

Toward a Paver Replacement

**Ryan Viertel, Matt Staten, Braxton
Osting**

Sept 18-21, 2017

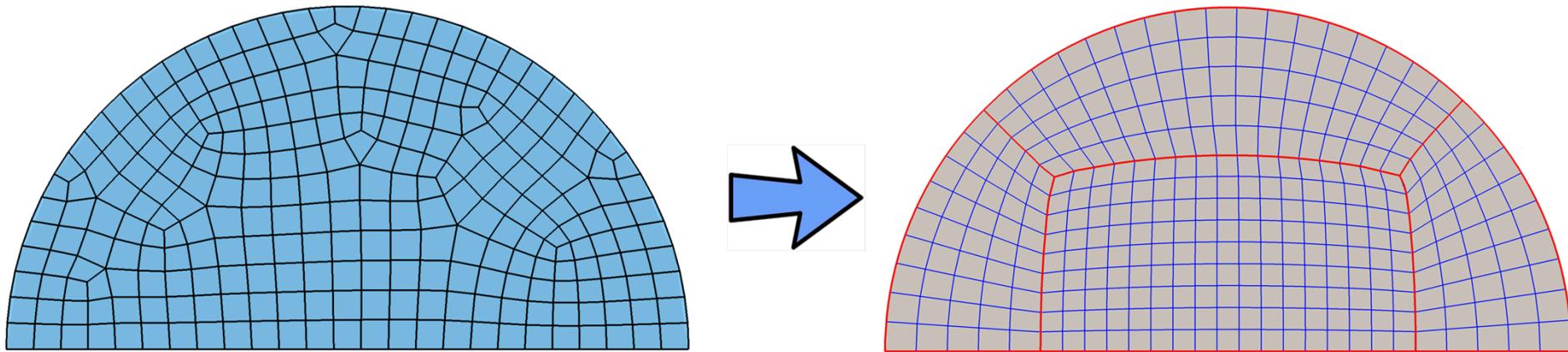
26th International Meshing Roundtable

Barcelona, Spain

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

Paver Replacement



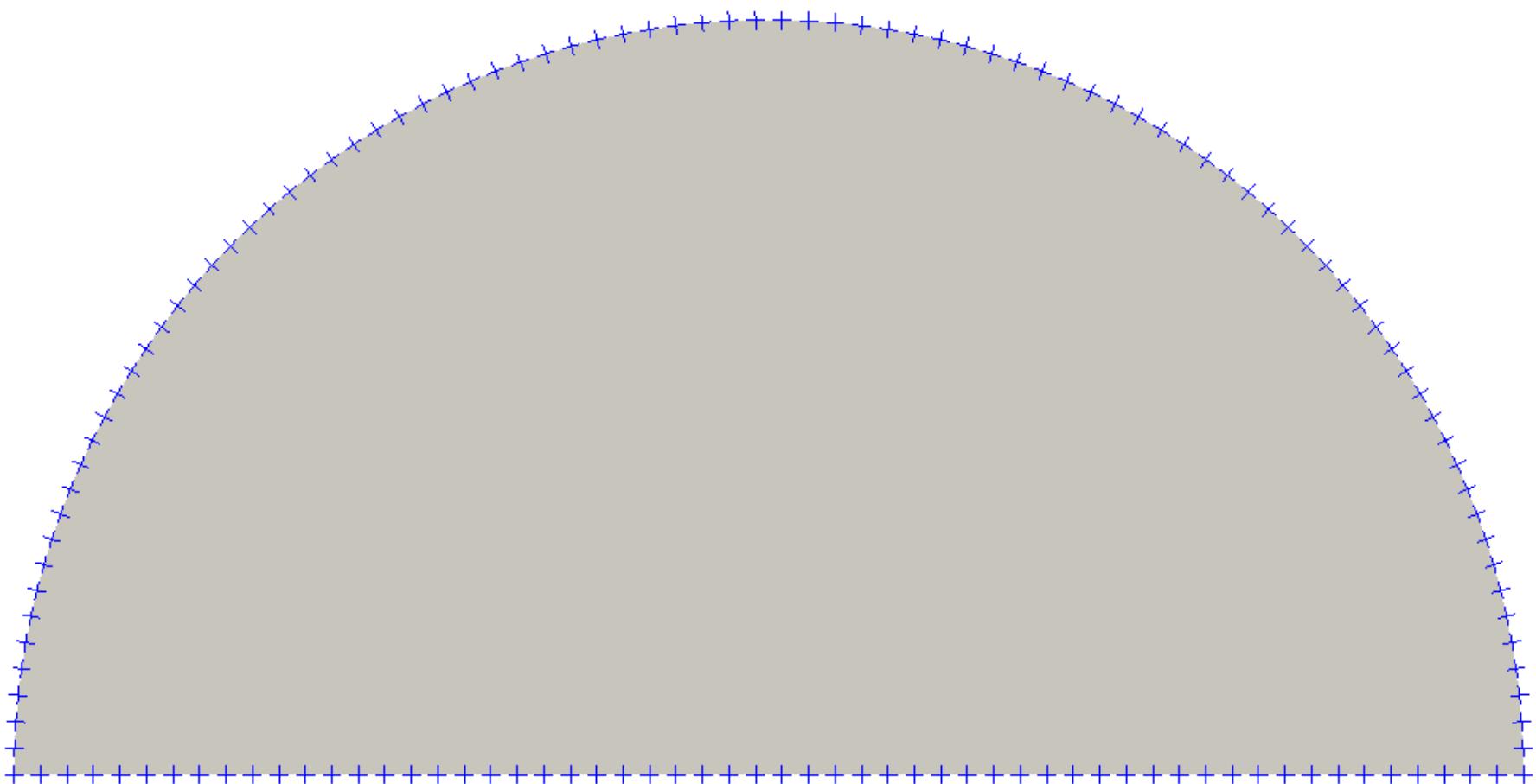
Wish List

1. High element quality
2. Boundary aligned elements
3. Block Structured mesh
4. Prescribed size map
5. Prescribed boundary intervals.
6. Guaranteed results
7. Produces predictable output

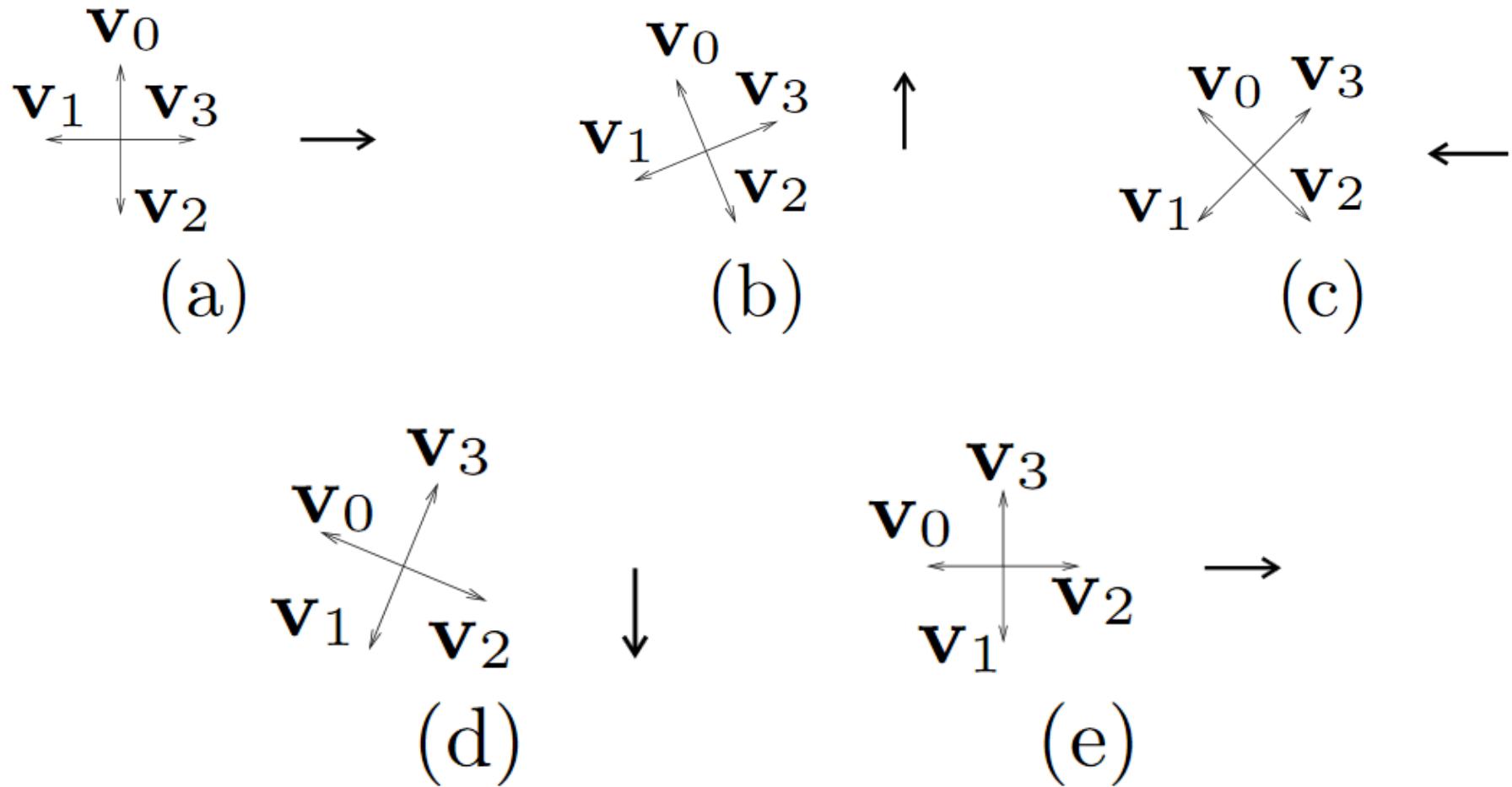
Basic Cross Field Meshing Algorithm (Kowalski et al. 2013)

