
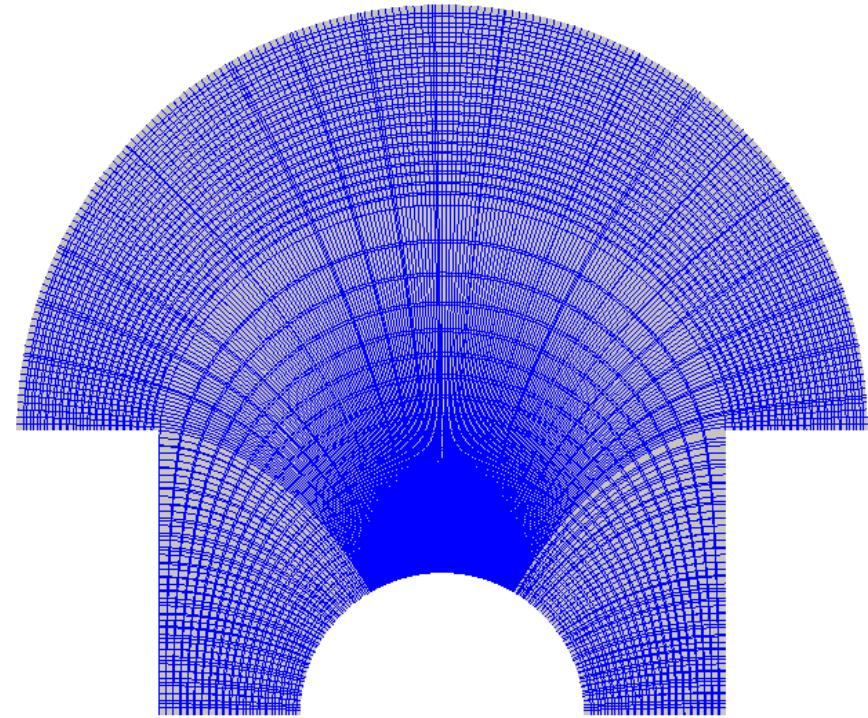
1. Connection with Ginzburg-Landau Theory
2. MBO method for minimizing cross field energy
3. Fixed Frame field design method
4. Asymptotic Behavior of Singularities
5. Cross Field Partitioning Theorem

Acknowledgements

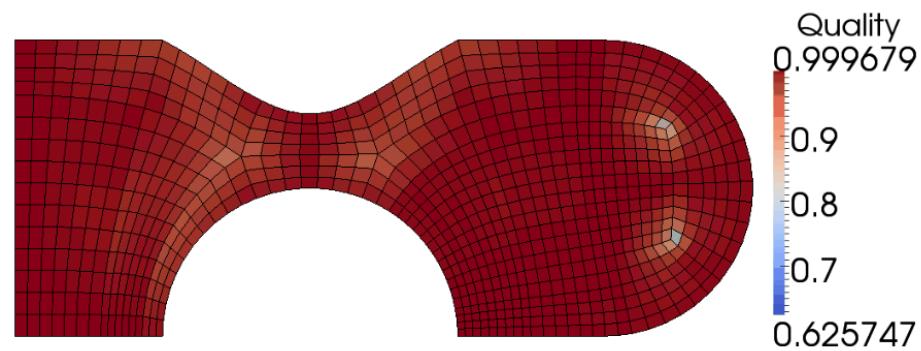
- Sandia National Labs
- University of Utah
- NSF DMS 16-19755
- Matt Staten
- Braxton Osting

Extra Slides

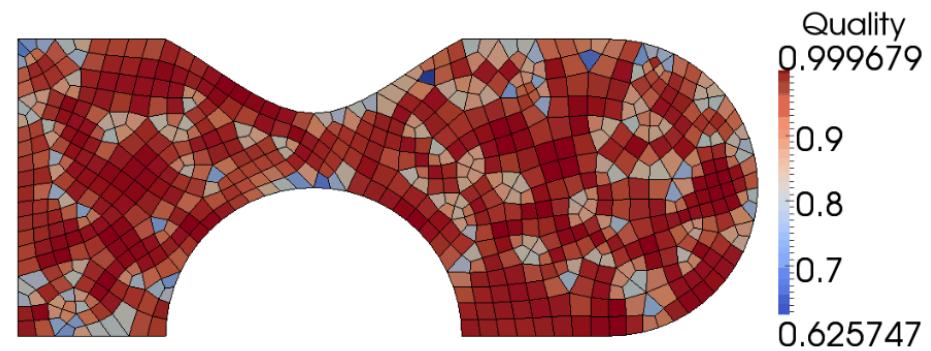
Implication for Cross Fields: Strange Minimizer



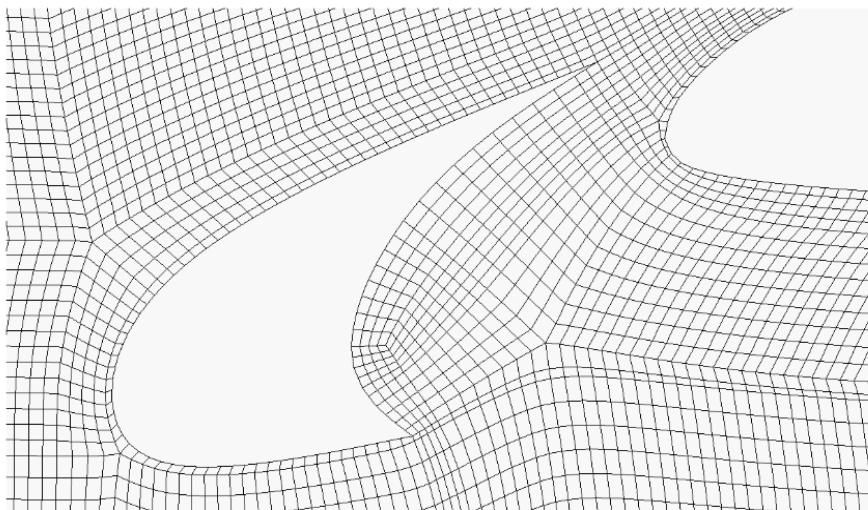
Cross Fields Automatically Generate Good Meshes in 2D



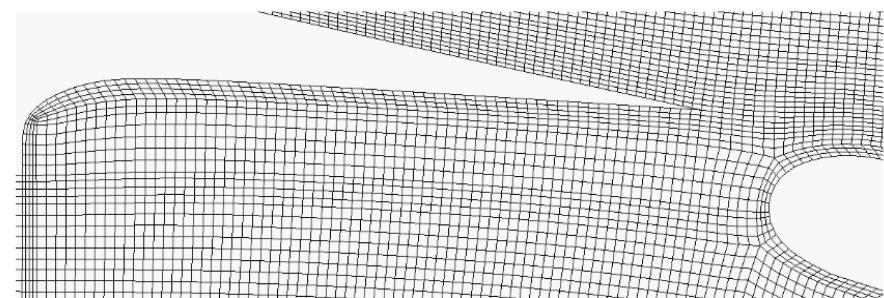
a



b



a



b

Kowalski et al. 2013