
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Components, Software Scalability, and the
CFRFS Problem Solving Environment

Benjamin Allan and Jaideep Ray

Sandia National Laboratories, Livermore

May 25, 2005

SAND2005-3208C

Problem Statement

• Assumptions :
– Writing software is a reality

– Code complexity retards productivity – papers, timelines and
proposal writing.

• Questions addressed :
– Can a component-based software methodology lower code

complexity? Provide numbers.

– Is the administrative overhead (coding discipline, code design etc)
worth it i.e. is productivity enhanced? Provide numbers.

– What is the general structure of such a software development
effort? Is there is a “hero programmer” who provides continuity?

• Questions not addressed :
– Can a component-based software architecture be adopted for MPI-

heavy scientific code ?

• Yes it can; see CCA-related publications for examples.

Outline of the talk

• Based on our experience while developing the Computational
Facility for Reacting Flow Science toolkit

• What is the CFRFS toolkit ?

– What does it do ? How general is it ?

– What’s so special about it ? How is it componentized ?

• How did componentization help tame software complexity ?

– How granular is the componentization ? How complex are
the interfaces between components ?

– What was the make-up of the software team ?

• Did taming of complexity help ?

– Did we publish ?

– Did we trigger new fields of research ?

The CFRFS toolkit

• A toolkit to perform simulations of lab-sized unsteady
flames

• Solve the Navier-Stokes with detailed chemistry (~30
species, 200 reversible reactions)

• Consequently :
– Disparity of length-scales :

• use structured adaptively refined meshes

– Disparity of timescales (transport v/s chemistry) :
• use an operator-split construction and solve chemistry

implicitly

• Adaptive chemistry : use computational singular
perturbation to identify low dimensional chemical
manifolds and proceed along them

An example problem

• A coarse approx. to a flame.

• H2-Air mixture; ignition via 3 hot-

spots

• 9-species, 19 reactions, stiff

chemistry

• 1cm X 1cm domain, 100x100

coarse mesh, finest mesh = 12.5

micron.

• Timescales : O(10ns) to O(10

microseconds)

ii
i wY

Dt

DY
 .

What’s so special about CFRFS ?

• Component-based, and still parallel.

– Each functionality (e.g. integrator, mesh, diffusion-flux constructor
etc) are implemented as peer components.

– Completely independent of each other – can be mixed-and-matched

– Components are compiled into dynamically loadable libraries

– And are loaded into a framework at runtime and assembled into a
working code

• Note :

– There is never an a.out

– Component A can be replaced by Component B in the middle of a
run

– And no, this does not involve a “compile, link and keep the static
executable in memory” trick by the framework.

• Component architecture

– Common Component Architecture

– The framework used is CCAFFEINE (made in Sandia)

The code

Research software scalability goals

• Generate scientific publications.

• Tame the complexity (cost!) of the software management:

– Support new science and more complex models quickly.

– Reuse verified parts of legacy codes.

– Verify new codes (some from competitors).

– Promote incremental and iterative development.

• Future-proofing:

– Prevent sloppy, unmaintainable agglomerated code.

– Cope with shifting HPC platforms regularly.

– Enable lasting contributions from transient collaborators.

CFRFS PSE approach

• RFS applications are composed and parameterized in the generic

CCA component management framework Ccaffeine using a GUI or

scripting.

• Public function call interfaces (CCA Ports).

• Completely private implementation modules (CCA Components).

– Parallel communication is a private implementation detail.

– Each “global” variable or common block isolated in one component-

no under the table accesses.

– FORTRAN77 wrapped in C/C++.

Issues in CFD research software

• Many external libraries must be used, not recreated.

• Diversity of development team skills and styles.

• Module boundary design and enforcement.

• Publication and funding activities compete with science and software

for time.

• Software verification against other implementations.

• Changing needs and design requirements.

• Status :

– Started in 2001

– 61 components today, all peers, independent, mixed and matched for

combustion and shock hydrodynamics

– 7 external libraries

– Diverse programming team skills and styles; 9 in all, including 3 summer

students.