2D Cross Field Meshing Algorithm

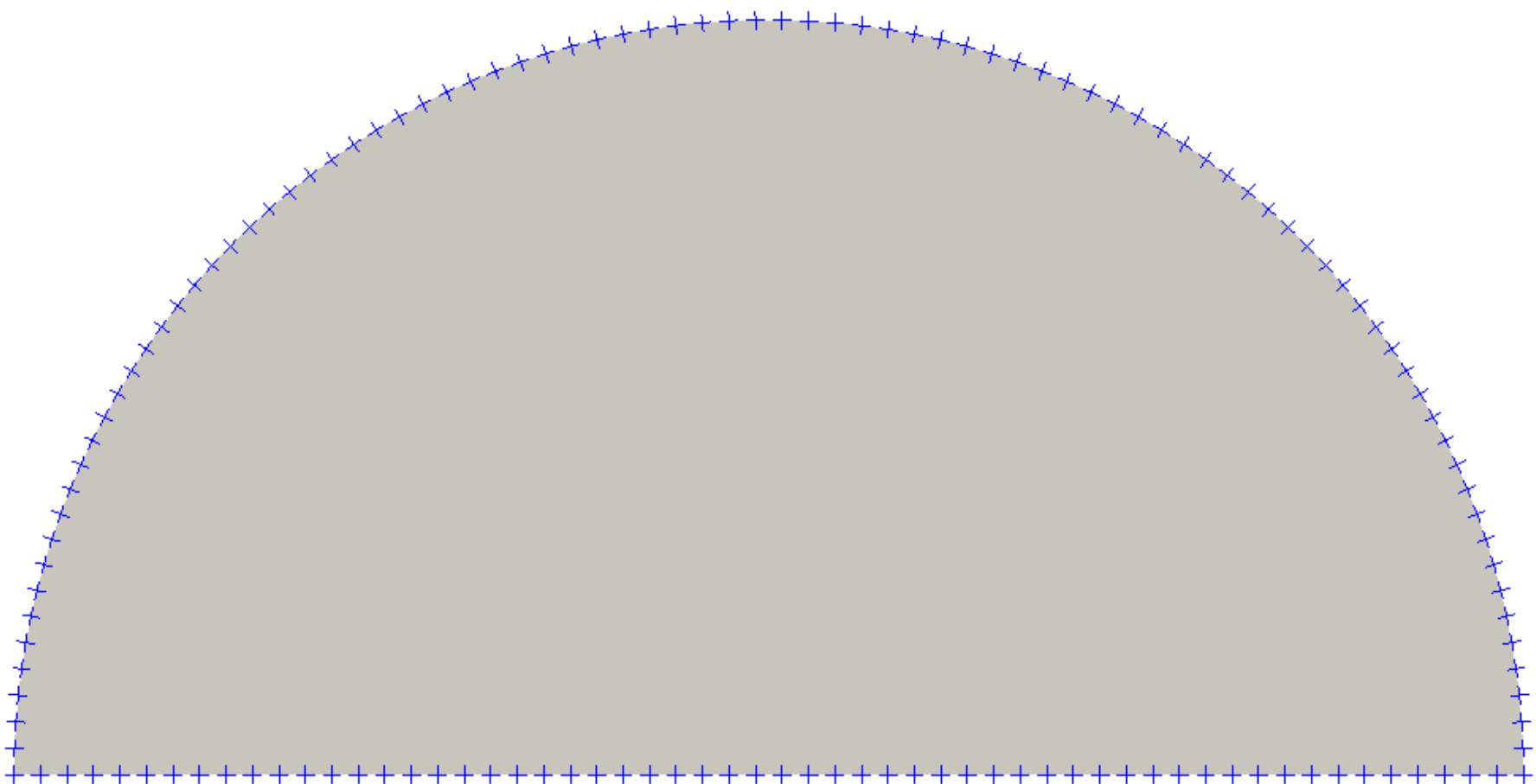
2D Cross Field Meshing Algorithm



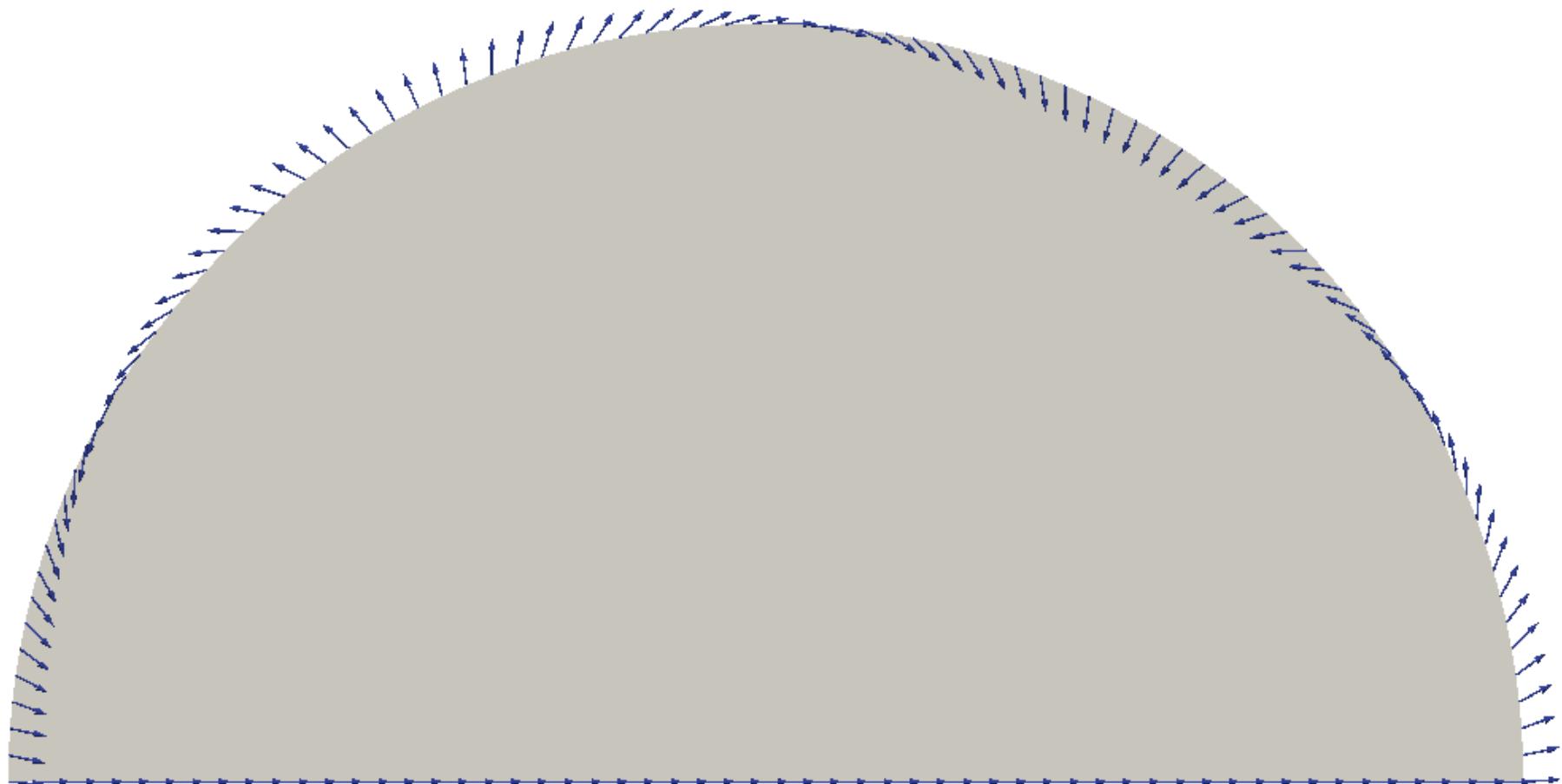
Crosses and Representation Vector



2D Cross Field Meshing Algorithm



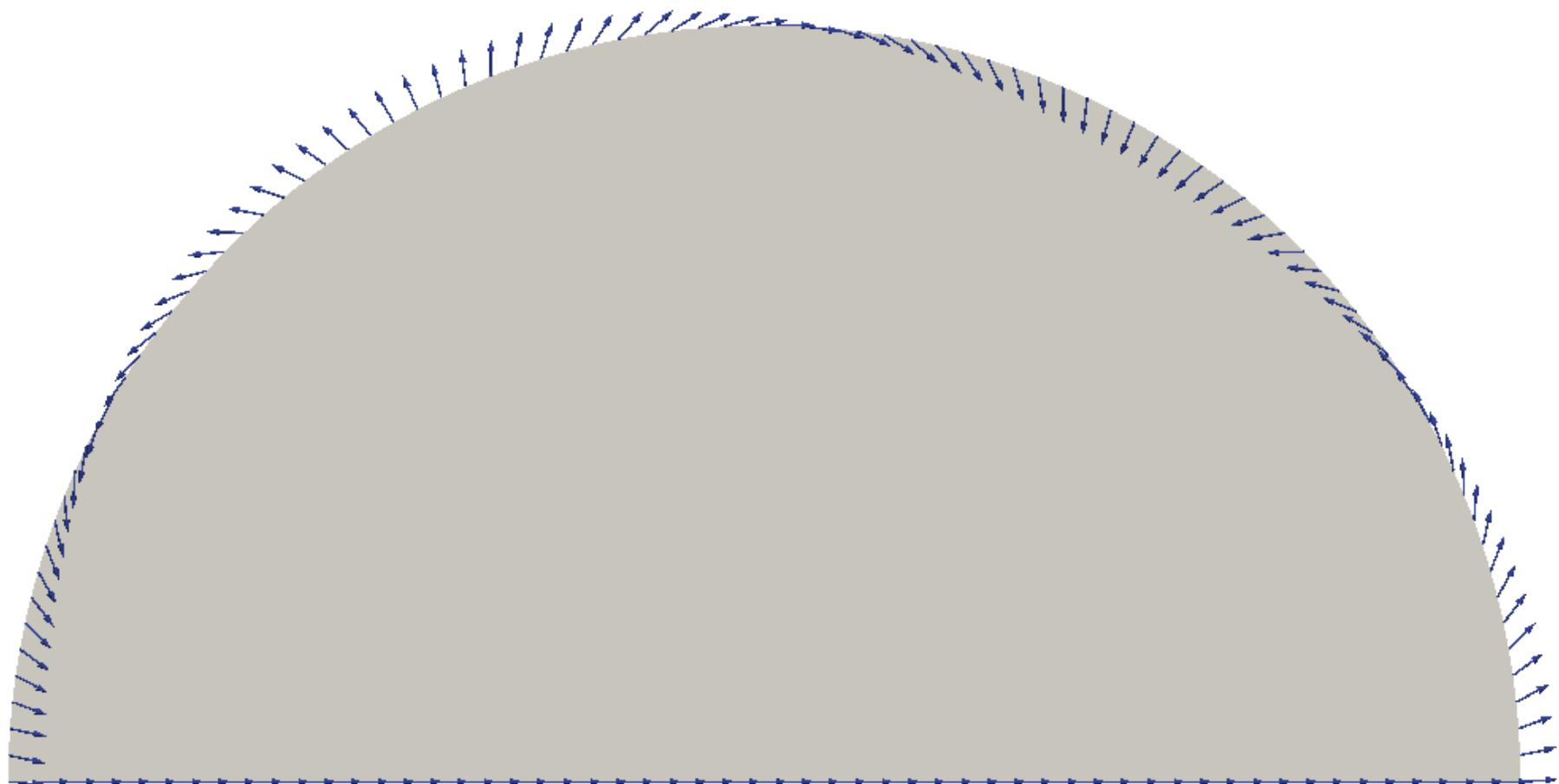
2D Cross Field Meshing Algorithm



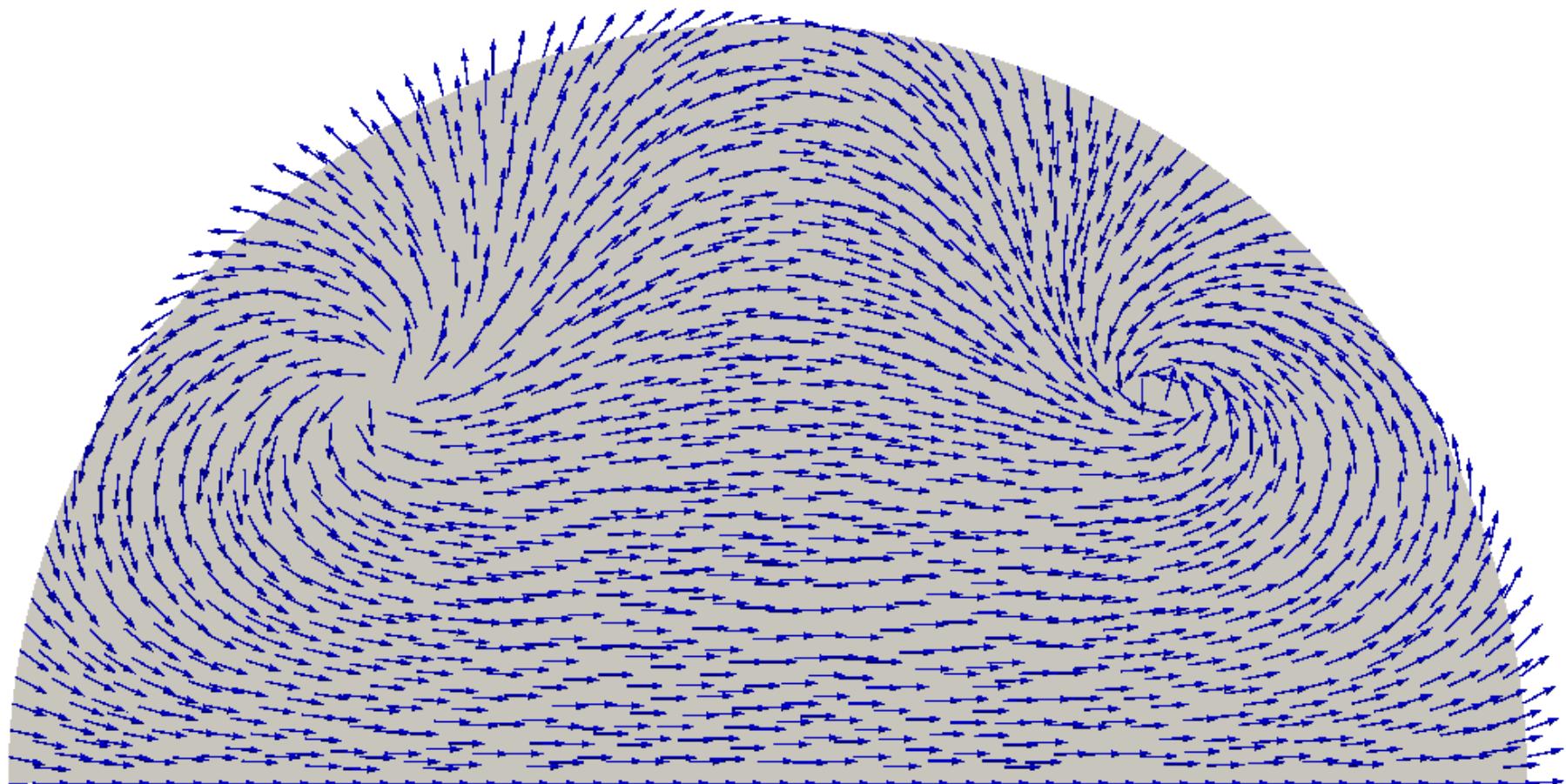
2D Cross Field Meshing Algorithm

$$\left\{ \begin{array}{l} \min_u E(u) \\ E(u) = \frac{1}{2} \int_D |\nabla u|^2 dA \\ u(x) = R(f_0(x)) \quad \forall x \in \partial D \\ |u(x)| = 1 \quad a.e. x \in D \end{array} \right.$$

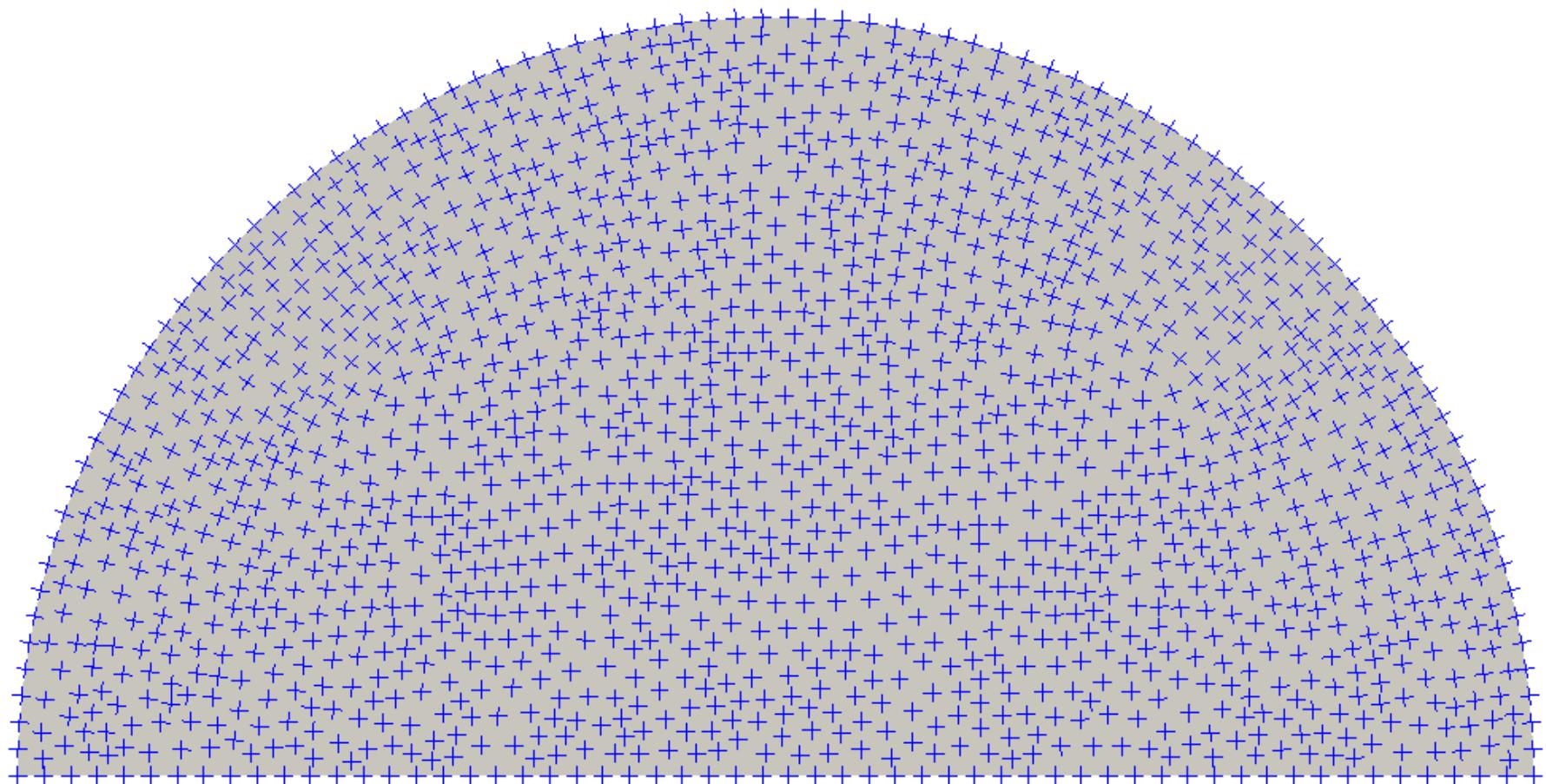
2D Cross Field Meshing Algorithm



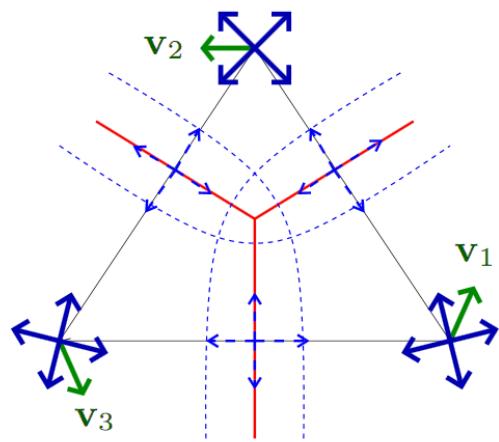
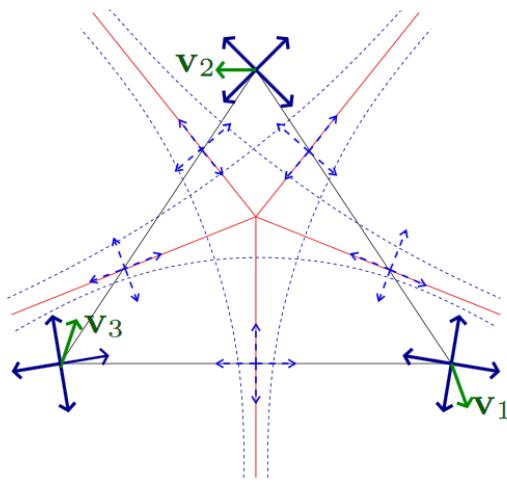
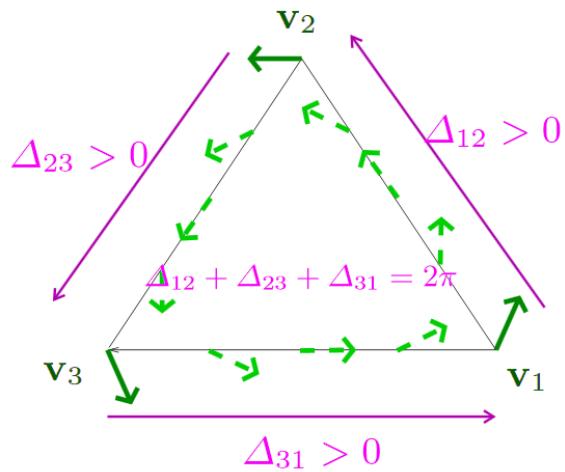
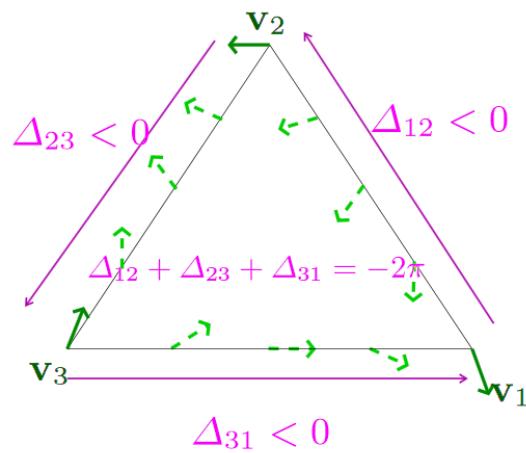
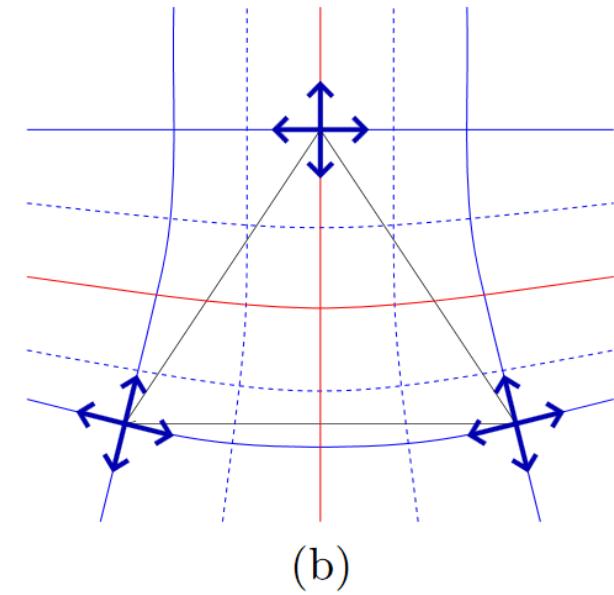
2D Cross Field Meshing Algorithm