Scalability: PSE growth without rewrites

Components and ports created

0

10

20

30

40

50

60

70
J
a
n
-0

1

A
p
r-

0
1

J
u
l-
0
1

N
o
v
-0

1

F
e
b
-0

2

M
a
y
-0

2

S
e
p
-0

2

D
e
c
-0

2

M
a
r-

0
3

J
u
n
-0

3

O
c
t-

0
3

J
a
n
-0

4

A
p
r-

0
4

A
u
g
-0

4

N
o
v
-0

4

F
e
b
-0

5

time

N
u

m
b

e
r

Components Ports

Taming complexity: Component Source

• Most

components

are < 1000 lines

i.e they are

easily

maintainable

• Grace, Chombo

(parallel mesh

libraries with

load-balancers)

are the largest.

Taming complexity: Component sizes

• Most

components are

< 250 kB.

• The larger the

binary, the more

complexity is

being hidden in

underlying

(externally

contributed)

libraries.

Taming complexity: Interface size

• CCA Port is a unit of

task exchange, and

generally also a unit

of thought.

• In our PSE, this is

typically in the

range of 5-10

functions,

• Exception : SAMR

mesh data port.

Taming complexity: Implementations

• RFS ports may

have just one or

many

implementations,

as needed, but ..

• Most Ports have 1

or 2

implementations

• But high-utility

ports exists e.g.

for exchanging a

patch’s worth of

data.

Taming complexity: Callers

• Most RFS

Ports are used

by only a few

clients, but ..

• Key ports are

used by many

components.

Performance Measurement In A Component World

• CCA poses a curious problem in profiling & modelling
component performance

• In performance modelling one collects incoming inputs and
match them up with the corresponding performance, by
manually/automatically instrumenting the code, but ..

– What if the component is not yours ?

– How does one non-intrusively instrument a code? And
at what granularity ?

• What kind of performance infrastructure can achieve this?

– Previous research suggests proxies
• Proxies serve to intercept and forward method calls

“Integrated” Performance Measurement
Capability

Measurement infrastructure:
• Proxy

– Notifies MasterMind of all method
invocations of a given component,
along with performance dependent
inputs

– Generated automatically using PDT

• MasterMind

– Collects and stores all measurement
data

• TAU

– Makes all performance
measurements

• Work done at U. of Oregon by Prof.
Malony and team

Component
1

Component2Component
1

Component2Proxy for
Componen
t2

MasterMind TAU

Before:

After:

Component Application With Proxies

Productivity: Publication

• 6 test applications.

• 4 RFS journal papers, other software-oriented papers.

• ~11 conference papers, including best paper awards.

• Over 60 presentations.

Conclusions

• CCA has been an enabling technology

– Enabled mathematicians to contribute new strategies, shrink-wrapped

• Enable the integrator (research scientist ?) to

– Try unconventional approaches

• Dynamic codes a reality

– A promising way to go petascale

– But the devil’s in the details.

• Contributions to research and codebase :

– Sophia Lefantzi, Jeremiah Lee, Christopher Kennedy, W. Ashurst

– K. Smith, M. Liu. N. Trebon

• Acknowledgements :

– DoE’s Office of Advanced Scientific Computing Research (MICS-funded

CCTTSS SciDAC center) and Office of Basic Energy Sciences (Chemical

Science’s funded CFRFS SciDAC Center)

Background

Reacting flows simulation research PSE

Put PSE category blocks here Put amr movie here

AMR Data

Kinetics

Parallel IO

IC

Thermo

Flux Models

BC

Exp. ODE

Interpolation

Imp. ODE

Dif’n Models

Error Estimators

Prolong

Restrict

Scalability: Contributors over time

Chart of this by quarters/years would be better:

Ray: PSE lead 2001-present

Allan: Ccaffeine support 2001-present

Lefantzi: 2001-2003

Smith:

Lee:

Kennedy:

Trebon:

Liu:

Ashurst:

Scalability: External libraries over time

Lots more of these, too. Order, dates probably wrong.

Grace v1, HDF, MPI – 2Q-01

Chemkin – 3Q01

KennedyLib – 2Q03

Chombo – 3Q03

CSP – 3Q04

Grace v2 – 2Q04

Tau – 1Q04