2D Cross Field Meshing Algorithm



Cross Field Singularities

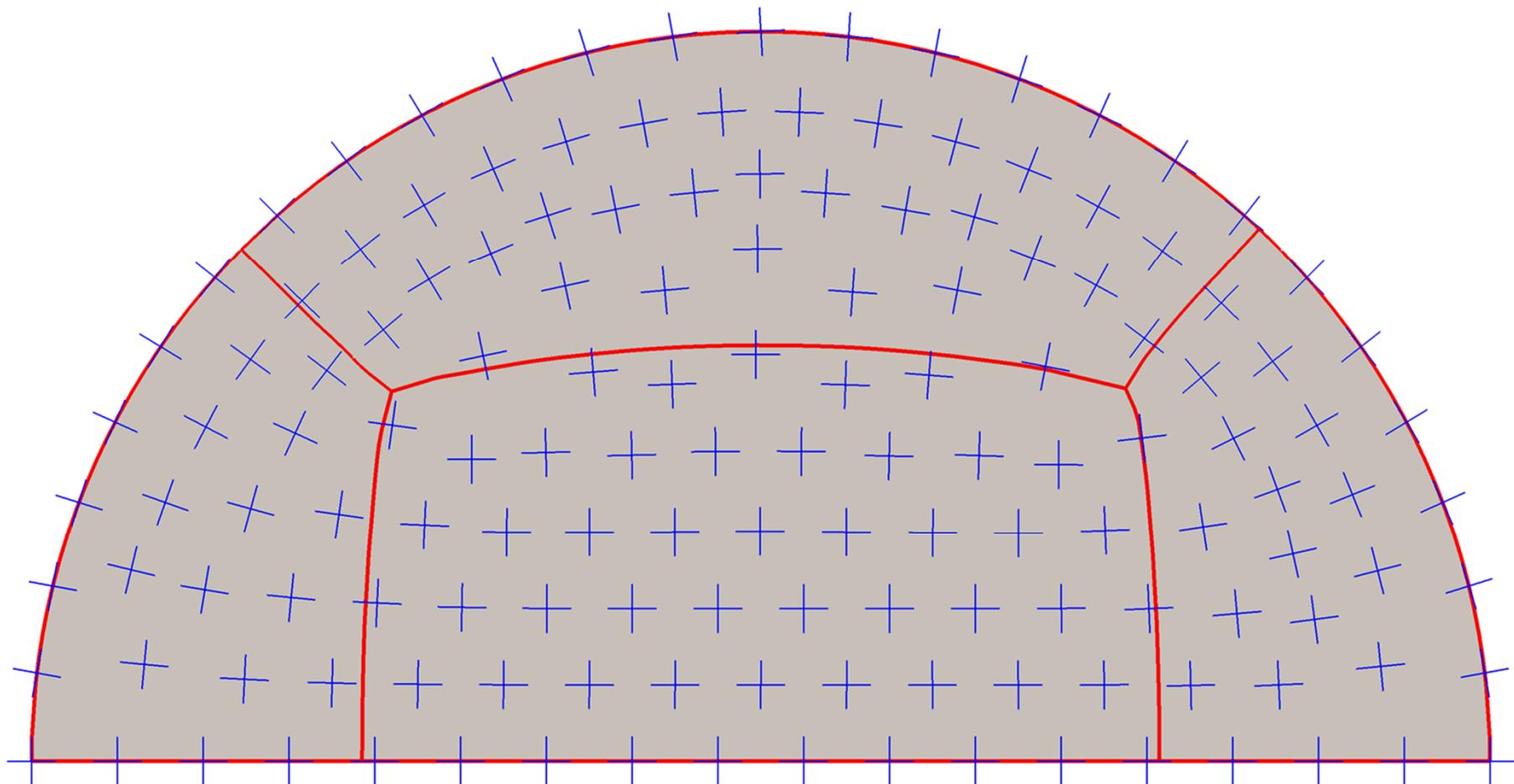


Nonsingular Triangle

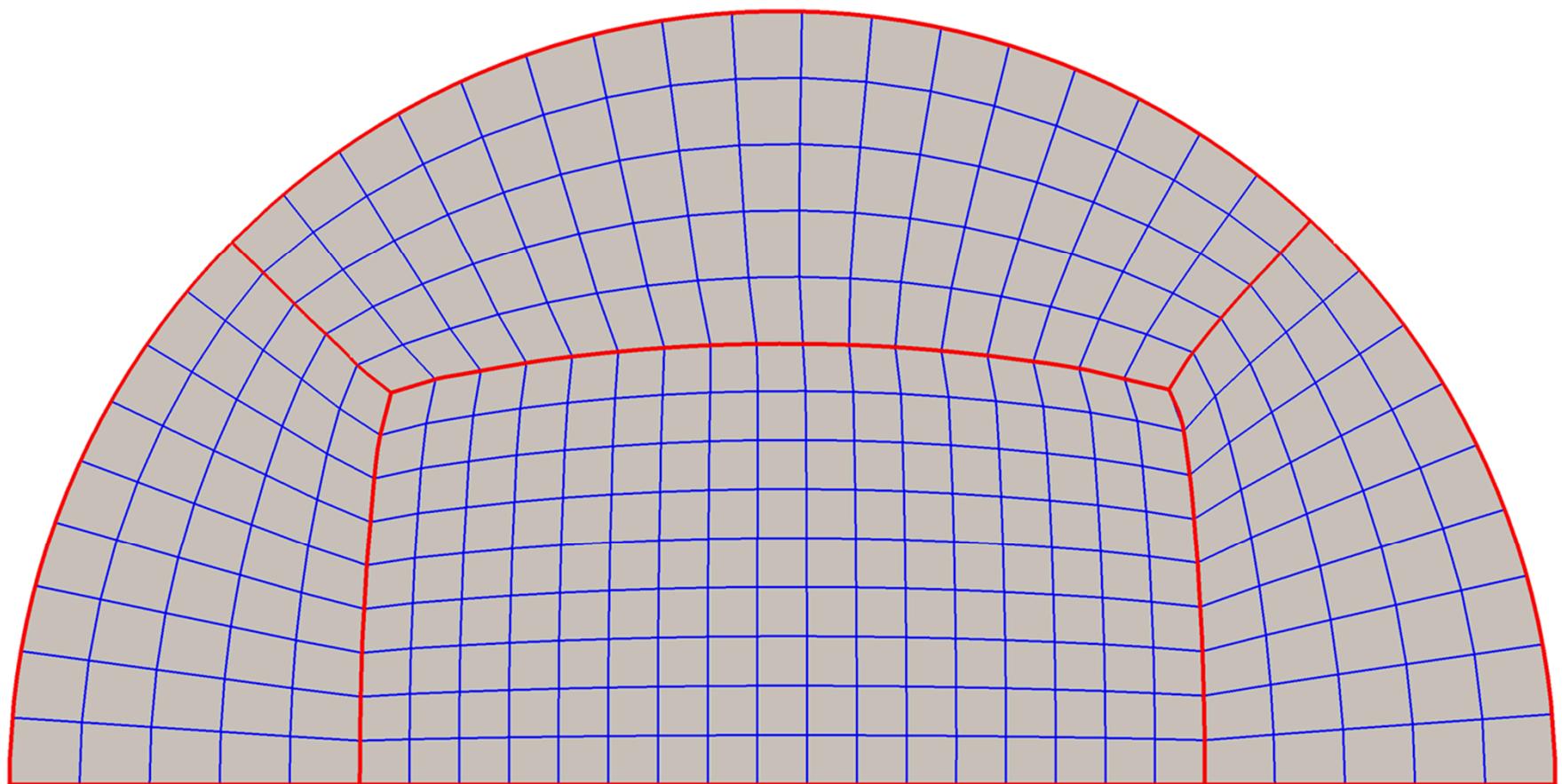
Singular Triangles

Kowalski et al. 2013

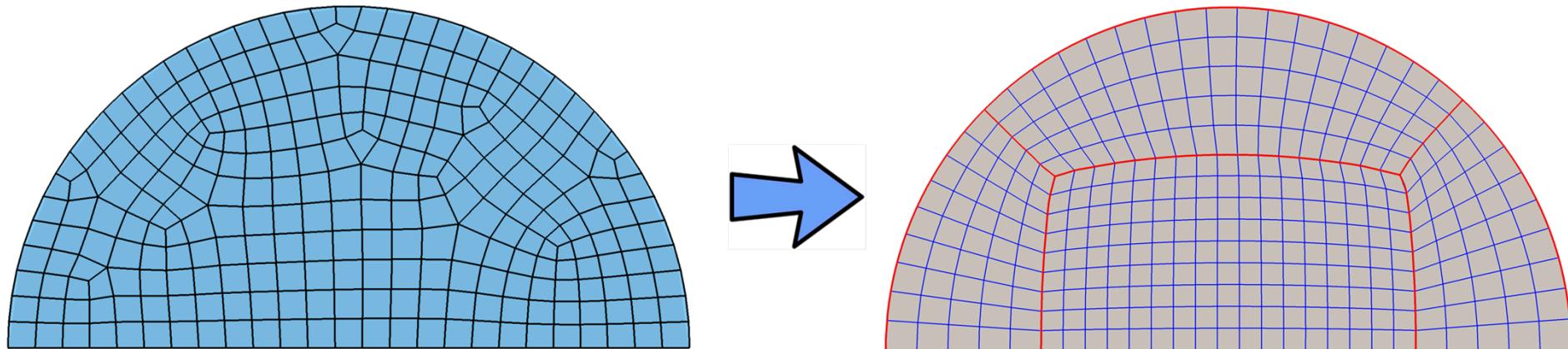
2D Cross Field Meshing Algorithm



2D Cross Field Meshing Algorithm



Candidate: Cross field guided methods



Wish List

1. High element quality ✓
2. Boundary aligned elements ✓
3. Block Structured mesh ?
4. Prescribed size map
5. Prescribed boundary intervals.
6. Guaranteed results
7. Produces predictable output

Connection to Ginzburg- Landau Theory

Ginzburg-Landau Functional

Original problem is not well defined:

$$\left\{ \begin{array}{l} \min_u E(u) \\ E(u) = \frac{1}{2} \int_D |\nabla u|^2 dA \\ u(x) = g(x) \quad \forall x \in \partial D \\ |u(x)| = 1 \quad a.e. x \in D \end{array} \right.$$

Relaxed problem:

$$\min_{u \in H_g^1(D, \mathbb{C})} E_\varepsilon(u)$$

$$E_\varepsilon(u) = \frac{1}{2} \int_G |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_G (|u|^2 - 1)^2$$

Result: Well Defined Limit of Relaxed Problem

Theorem 2.2.2 (Bethuel et al. [4]). *Let $d = \deg(g, \partial D)$. Given a sequence $\varepsilon_n \rightarrow 0$ there exists a subsequence ε_{n_i} and exactly d points a_1, a_2, \dots, a_d in $D \subset \mathbb{C}$ and a smooth harmonic map $u_*: D \setminus \{a_1, \dots, a_d\} \rightarrow \mathbb{T}$ with $u_* = g$ on ∂D such that*

$$u_{\varepsilon_{n_i}} \rightarrow u_* \text{ in } C_{loc}^k(D \setminus \bigcup_i (a_i)) \quad \forall k \text{ and in } C^{1,\alpha}(\bar{D} \setminus \bigcup_i (a_i)) \quad \forall \alpha < 1$$

In addition, if $d \neq 0$ each singularity of u_ has index $\text{sgn}(d)$ and, more precisely, there are complex constants (α_i) with $|\alpha_i| = 1$ such that*

$$\left| u_*(z) - \alpha_i \frac{z - a_i}{|z - a_i|} \right| \leq C|z - a_i|^2 \text{ as } z \rightarrow a_i, \quad \forall i$$

This gives us a generalized sense in which to understand the energy minimization problem

Merriman-Bence-Osher (MBO) Method

Merriman-Bence-Osher (MBO) Method

Original Method

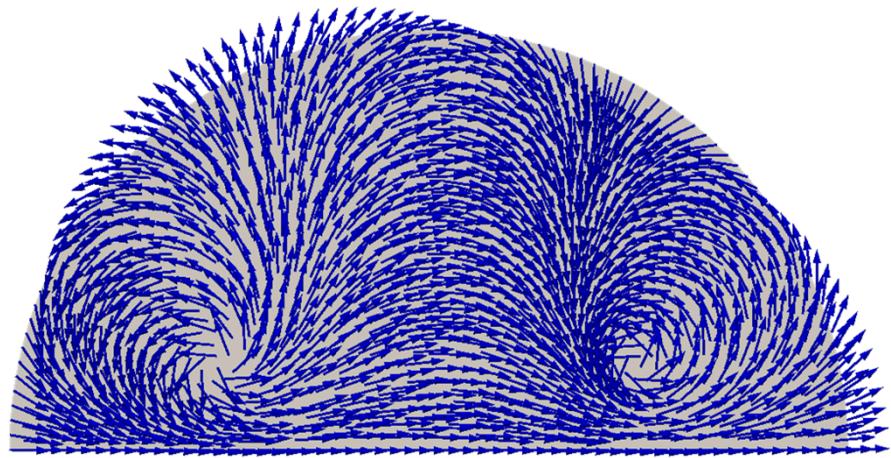
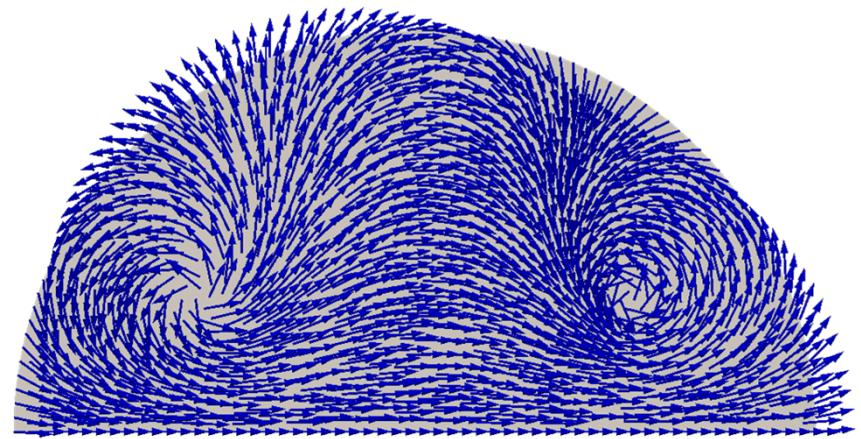
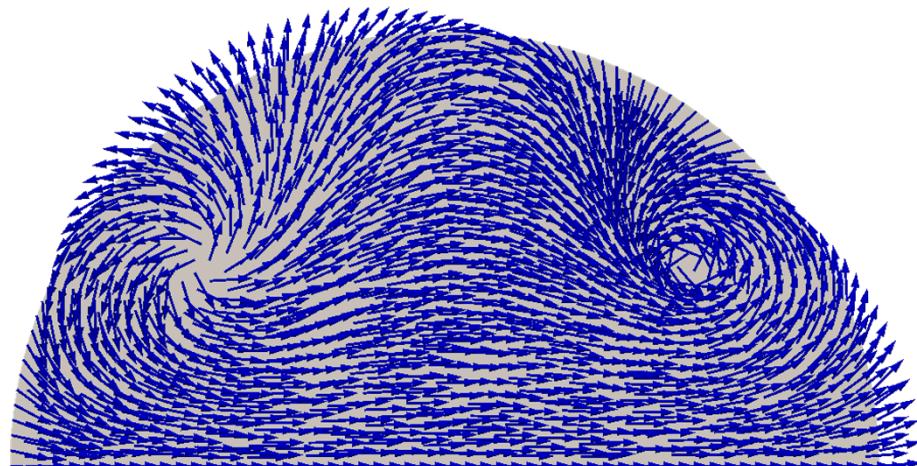
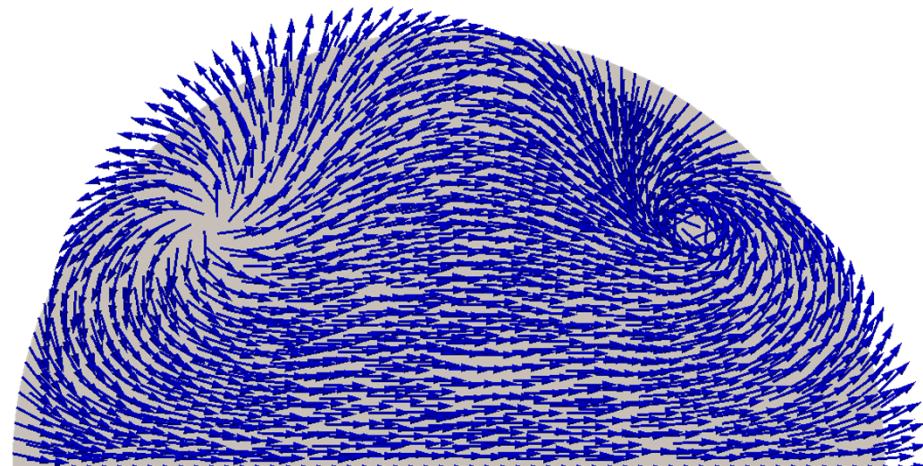
- Introduced as a method for motion by mean curvature
- Minimizes a two-well potential energy analogous to the complex GL energy

New Application to Frame Fields

- Iterative method to minimize cross field energy:

$$u_0 = \frac{\tilde{u}}{|\tilde{u}|} \quad \text{and} \quad u_k = \frac{e^{\tau\Delta} u_{k-1}}{|e^{\tau\Delta} u_{k-1}|} \quad k \geq 1.$$

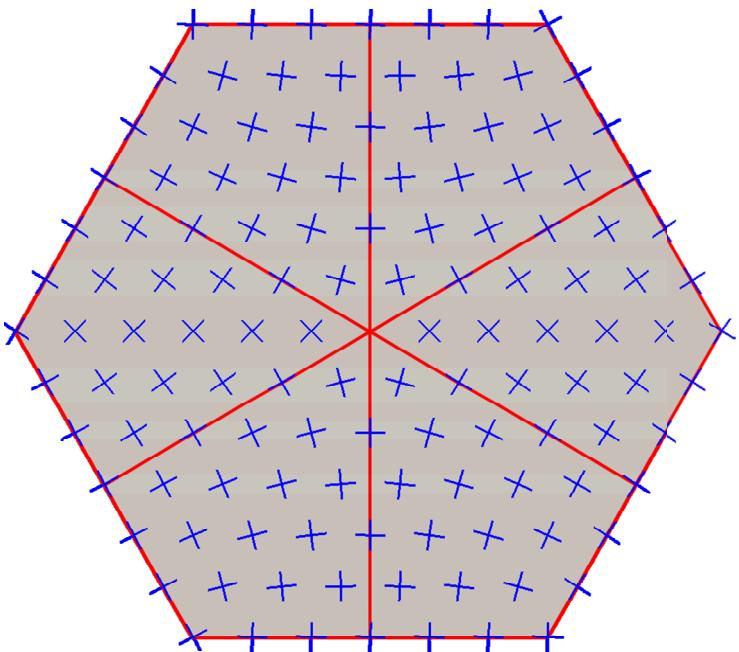
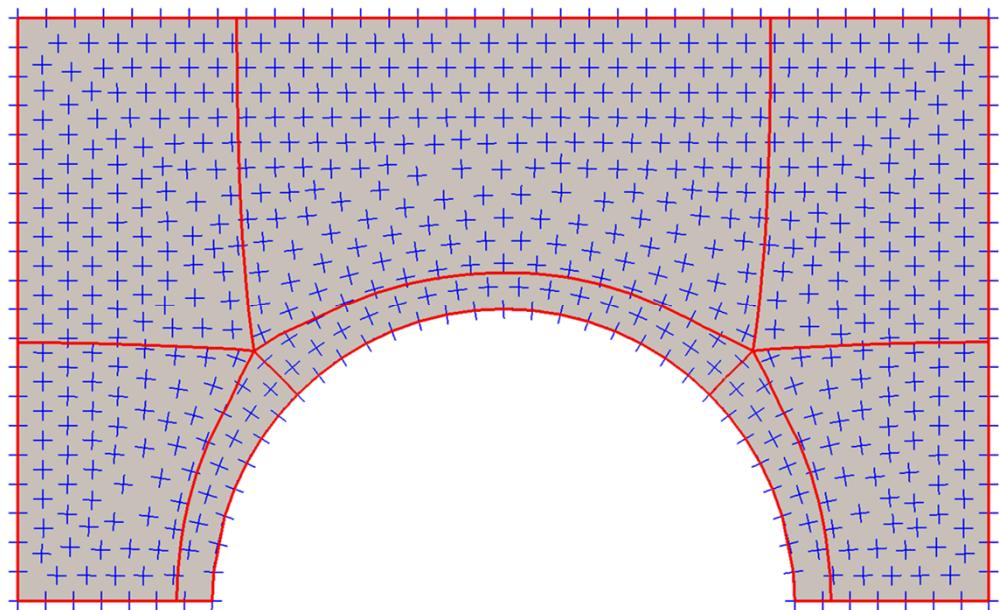
MBO Method



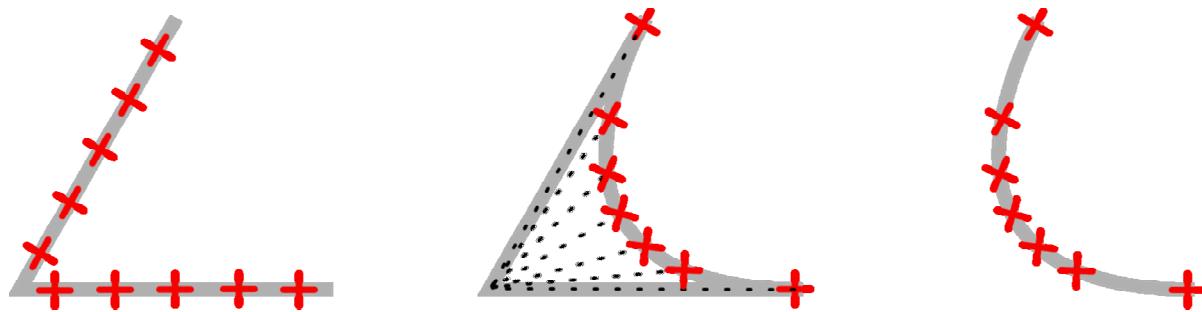
Asymptotic Behavior of Cross Fields Near Singularities

Separatrices of a Singularity

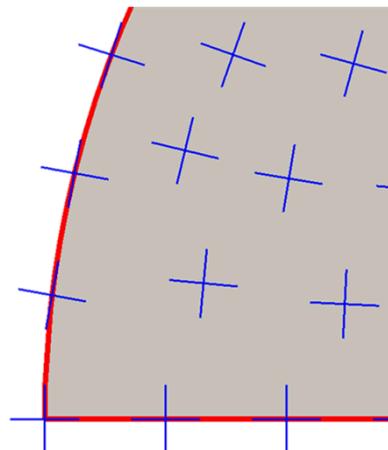
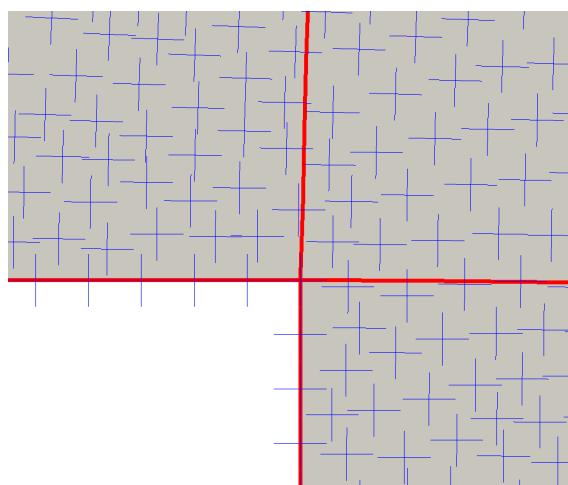
LEMMA 5.1. *Let f be a boundary-aligned canonical harmonic cross field on D . Let a be an interior singularity of f of index $d/4$ with $d < 4$. There are exactly $4 - d$ separatrices meeting at a . These separatrices partition a neighborhood of a into $4 - d$ even-angled sectors.*



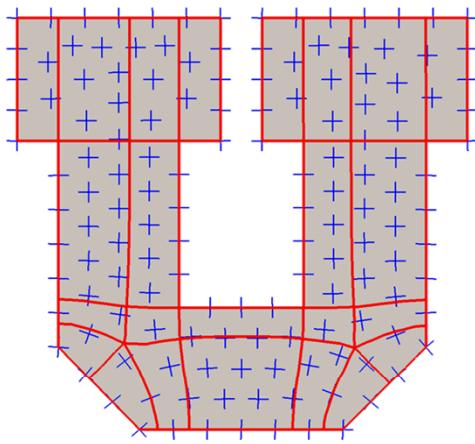
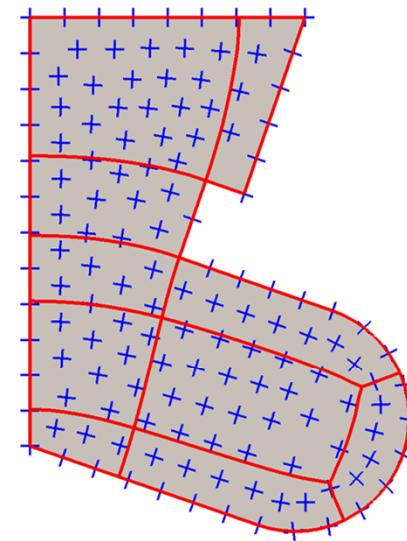
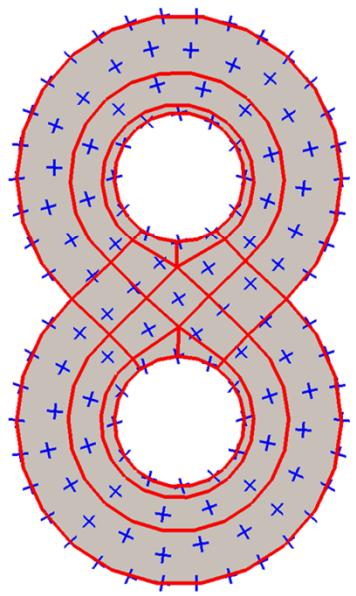
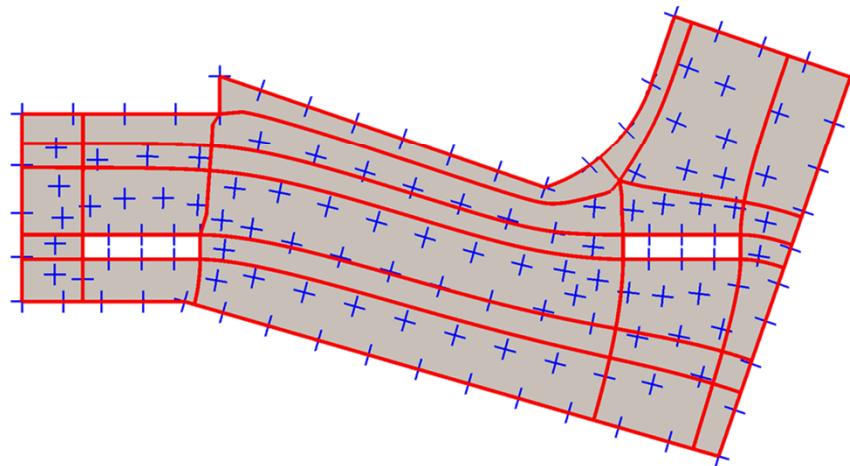
Boundary Singularities



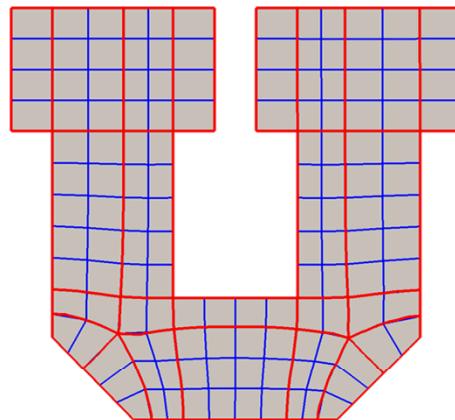
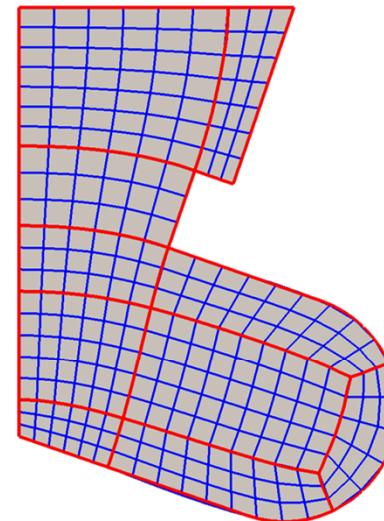
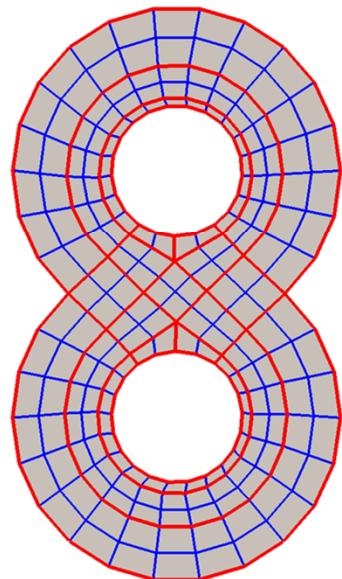
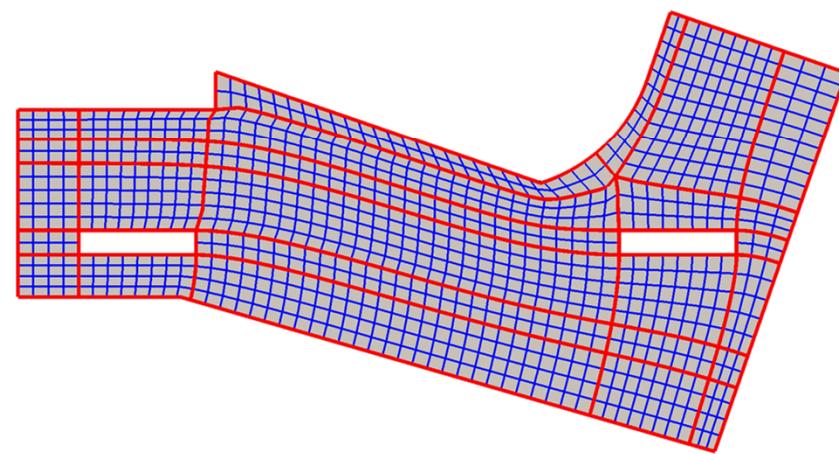
LEMMA 5.4. Let c be a boundary singularity of f of index $d/4$ with $d < 2$. There are exactly $3 - d$ separatrices meeting at c (including the boundaries themselves). These separatrices partition a neighborhood of c into $2 - d$ even-angled sectors.



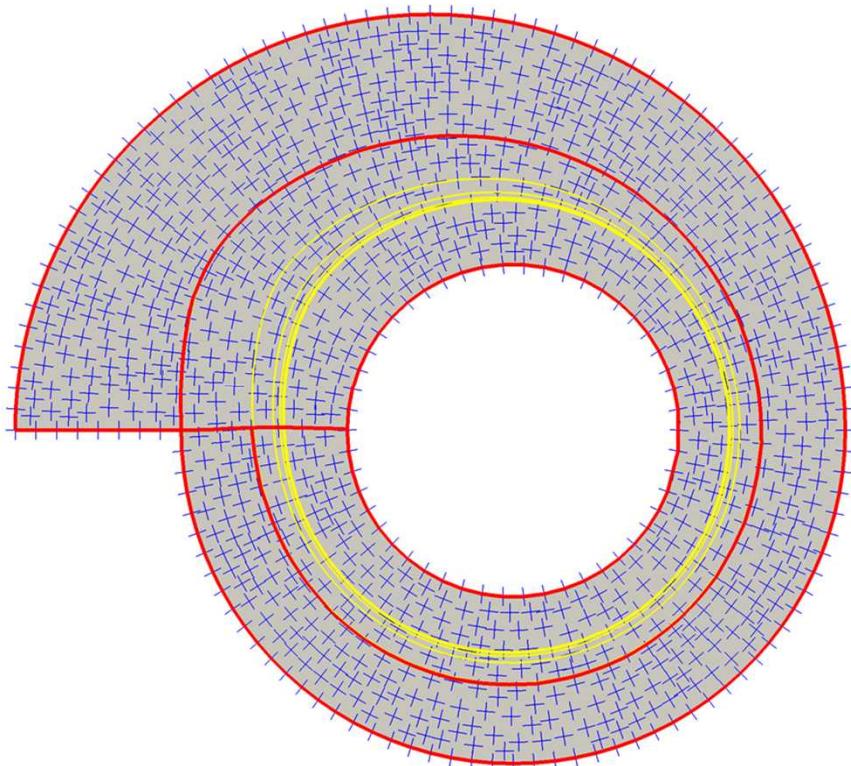
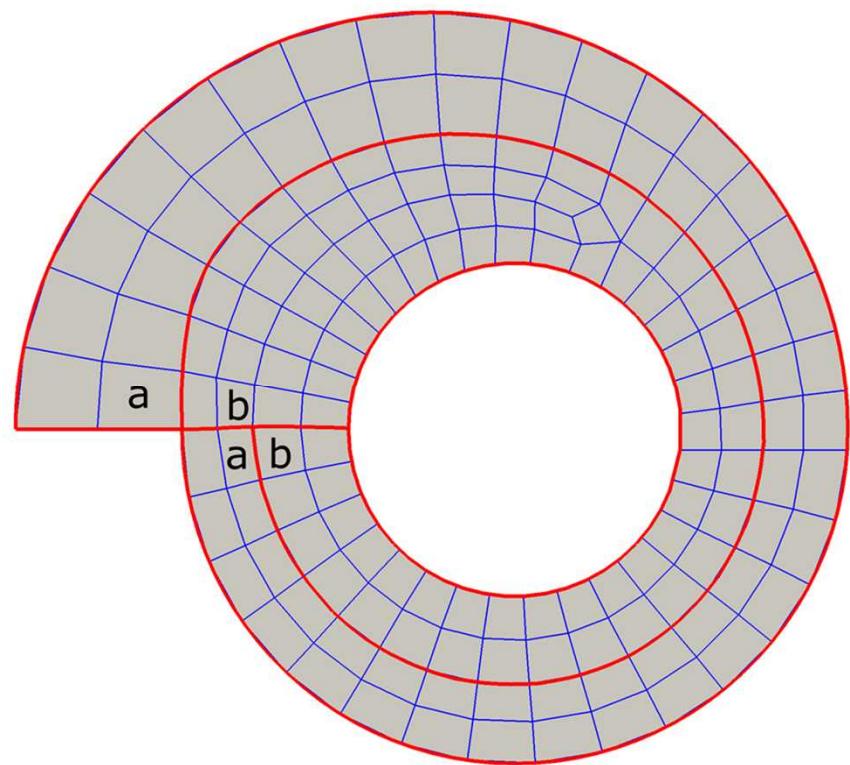
Partition into four-sided regions



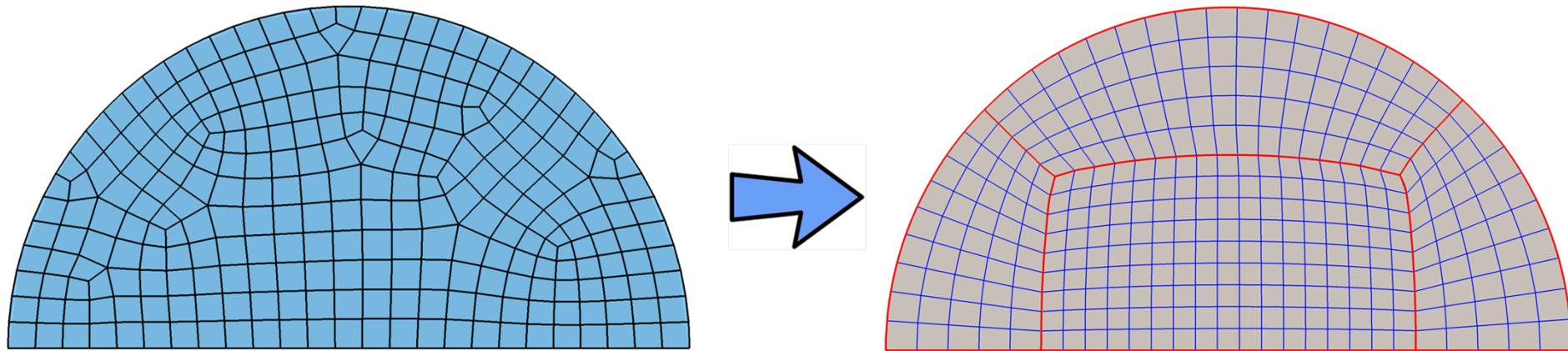
Meshing



Limit Cycles



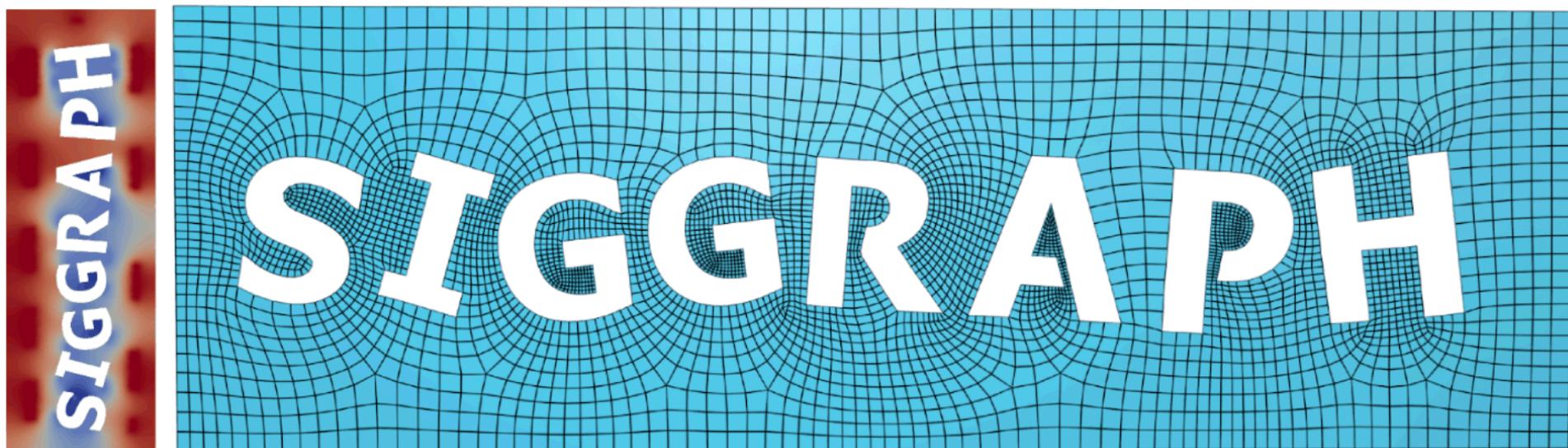
Candidate: Cross field guided methods



Wish List

1. High element quality ✓
2. Boundary aligned elements ✓
3. Block Structured mesh ✓
4. Prescribed size map
5. Prescribed boundary intervals.
6. Guaranteed results ✓
7. Produces predictable output ✓

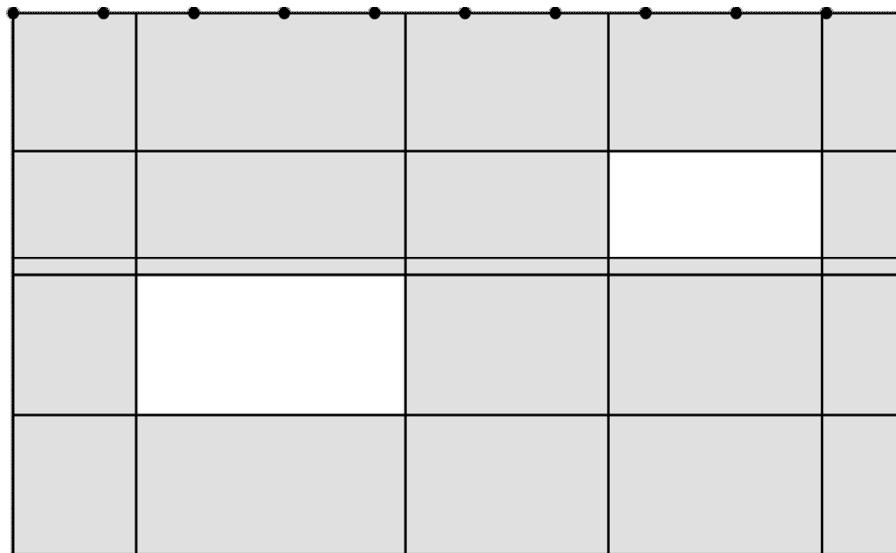
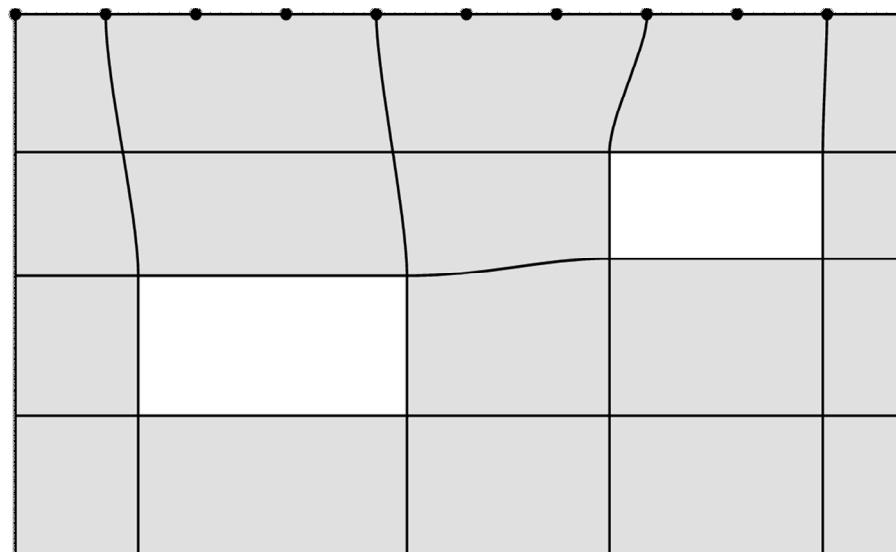
Size Map



- T. Jiang, X. Fang, J. Huang, H. Bao, Y. Tong, M. Desbrun, Frame field generation through metric customization, ACM Transactions on Graphics 34 (2015).

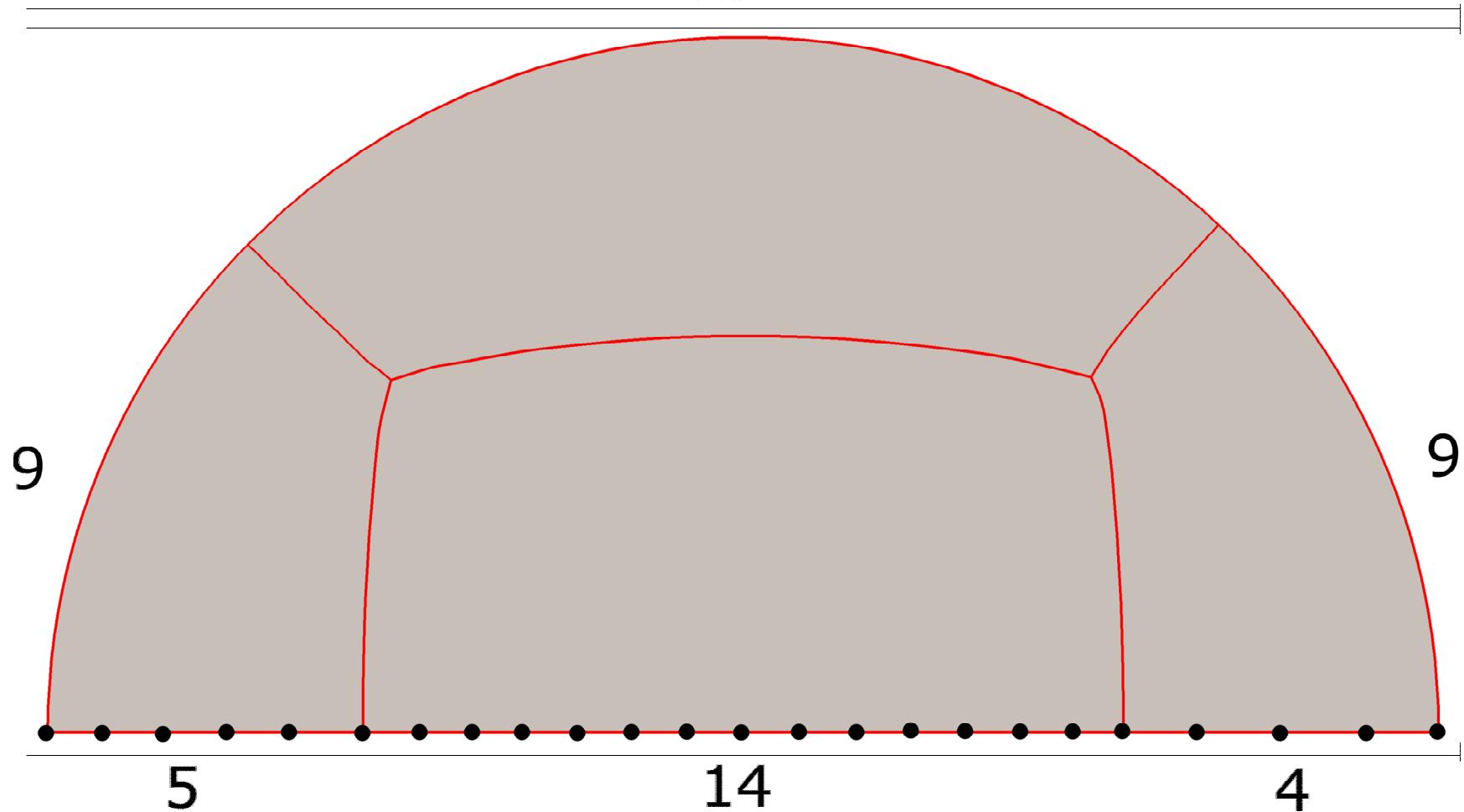
We intend to adapt the work of Jiang et al. to the MBO method for designing cross fields

Partition Modification



Boundary Interval Assignment

17



- S. A. Mitchell, High fidelity interval assignment, International Journal of Computational Geometry & Applications 10 (2000) 399–415.

Summary

1. Connection with Ginzburg-Landau Theory
2. MBO method for minimizing cross field energy
3. Fixed Frame field design method
4. Asymptotic Behavior of Singularities
5. Cross Field Partitioning Theorem

Acknowledgements

- Sandia National Labs
- University of Utah
- NSF DMS 16-19755
- Matt Staten
- Braxton Osting